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Abstract— This paper presents a novel MANET multicast 
protocol, named Overlay Borůvka-based Ad-hoc Multicast 
Protocol (OBAMP), and evaluates its performance. OBAMP is an 
overlay protocol: it runs only in the end-systems belonging to the 
multicast group. User data are distributed over a shared 
distribution tree formed by a set of non-cyclic UDP tunnels. 
OBAMP derives the distribution tree by approximating the 
Borůvka algorithm; the Borůvka algorithm is a classical tool 
(1926) to find the minimum spanning tree; thus, the distribution 
tree of OBAMP is an approximation of the minimum spanning 
tree of the connectivity topology at hand. 

OBAMP shows three distinctive advantages: i) its distribution 
tree closely resembles the minimum spanning tree; ii) it exploits 
broadcast communications (with favourable consequences on its 
efficiency); iii) its design takes into account not only overlay 
signalling but also network-layer signalling; thus, the protocol 
succeeds in limiting the overall signalling load, network+overlay. 
As a consequence, OBAMP has a low-latency and a high delivery 
ratio, even when the group size increases. 

To prove this statement, we analyze the performance of 
OBAMP with ns-2 and compare it with two state-of-the-art 
protocols, namely ODMRP (a network-layer protocol) and ALMA 
(an overlay protocol). Both OBAMP and ALMA are assumed to 
use AODV as underlying routing protocol.  

Also, we stress that we have implemented OBAMP, in Java, 
and we have tested it on the field, to prove its feasibility. 

To allow fellow researchers to reproduce and test our work we 
published all simulation and implementation codes, in [11]. 

I. INTRODUCTION 
An attractive use of Mobile Ad-hoc NETworks (MANETs) 

consists in performing cooperative work during occasional 
team tasks. In such scenarios, multicast traffic plays a more 
important role, with respect to the one that it would get in the 
public Internet. As a matter of fact, occasional team tasks are 
more in need of real time multipoint-to-multipoint services 
(e.g., push-to-talk, GPS positioning, etc.) than point-to-point 
ones.  

MANET multicast protocols can operate as a network layer 
protocol or as an application layer protocol (known also as 
overlay). In the first case, all nodes run the protocol and all 
nodes can be involved in managing a multicast session, 
including nodes that are not members of the multicast session 
(e.g., ODMRP [2], MAODV [3], etc.).  

On the contrary, an overlay multicast protocol involves only 
nodes that are members of the multicast session, i.e. the 
protocol is peer-to-peer (e.g., AMRoute [1], ALMA [7], 

PAST-DM [8]). User data and signalling information are 
transferred via transport layer tunnels (e.g. UDP sockets) 
among member nodes. Therefore, multicast functionality can 
be embedded within end-user applications, without any 
multicast support from the underlying network layer. This 
feature greatly simplifies the deployment of the multicast 
protocol and justifies the interest of the research community in 
this topic. 

In this paper, we propose an overlay protocol, based on the 
so-called Borůvka algorithm [5]; we evaluate its performance 
by means of simulations; we compare it with two promising 
alternatives, ODMRP [2] (a network-layer protocol) and 
ALMA [7] (an overlay protocol); we implement it to assess its 
feasibility.  

The main aim of OBAMP is to limit the network traffic, 
both user data and signalling information, so as to achieve a 
high delivery ratio and a low latency. Also, we would like the 
protocol to be scalable, i.e., to maintain these properties when 
the group size increases. This goal is achieved by: i) 
developing an efficient distribution tree that approximates as 
much as possible the minimum spanning tree (i.e., the overlay 
tree with the minimum number of network hops); ii) exploiting 
radio broadcasting; iii) taking into account and minimizing not 
only overlay signalling but also network-layer signalling. 

An efficient distribution tree is a quite common objective for 
designers of overlay protocols. Radio broadcasting is exploited 
in only one (recent) proposal [8], while, to the best of our 
knowledge, only OBAMP tries to minimize not only overlay 
but also network-layer signalling1. 

The paper is organized as follows: in section II we discuss 
pros and cons of the overlay and network layer approaches; 
section III recalls some background on graph theory, useful to 
better understand the OBAMP theoretical foundations; section 
IV describes the protocol; section V focus on performance 
evaluation; section VI presents the conclusions. To avoid 
interrupting the flow of the paper, we report some additional 
results in appendices: Appendix I shows the sequence 
diagrams of the OBAMP procedures; Appendix II describes 
the format of the OBAMP messages; in Appendix III we 
extend the performance evaluation of section V, by analyzing a 

 
1 For instance, a frequent assumption when evaluating overlay multicast 

protocols is to assume a complete and always updated knowledge of the 
network topology, without considering the associated cost in terms of signaling 
exchanges and the routing inefficiencies due to the dynamics of the network 
links. 
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different source scenario; in Appendix IV we state three 
properties of the tree built by OBAMP. 

