
Proc. IFIP Med-Hoc-Net 2006 – demo session, 14-17 June 2006, Lipari (Italy)

 1

Overlay Borůvka based Ad Hoc Multicast Protocol –
Demonstration

Andrea Detti
University of Rome Tor Vergata,
Electric Engineering Department,
Via del Politecnico 1, Rome, Italy
andrea.detti@uniroma2.it

Claudio Loreti, Remo Pomposini
RadioLabs

Via del Politecnico 1, Rome, Italy
{claudio.loreti,

remo.pomposini}@radiolabs.it

Abstract – This paper describes the main functionalities
of OBAMP protocol for multicasting in MANETs.
Moreover, the paper describes two demonstrations of
OBAMP in an emulated MANET environment: i)
comparative performance evaluation versus flooding and
unicast; ii) show cases of streaming and walkie-talkie
applications.

1 INTRODUCTION

An attracting use of Mobile Ad-hoc NETworks
(MANETs) consists in performing cooperative
applications during occasional team task. In such
scenarios, network facilities should offer the support
both for unicast and for multicast communications;
moreover, in this case multicast traffic may cover a
more important role with respect to the one that
multicasting would get in public Internet; as a matter
of fact, the occasional occurrence of the team task
(e.g., tactics, rescue, etc.) may make more the need of
real time multipoint-to-multipoint information sharing
rather than classic point-to-point data transfer.
At network layer, a large number of multicast
protocols have been designed for MANETs, but their
standardization process is yet at a premature state
involving the software developer to realise the
multicast functionalities at application (or overlay)
layer. We have designed an overlay multicast protocol
for mobile ad-hoc networks named Overlay Borůvka
based Ad-hoc Multicast Protocol (OBAMP). The
OBAMP performance goal is the minimization of the
number of transmission per packet sent while taking
care of the packet delivery ratio and of the signalling
induced at network layer (e.g., the signalling need to
perform route discovery). After an extensive
simulation campaign verifying the OBAMP
performance, we have implemented OBAMP through
JAVA language verify its functionalities in an
emulated ad-hoc network environment, that is the
focus of this paper. More detailed references and
software code are available at [7].

2 OBAMP OVERVIEW

OBAMP maintains a dynamic set of overlay links,
named mesh, spanning all member nodes. A subset of
not-cyclic mesh links spanning all members forms the
distribution tree; in Figure 1 we report an example of
mesh and tree links. Although the OBAMP conceptual
approach in managing the distribution tree is the
AMRoute one [1], OBAMP implements relevant
enhancements which cope with the AMRoute
inefficiencies, while conserving the AMRoute pros in
avoiding partitions and in requiring only a minimal
knowledge of the network topology. Mainly, these
enhancements consist in: i) OBAMP mesh is dynamic
and runs after the radio connectivity evolution; ii) by
means of delay mechanisms the distribution tree is
more efficient; iii) OBAMP exploits the radio
broadcast.

2.1 MESH management.
Let us discuss now how OBAMP manages the mesh.
Each member node maintains in the neighbours list
the status information (1) related to the mesh links to
which the node is an edge; the remote edge is said to
be a neighbour. The neighbours list, i.e. the mesh
connectivity, is updated in a distributed way as follow:
periodically each member starts a neighbour discovery
round during which the member sends out broadcast
HELLO messages with incremental IP TTL (i.e.,
expanding ring approach) that is also reported within
the HELLO. When a member node receives the
HELLO, it inserts the sender in the neighbours list and
sends back the HELLO REPLY message including the
originating HELLO TTL. At the reception of the
HELLO REPLY the sender stops the current
neighbour discovery round and inserts the source of

(1) Some examples of status information are: neighbour
IP address, hop distance, expiration time, the link is or
isn’t a tree link, core address of the neighbour, etc..

Proc. IFIP Med-Hoc-Net 2006 – demo session, 14-17 June 2006, Lipari (Italy)

 2

the HELLO REPLY in the neighbours list. The TTL
information included both in the HELLO and in the
HELLO REPLY allows the receiver to know the hop
distance from the sender.
Such as it is done by reactive ad-hoc protocols, the
neighbours list is managed in a soft-state fashion
through the use of timeouts. If a neighbour entry is not
refreshed (i.e., HELLO or HELLO REPLY are not
received) within a certain period of time, the
neighbour, and therefore the related mesh link, is
purged, unless that mesh link belongs to the current
distribution tree.

1

2

5

4
6

9

3

Tree and Mesh link

Mesh only link
7

8

10

1
2

2

2

2

2

3

3

4

5

4

1 3

4

2

1

2

5

4
6

9

3

Tree and Mesh link

Mesh only link
7

8

10

1
2

2

2

2

2

3

3

4

5

4

1 3

4

2

Figure 1- Example of mesh and tree links with the
relevant hop distance (not member nodes participating
to the radio connectivity are not drawn). Node 1 is the
core.

2.2 TREE management
Over the mesh OBAMP builds a shared multicast
distribution tree. OBAMP uses a tree creation/refresh
mechanism regulated by a unique member node
elected as the core. The core periodically starts refresh
rounds. At the start of refresh round #i, the core sends
out TREE CREATE #i message toward its neighbors.
In order to build an efficient tree in terms of involved
hops, at the reception of the TREE CREATE #i from a
specific forwarding neighbour, the member node
delays the handling of this TREE CREATE #i for a
specific amount of time. This delay is proportional to
the hop distance with the forwarding neighbour and it
is equal to zero if this neighbour is the nearest one or
vice-versa (2). At the first handling of the TREE
CREATE #i, the member node sets the mesh link
toward the forwarding neighbour as tree link.
Moreover, the forwarding neighbour is classified as
the new parent node and the tree link toward the old
parent node is switched off. Afterwards, the member
node forwards the TREE_CREATE #i toward its
neighbours with the exclusion of the receiving one.
The successive TREE CREATEs #i are discarded.