Finally, we stress that we have implemented OBAMP, in 
Java, and we have tested it on the field, to prove its feasibility 
(see implementation codes in [11]). To the best of our 
knowledge this is the first time that an overlay multicast 
protocol is really deployed in practice. We believe that this is 
very important as it often happens that some protocol 
procedures or mechanisms may seem deceptively easy to 
implement. Practice brings about unforeseen problems and 
difficulties. 

II. OVERLAY APPROACH VERSUS NETWORK LAYER APPROACH 
In this section, we briefly discuss pros and cons of the 

overlay and network layer approaches to implement a MANET 
multicast protocol. We compare the two approaches in terms of 
network performance (II.A) and in terms of easy of 
implementation (II.B).  

We believe that, in line of principle, the network layer 
approach is better or at most equivalent than the overlay one, 
from a network performance point of view; nevertheless, 
particular instances of network layer protocols may turn out to 
perform worse than particular instances of overlay protocols.  

On the other side, we argue that implementing an overlay 
MANET multicast protocol is less complex, quicker to deploy 
and easier to customize.  

As a consequence, the research challenge that we face 
consists in devising an overlay multicast protocol that performs 
as better as (or even outperforms) the more promising network 
layer multicast protocols available nowadays.  

A. Network performance aspects 
Obviously, the overlay members are a subset of the network 

nodes. As a consequence, all the operations that are performed 
by an overlay protocol can be performed as well by a network 
layer protocol, exploiting the same set of nodes. However, a 
network layer protocol can exploit also the remaining nodes 
and thus it can potentially improve the overall performance. In 
the worst case, the network layer approach can avoid to exploit 
these added degrees of freedom and stay with the “basic” 
performance brought about by the set of member nodes. 

In addition, an overlay protocol must coexist with an 
network layer unicast routing protocol. This implies potential 
inefficiencies: the two protocols need to interact and it may 
also happen that some functions are executed at both layers 
(e.g., neighbours discovery), thus increasing the overall 
overhead. 

B. Implementation aspects 
The main advantages of an overlay multicast protocol lie in: 

 lower computational complexity (as pointed out in 
[7][9][8]): as a matter of fact, in the overlay case a generic 
node has to manage only the routing state(s) of the 
multicast session(s) to which it belongs to; instead, in the 
network layer case, a generic node has to manage the 
routing states of all ongoing multicast sessions. 

 Fast deployment and time to market: an overlay multicast 

protocol can be integrated within an application software; 
this implies that the multicast protocol is distributed 
together with the application and can reach more easily all 
the interested users. This is especially important in the 
actual standardization scenario, in which unicast routing 
protocols are well established, whereas network layer 
multicast protocols are at a premature level [20]. The 
integration of the multicast protocol in the application 
package allows to avoid making assumption on the 
availability of underlying multicasting functionality, which 
is a distinctive advantage, as observed in [21].  

 Easy of customization: this may be seen as another 
advantage of integrating the multicast protocol and the 
application software; the multicast protocol can be 
optimized or fine tuned as a function of the requirements of 
the application itself. 

III. THEORETICAL BACKGROUND 
The aim of this section is twofold: a) to recall graph theory 

results showing what is the cheapest distribution tree in terms 
of number of hops on a given topology: it comes out that the 
best tree is the minimum spanning tree for the overlay 
approach, and the Steiner tree for the network layer approach; 
b) to describe the Borůvka algorithm, which is a classical tool 
to find the minimum spanning tree. 

A. Graph theory background 
Let us consider a generic multicast session at time t, over a 

given MANET, without detailing, for the moment, if it is 
implemented with an overlay or a network-layer approach. We 
can define: 
− {N} as the set of network nodes; 
− {M} as the set of member nodes of the multicast session, 

i.e., nodes belonging to the multicast group (M ⊆ N); 
− G=(V,E) as the connection graph, formed by the set {Vi} 

of vertices and the set {Eij} of edges, where: 
− the vertex Vi is associated with the i-th network node 

able to perform multicast routing; 
− the edge Eij is associated with the connection service 

provided by the underlying layer between vertex Vi 
and vertex Vj; 

− c(Eij) as the cost (or weight) of the edge Eij measured in 
network hops;  

− T as the minimum cost tree, i.e. a sub-graph of G that 
spans all members M and has the minimum cost, 
measured as the sum of the cost of the involved edges.  

The graph G contains all the possible routes that can be used 
to setup the multicast session in the considered MANET. As a 
consequence, T is the minimum cost tree for the considered 
MANET.  

Now, the graph G and the tree T may vary, depending on if 
we consider an overlay or a network-layer approach. 

In the overlay case it turns out that: 1) only member nodes 
can perform multicast routing; 2) the connection service is 
supplied by the underlying TCP or UDP layers, which provide 
all Eij connections among members; these connections are 
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named overlay links. In terms of graph theory these two 
features translate in: i) the edges of the graph are overlay links 
(and thus they may consist of more than one network link); ii) 
V=M; iii) G is the fully meshed connection graph connecting 
all the vertices; iv) the cost c(Eij) is the number of network 
hops of the overlay link between member i and member j 
(assuming that the underlying unicast routing protocol 
minimizes the path length measured in number of hops, in that 
case the overlay link is also the shortest path between member i 
and member j); v) T is the sub-graph of G containing all 
vertices and having the minimum possible cost, namely the 
overlay minimum spanning tree.  

In the network-layer approach it turns out that: 1) all nodes 
can perform multicast routing; 2) the connection service is 
supplied by the underlying Data Link / MAC layers, which 
provide only connections Eij among adjacent nodes; these 
connections are named network links. In terms of graph theory 
these two features translate in: i) the edges of the graph are 
network links; ii) V=N; iii) G is the connection graph 
connecting only adjacent nodes; iv) c(Eij)=1; v) T is the sub-
graph of G containing only the vertices of M and having the 
minimum possible cost, namely the Steiner tree.  
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Fig. 1 - Example of connectivity graph and of resulting cheapest tree of a 
MANET in the two cases of network-layer (a) and overlay approach (b) 

Fig. 1 shows an example of the connection graph G and of 

the corresponding cheapest tree in the network layer (a) and 
overlay (b) approach. In the network-layer case, the connection 
graph G equals the set of radio connections and the cheapest 
tree (a Steiner one) consists of 5 hops. In the overlay case, G is 
a full mesh among member nodes and the cheapest tree (the 
minimum spanning tree) consists of 6 hops. 

This said, we can conclude the section with an important 
consideration, already discussed in [6][7][9]. The overlay 
approach can not exploit non-member nodes for multicast 
routing; this implies that it is less efficient than the network-
layer approach because the same network link may be stressed 
by more than one tree link (see Fig. 1), i.e. by more than one 
transmission of the same user data. In particular, it has been 
found that the ratio between the cost of the minimum spanning 
tree and that of the Steiner tree is limited to 0.9, in practical ad-
hoc network scenarios [6]. This is an example of the 
performance issues discussed in II, about pros and cons of 
performing the multicast with an overlay or a network layer 
approach. 

B. Borůvka algorithm 
The Borůvka algorithm (1926) [5] finds the minimum 

spanning tree over a given graph. Alternative methods serving 
the same purpose are the Kruskal algorithm (1956) [17] and 
the PRIM algorithm (1957) [18]. We selected the Borůvka 
algorithm because it lends itself more easily to a distributed 
implementation. It works as follows: 

 
1. make a list L of {W} trees, where each 

tree is composed of a single vertex 
2. while L has more than one tree 

for each tree in L, find the smallest 
edge connecting the tree to another 
disjoined tree, thus forming a new tree 

3. end 

 
Let us define n-level edges the set of edges of the minimum 

spanning tree built by the Borůvka algorithm at the n-th 
iteration (in the while loop). It is easy to see that the first-level 
edges are the edges that connect nearest vertices. This 
definition will be useful in the sequel. 

IV. OBAMP 

A. Main protocol features 
The goal of OBAMP is to limit the network traffic, both user 

data and signalling information, so as to achieve a high 
delivery ratio and a low latency, and to maintain these 
properties when the group size increases. The delivery ratio is 
the ratio between the number of non-duplicated delivered data 
bytes and the number of bytes supposed to be received by the 
multicast sinks. The latency is the time elapsing between the 
emission of a packet and its reception by the receiving 
multicast sink.  

To this end, OBAMP: i) creates a cheap distribution tree; ii) 
exploits radio broadcasting; iii) limits the protocol overhead 
and the “induced” network layer-signalling. 

OBAMP is a mesh-first overlay multicast protocol: first it 
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builds an overlay network spanning all members (i.e., a mesh); 
then it builds the distribution tree by selecting a subset of non-
cyclic overlay links belonging to the mesh. Fig. 2 reports an 
example of mesh and corresponding distribution tree in a 10-
members case. Red lines are overlay links of the tree (and of 
the mesh as well, of course); dashed lines are overlay links of 
the mesh and not of the tree. Non-member nodes are not 
drawn, although they participate to the network layer routing.  