(2) The hop distance is altered by a very small random value; so
doing each mesh link get a different hop distance and the nearest is
unique.

At least in case for which none network impairments
occurs, by setting the nearest neighbour delay equal to
zero the resulting OBAMP tree includes all the links
connecting nearest neighbours; the same occurrence
takes place at the end of the first step of the Minimum
Spanning Tree - Borůvka algorithm. Regarding the
other tree links, shortest links are preferred due to the
increasing delay applied at the TREE CREATE
reception.
Finally we mention that OBAMP faces with the
member failures by checking the tree links activity
and utilizing fast recovery procedures not reported
here for lack of space.

2.3 Data distribution
The OBAMP data distribution provides that when a
member node receives a data, it forwards the data on
all others connected tree links. Moreover, OBAMP
exploits the radio broadcast by transmitting only one
copy of data for all neighbours that get hop distance
equals to 1. To avoid not useful data retransmissions,
the header of data packet contains a bit-map which
represents the list of the members nodes for which the
packet has just been forwarded.

3 IMPLEMENTATION

Although OBAMP can be implemented within the
multicast application, we prefer to implement
OBAMP as an independent module, which on behalf
of the multicast applications is seen as a proxy
(OBAMP proxy). The multicast application sends and
receives data through local sockets, which are bound
with the OBAMP proxy; on its turn, OBAMP proxy
deals with the data distribution on the multicast tree.
The OBAMP proxy software architecture is depicted
in Figure 2, it is composed of tree modules: signaling
manager, data manager and application handler. The
application handler sends/receives data to/from the
multicast application. The signaling manager receives,
handles and sends out OBAMP control messages
while updating the neighbours list. Finally, data
manager on the one hand handles the data distribution
on the multicast tree, and, on the other hand
sends/receives data to/from the application handler.
We developed OBAMP proxy in JAVA using the
version 1.4.2. All network communications are
realized through four JAVA Datagram Sockets: two
for unicast/broadcast signaling and two for
unicast/broadcast data. As far as the underlying
unicast routing protocol is concerned, we resort to the
UoB WinAODV [2] opportunely patched in order to
support flooding functionalities.

Proc. IFIP Med-Hoc-Net 2006 – demo session, 14-17 June 2006, Lipari (Italy)

 3

Figure 2 – OBAMP proxy software architecture

4 DEMONSTRATION
The hardware architecture is formed by 5 laptops (o.s.
Windows XP) equipped with IEEE 802.11b working
in ad-hoc mode. As depicted in Figure 3, three laptops
participate to the multicast session, one laptop belongs
to the ad-hoc but does not participate to the multicast
group (i.e., only AODV) and the final laptop is the
connectivity manager node. Connectivity manager is
never MAC filtered and does not run AODV protocol.
Moreover, the connectivity manager is the statistics
collector, which are obtained through Ethereal [3].

80
2.

11
 a

d-
ho

c

Figure 3 – Demo hardware architecture

The demonstration takes into account of four
connectivity patterns reported in Figure 4. In order to
perform the demonstration in a room and to emulate
dynamic multi-hop radio connectivity, we resort to the
well-known MAC filtering approach; as instance, in
case C the nodes 1,3 and 4 mutually filters out their
MAC addresses. The movement is emulated by the
connectivity-server residing on the connectivity
manager and by the related connectivity-clients
residing on the member nodes. The MAC filtering
configurations are timely broadcasted by the
connectivity-server; at the reception of the current
filtering configuration the connectivity-client applies
the MAC filter on the node which is responsible to.
During the demonstration every 30 sec the
connectivity scenario is cyclic arranged according to
the patterns reported in Figure 4.

2

3

4

1

2

3 4

1

2

3
4

1

2

3 4

1

BA C D

Presence of radio connectiivity

2

3

4

1

2

3 4

1

2

3
4

1

2

3 4

1

BA C D

Presence of radio connectiivity

Figure 4 – Demo connectivity patterns

The demonstration consists in two parts:
- performance demo - through PCATTCP [4] and

netperf [5] tools we compare the overall average
bitrate yields by OBAMP versus unicast and
flooding distribution strategies. The results
obtained in our laboratory in case of a single 32
kbps CBR source placed on node 1 are reported in
Table 1;

- show-case - through JMStudio [6] we reproduce
both an audio streaming and a walkie-talkies
multicast session.

 A B C D

OB 42 119 157 118

FL 149 149 149 149

UN 77 152 152 189

Table 1 – Average network bitrate (kbps) for
OBAMP (OB), Flooding (FL) and Unicast (UN)
versus different connectivity patterns (A,B,C,D) in
case of AODV routing and 32 kbps CBR source on
node 1.

REFERENCES

[1] J. Xie, et al., “AMRoute: Ad Hoc Multicast
Routing Protocol”, ACM/Baltzer Mobile
Networks and Applications, vol.7 No. 6, Dec.
2002.

[2] http://www.aodv.org
[3] http://www.ethereal.com
[4] http://www.pcausa.com/Utilities/pcattcp.htm
[5] http://www.netperf.org/netperf/
[6] http://java.sun.com
[7] http://www.radiolabs.it/obamp.htm

ACKNOWLEDGMENT

This work has been developed within the project
Virtual Immersive COMmunications (VICOM)
founded by the Italian Ministry of Instruction
University and Research (MIUR).