Both the mesh and the distribution tree are periodically 
updated, to follow the dynamics of the network links. The 
procedures that build the mesh and the tree are named mesh-
create and tree-create, respectively. 
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Fig. 2 - A mesh with a corresponding tree and related hop distance/cost (non-

member nodes are not drawn) 

1) Usefulness of the mesh-first approach 
The mesh-first approach was originally proposed by 

AMRoute [1] and is alternative to the tree-first approach used, 
for instance, by ALMA [7], which builds directly the multicast 
tree, without previously forming a mesh.  

The mesh-first approach constructs a structure more resilient 
to overlay link failures. As a matter of fact, in a tree-first 
approach the loss of an overlay link (e.g., due to a member 
hardware failure) would force a time-consuming process of 
neighbour discovery to select the “recovery” overlay link. 
During the discovery process, the tree is partitioned and loss 
phenomena can occur. On the contrary, in the mesh-first 
approach, it is often possible to quickly select a recovery 
overlay link among the mesh links, without the need of 
discovering available overlay links.  

2) Performance issues driving the design process 
This sub-section discusses some performance issues that 

explain the rationale that lies behind the definition of OBAMP. 
Let us define the efficiency ρ(t) of a generic distribution tree 

at time t as the ratio between the cost of the corresponding 
minimum spanning tree CMST (t) and the cost of the distribution 
tree Ctree(t) itself, i.e. ρ (t) = CMST (t)/ Ctree(t). As discussed in 

section III, the best choice for an overlay protocol is the 
minimum spanning tree and hence ρ(t) ≤1. It is helpful to 
express  ρ(t) as follow: 
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where: 

- ρmesh(t) is the mesh efficiency, defined as the ratio between 
the cost CMST(t) of the minimum spanning tree and the 
cost CmeshMST(t) of the minimum spanning tree of the given 
mesh at time t. This parameter measures the ability of the 
mesh-create procedure to include in the mesh overlay 
links belonging to the minimum spanning tree; as a matter 
of fact, if all minimum spanning tree links are contained 
in the mesh then CmeshMST(t) = CMST(t) and ρmesh(t)=1. On 
the other side, the more the mesh is “efficient”, in the 
sense just explained, the more are the opportunities for 
the tree-create procedure to build a cheap tree. 

- ρtom(t) is the tree-over-the-mesh efficiency defined as the 
ratio between CmeshMST(t). and the cost Ctree(t). This 
parameter is a measure of the effectiveness of the tree-
create procedure; in the best case, when ρtom=1, the 
distribution tree will be the minimum spanning tree of the 
mesh.  

The overall meaning of Eq. (1) is that the creation of a tree 
is a two-steps process and thus its efficiency is the product of 
the efficiency of the component steps. 

Fig. 3 reports a simulation run of the cost of a tree obtained 
with OBAMP as a function of the time, Ctree(t); also shown are 
CmeshMST(t) and CMST(t).  

CMST(t) is the minimum possible cost. If CmeshMST(t) is greater 
than CMST(t), the obtained mesh does not contain the minimum 
spanning tree and ρmesh(t) < 1. If Ctree(t) is greater than 
CmeshMST(t), then the tree-create procedure is not finding the 
minimum spanning tree of the mesh and ρton(t)<1. 

 
Fig. 3 - Simulation run of Ctree, CmeshMST and Cton in a multicast group of 10 

members. 
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B. Protocol procedures 
This section describes the protocol procedures. The 

sequence diagrams and messages format can be found in the 
Appendix I and II, respectively.  

User data are distributed over a distribution tree that is 
created by means of suitable procedures. We start the 
description of the protocol by describing data distribution and 
then we introduce the procedures that we need to create the 
distribution tree. 

1) Data-distribution 
Let us define as neighbours two members connected by a 

mesh link. Data-distribution is executed in two different ways, 
depending on if the hop distance between the forwarding 
member and its neighbour is greater than one or equal to one: 
− in the first case, each member forwards in unicast way the 

received (or generated) data on all overlay links of the 
distribution tree to which it is connected, with the exclusion 
of the receiving one. 

− in the second case, data are distributed to members 
belonging to the mesh by means of only one radio 
broadcasting transmission, with a value of the IP Time To 
Live (TTL) equal to 1. 

The rationale of the second case is that it may happen that 
more than one receiving member is within the coverage area of 
a sending member. In that case, it is more efficient to reach 
such members via radio broadcasting, instead that via unicast 
transmissions over the distribution tree. 

Data duplication may occur because of loops in the mesh, 
loops in the tree, due to the dynamics of the MANET, and to 
other reasons. To limit such duplication, we resort to two 
mechanisms: i) each data message contains a field (named 
JustForwardedMemberCode) that codes the list of the 
members to which those data have already being sent. 
Members will not forward a message to other members 
contained in this list; ii) data duplication is further limited by 
means of temporal data caches, as done in [7]. 

Thanks to these mechanisms, only one transmission is 
sufficient to reach neighbours within the same radio coverage, 
independently from the tree topology. This feature maintains 
good performance even when the group size increases.  

This said, we can now focus on how to create the mesh and 
the distribution tree. 

2)  Mesh-create 
From Eq. (1), it is easy to see that the mesh-create procedure 

should return a mesh that contains the greatest possible number 
of overlay links belonging to the minimum spanning tree.  

From this point of view, it is clear that the full-mesh will 
have ρmesh = 1 since it will surely contain all the overlay links 
of the minimum spanning tree. On the other side, the 
maintenance of a mesh link requires the exchange of overlay 
control messages and related, “induced”, signalling at the 
network layer. The overall amount of signalling increases with 
the square of the multicast group size, M, since a full mesh has 
M⋅(M-1) overlay links. As a consequence, maintaining a full 
mesh is in contrast with the aim of achieving a good scalability 

performance, and a trade-off is in order. 
For this reason, the mesh-create procedure builds a “trade-

off mesh” that tries to limit the number of overlay links while 
at the same time tries to include as many as possible minimum 
spanning tree overlay links. We will see that the mesh created 
by our procedure will contain the overlay links that connect 
nearest members, plus other overlay links eventually needed to 
avoid group partition. 

If we translate this in the terminology introduced in section 
III.B, we can say that the mesh-create procedure will surely 
include in the mesh at least the first-level edges of the 
minimum spanning tree. On the other side, the inclusion of the 
other overlay links of the minimum spanning tree is not 
guaranteed; this implies a small loss of mesh efficiency (e.g., in 
case of Fig. 3 the resulting mesh efficiency is ρmesh=0.94 
instead of the ideal ρmesh=1). This inefficiency is the price to be 
paid to curb the signalling overhead, by limiting the number of 
mesh links. 

The mesh-create procedure is made up of three elementary 
sub-procedures: hello, fast-hello and link-pruning. The hello 
and fast-hello sub-procedures periodically establish or refresh 
mesh links; in other words, their aim is to find the neighbours 
of each member, and to estimate their hop distance. We need to 
estimate the hop distance for a number of reasons; for instance, 
data are distributed differently, depending on the hop distance.  

The link-pruning sub-procedure manages the removal of a 
mesh link.  

The mesh is created (and maintained) in a distributed way: 
each member uses a number of parameters and state variables. 
An important data structure maintained by each member is the 
neighbours list, which contains the status information of the 
mesh links connected to the member; the members attached to 
the other end of such mesh links are the neighbours of that 
member. This status information is stored in a record 
containing 12 fields. The most important of these fields are: 
NEIGHBOUR_IP_ADDRESS; NEIGHBOUR_CORE_ADDRESS; 
HOP_DISTANCE; EXPIRY_TIME; TREE_FLAG (true if mesh link 
is a tree link). 

a) Hello sub-procedure 
The aim of the hello sub-procedure is to find the neighbours 

of each member and to evaluate the related hop distance. It is 
performed by all members when the nearest member is 
perceived to be no more than one network hop away or when 
the neighbours list is empty; otherwise the fast-hello sub-
procedure is carried out. 

The hello sub-procedure exploits a so-called expanding-ring 
search, and is executed every HELLO_PERIOD seconds. To 
describe it, let us consider a generic member, S. Member S 
sends out a sequence of broadcast HELLO messages, contained 
in IP datagrams with incremental values of the IP Time To 
Live (TTL) field2. The TTL field is incremented up to 
MAX_HELLO_TTL or until member S receives a HELLO REPLY 
message from another member. The IP TTL value set by 

 
2 We assume that the underlying network layer routing supports broadcast 

forwarding also for application layer data. 
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member S is copied in a specific field of the HELLO message.  
When a member, R, receives an HELLO message, it creates 

(or refreshes) a mesh link toward member S. This means that a 
neighbours list entry is created (or updated) by setting 
EXPIRY_TIME equal to the current time plus 1.5 ∗ 
ALLOWED_HELLO_LOSS ∗ HELLO_PERIOD and by setting 
HOP_DISTANCE equal to the IP TTL value contained in the 
HELLO message. Then, member R sends to S a unicast HELLO 
REPLY message, piggybacking the originating IP TTL.  

At the reception of the HELLOREPLY, member S stops the 
expanding-ring search and creates (or refreshes) a mesh link 
toward member R by creating (or updating) the relevant 
neighbours list entry, through the same procedure described 
above for R.  

At the end of the hello sub-procedure, member S knows who 
its neighbours are and has an estimate of how far away each 
neighbours is. Thus, in principle, we do not necessarily need 
fast-hello sub-procedure. The raison d’être of this latter 
procedure is to improve performance. 

The problem is that the estimate of the hop distance 
performed by the hello sub-procedure may be wrong, due to 
the fact that members are moving. This has serious 
implications in the data forwarding phase: if a member believes 
that its target is one hop away, it will use broadcast with a 
value of the IP TTL equal to 1 to reach it. If the target is NOT 
one hop away, the broadcast transmission will not be able to 
reach the target, causing data loss3.  

To alleviate this problem we have to improve the quality of 
the estimate of the hop distance. To do so, we could simply 
execute the hello sub-procedure more often, so that moving 
members are better tracked. However, this would increase the 
signalling overhead, especially when the hop distance is 
greater than one. Our solution is to devise a new sub-
procedure, to be executed more frequently and only when the 
nearest member is perceived to be one network hop away. 

b) Fast-hello sub-procedure 
The fast-hello sub-procedure is executed only when the 

nearest member is perceived to be one network hop away. It is 
repeated with a period equal to FAST_HELLO_PERIOD, 
which is smaller than HELLO_PERIOD.  

To describe it, let us consider a generic member, S. Member 
S sends out a FASTHELLO messages contained in a IP datagram 
with TTL=1 by means of a single broadcast transmission. 
When a member, R, receives a FASTHELLO message, it creates 
(or refreshes) a mesh link toward member S. This means that a 
neighbours list entry is created (or updated) by setting 
EXPIRY_TIME equal to the current time plus 1.5 ∗ 
ALLOWED_HELLO_LOSS ∗ FAST_HELLO_PERIOD and by 
setting HOP_DISTANCE equal to one. 

An interesting comment is that the scope of the HELLO 
messages in both sub-procedures, hello and fast-hello, is 
limited to the hop distance between member S and its nearest 
 

3 On the contrary, unicast transmissions do not have this problem: unicast 
exploits network layer procedures that route the data to the destination and thus 
can find the target member even when the latter is moving. 

member. Therefore, nearest members will be surely connected 
by mesh links, as previously stated.  

Moreover, most of the HELLO messages are transferred with 
UDP/IP broadcast packets, avoiding the possible production of 
network layer signalling to perform route-discovery. 

c)  Link-pruning sub-procedure  
The link-pruning sub-procedure removes outdated mesh 

links by using a soft-state approach. When the EXPIRY_TIME 
of a given mesh links is reached, then that mesh link is pruned 
by deleting its entry in the neighbours list, unless the mesh link 
is also a tree link. In the latter case: i) the mesh link is not 
pruned, to avoid group partition; ii) the related entry in the 
neighbours list is not deleted, but its hop distance is set to 
MAX_HELLO_TTL + 1, which has the meaning of unknown 
distance.  

3)  Tree-create procedure 
Once that the mesh is built, OBAMP creates a shared 

distribution tree over the mesh by using the tree-create 
approach proposed by AMRoute [1]. We selected this 
approach for its capability of avoiding persistent tree loops 
(even if it does not avoid temporary tree loops).  

In addition, to improve the tree-over-the-mesh efficiency, 
ρtom (see Eq. 1),we add to the AMRoute mechanism a novel 
feature, named handling delay. 

The tree-create procedure is initiated by a special member, 
named core, which is chosen by means of a suitable procedure, 
named core election, described in the following sub-section 5.  

Each member stores the identifier of its core (i.e., its IP 
address) and accept only control packet coming from its core. 

The core sends out TREECREATE #x messages toward its 
neighbours4 periodically, with a period equal to 
TREE_CREATE_INTERVAL. Each round of such messages 
refreshes the tree topology; the value of x identifies the x-th 
refresh round and is reported in a specific field of the 
TREECREATE message. Another field of the TREECREATE 
message indicates if the destination neighbour is or not the 
current nearest neighbour. TREECREATE messages are sent via 
broadcasting to neighbours at one hop distance, and via 
unicasting otherwise.  

When a member, R, receives a TREECREATE message from 
another member, F, it delays the handling of this message for a 
time equal to HANDLING_DELAY. The member R determines 
the value of HANDLING_DELAY as follows: 
 

if [(F is the nearest member of R) or (R is the 

nearest member of F)]  

then HANDLING_DELAY=0  

else HANDLING_DELAY =( dist -1)*Uh+r(0,1)*  Uh /10;  

 
where Uh is the HANDLING_DELAY time unit; dist is the 
HOP_DISTANCE of the mesh link connecting F to R; r(0,1) is 
 

4 Two members are said to be neighbours of each other if they are connected 
by a mesh link.  
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a uniform random value in the (0,1) interval, used to 
differentiate the delays of paths with the same hop distance. 

The first time that R handles a TREECREATE #x message, it 
marks the member from which it received the message as 
current parent member; the parent member of the previous 
refresh round is marked as old parent member. The current 
parent member is the closest upstream vertex of the tree toward 
the core. 

If there is not a tree link between R and its current parent 
member, then R creates it by using a two ways handshake setup 
procedure (see Appendix I.B). 

If old parent member is different from current parent 
member, then R tears down the tree link toward old parent 
member by means of two ways handshake tear-down 
procedure. 

At this time, R can forward the TREECREATE #x message 
toward its neighbours, with the exclusion of the receiving one; 
TREECREATEs #x messages, which show up after that R has 
handled the first TREECREATE #x message, are discarded.  

a) Three properties of the OBAMP tree 
The OBAMP tree is characterized by the following three 

properties, demonstrated in Appendix IV.  
Property A: the tree created by OBAMP does not have 

persistent tree loops.  
Property B: OBAMP builds a distribution tree that contains 

at least the fist-level edges of the minimum spanning tree. 
Property C: the links of the OBAMP tree that are not first-

level edges of the minimum spanning tree are the links of the 
macro-mesh that belong to the shortest-path rooted at the core. 

4) Outer-tree-create procedure 
Up to now, we have implicitly assumed that the mesh spans 

all members. In reality, the mesh-create procedure discovers 
only nearest members whose distance is at maximum 
MAX_HELLO_TTL hops. Hence, the mesh-create procedure 
may create partitioned meshes with different cores and give 
rise to different distribution trees, one for each partitioned 
mesh. To cope with this issue the outer-tree-create procedure 
connects these different meshes and distribution trees by means 
of a tree link, creating a mesh and related distribution tree that 
span all members. The procedure works as follows. 

Every OUTER_TREE_CREATE_INTERVAL, the core 
member of each partitioned mesh floods all the network with 
an OUTERTREECREATE message. To limit the signalling 
overhead, we choose for the 
OUTER_TREE_CREATE_INTERVAL a quite large value. 

Only mesh cores handle OUTERTREECREATE messages. 
When core A of mesh A receives an OUTERTREECREATE from 
core B of mesh B, the procedure core-election is invoked and 
two things can happen: 
1) core B is elected core of a new mesh resulting from the 

joining of mesh A and B; core A stops behaving as core and 
sets up a tree link with B, thus attaching “its” mesh to mesh 
B; this implies that also the related trees are now connected.  

2) core B is not elected core of a new mesh resulting from the 
joining of mesh A and B; in that case core A floods all the 

network with another OUTERTREECREATE message, 
without waiting for the 
OUTER_TREE_CREATE_INTERVAL. In other words, 
since the joining operation failed, we start a new trial 
immediately to save time. 

5) Core-election procedure 
The procedure core-election is used to uniquely identify the 

core of the mesh and is used: i) when two meshes, each with its 
own core must be connected; ii) when a core leaves the 
network or when the network gets radio partitioned and a new 
core must be found. 

In the first case, the procedure elects as new core the 
member with smallest IP address. This happens during the 
outer-tree-create procedure, as seen above. 

In the second case, all members connected by means of a 
tree link with the old core become cores. The remaining 
members will: i) receive TREECREATE messages from these 
new cores; ii) accept only those coming along tree links; iii) 
elect as new core the generator of the accepted TREECREATE 
message. This is the only exception to the rule according to 
which members accept only control packet coming from their 
current core. 

6) Member-join and member-leave procedures 
When a member wants to join a group it simply elects itself 

core of a mesh formed by itself only; then the outer-tree-create 
procedure will take care of the joining of such atomic mesh 
with the rest of the group. 

When a member wants to leave the group, it simply switches 
itself off. The neighbours connected to that member through 
tree links will perform the tree-link-recovery procedure (see 
below). 

7) Tree-link-recovery procedure 
The tree-link-recovery procedure has the aim of re-

establishing the connectivity of the distribution tree in case of a 
failure of a member or when a member goes out of radio 
coverage. 

Each member, H, monitors the activity of the tree links 
connected to itself. Each member sends out an ALIVEHELLO 
unicast message every ALIVE_HELLO_PERIOD on all tree 
links, unless H does not need to send other kind of unicast 
messages in this period. 

If a member H does not receive any unicast message on a 
tree link in a period of time equal to 
1.5*ALLOWED_ALIVE_HELLO_LOSS*ALIVE_HELLO_PERIOD, 
then the tree link, L, is considered as faulty; hence, L is pruned 
and the neighbour connected to L is eliminated from the 
neighbours list5. Moreover, the following actions take place: i) 
if the eliminated neighbour is the current parent member of H 
but it is not the core of H, then H establishes a new tree link 
with the core in order to recover the connectivity of the tree; ii) 
if the eliminated neighbour is not the current parent member of 
H, then H does not do anything, because it will be the remote 

 
5 It is worth noting that similar events occur at the other end of the faulty 

link; thus, the tree-link-recovery procedure assures a symmetric pruning. 
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member of the faulty link that will establish a new tree link, in 
order to recover the connectivity of the tree; iii) finally, if the 
eliminated neighbour is the current parent member of H and it 
is also the core of H, then it means that the mesh of H has lost 
the core and H elects itself as core.  

V. PERFORMANCE EVALUATION 
In this section, we analyze the performance of OBAMP with 

ns-2 and compare it with two state-of-the-art protocols, namely 
ODMRP [2] and ALMA. ODMRP is a network-layer protocol; 
as a consequence, the comparison between ODMRP and 
OBAMP must also take into account this aspect: with 
performance being equal, an overlay protocol should be 
preferred for its implementation advantages, mentioned in the 
Introduction.  

ALMA [7] is one of the most promising overlay protocol 
and thus a good test for OBAMP. We compare OBAMP to 
ALMA and also to a modified version of ALMA, that we 
denote by ALMA-H. 

Although we have implemented OBAMP, in Java, and we 
have tested it on the field, to prove its feasibility (see 
implementation codes in [11]), the limited number of available 
computers did not allow us to evaluate the OBAMP scalability 
when the group size increases. Thus, we resorted to carefully-
designed simulations, taking into due account the 
recommendations given in [14] on how to produce meaningful 
simulation results. We start this section by describing the 
criteria that we followed to assure the so-called “simulation 
credibility”. 

A. Simulation credibility criteria 
Credibility criteria adopted: i) we publish all the simulator 

source code and support files (e.g., movement scenarios, TCL 
files, post-processing routines, etc.) in [11], to assure the 
reproducibility of our study; ii) we produce the movement 
traces to be used as inputs of the simulations by using the 
“random trip model” [10], to assure that the stationary regime 
is reached; iii) we repeat each simulation ten times with 
different movement traces and random seeds and we plot the 
95% confidence intervals in all figures; iv) we check, by means 
of post-processing procedures, that all simulation results do not 
significantly change in the last 100 seconds of simulation, to 
assure that we have reached the stationary regime within each 
simulation run. 

B. Simulation tool 
The simulation tool is based on ns2.29 [13] running on a 

cygwin32 platform. Unfortunately, none of the benchmarked 
protocols is available in the all-in-one ns2.29 package. Thus, 
we had to add the code simulating the three protocols as 
follows. 

As regards OBAMP, we modelled it from scratch. The 
ODMRP simulation code has been taken from [12]. As regards 
ALMA, we developed the code from scratch too, implementing 
two versions of this protocol, both proposed in [7]; in the first 
one, the metric used for parent selection is the round trip time 
(and we call it simply ALMA); in the second one (that we call 

ALMA-H) the metric is the number of hops. According to the 
ALMA Authors, the latter choice improves the performance of 
ALMA, in terms of tree efficiency. Finally, we assume that the 
ALMA signalling packets are 8 bytes long (this value is not 
given in [7]).  

C. Simulation details 
Each simulation run lasts 800 s and all members join the 

group within the first 10 seconds. The simulated network is 
made up of 50 mobile nodes that move in a region of 1000m x 
1000m. Nodes move according to a random way point model 
with constant pause times of 30 s and with a constant speed. 
The radio channel is modelled as free-space. The transmission 
power is regulated so that the radio coverage of each node is 
250m. The MAC layer is IEEE 802.11 operating in DCF mode 
with a constant 2 Mbps bit rate. We use AODV as underlying 
routing protocol [4], without local repair and with link-layer 
detection. In Tab. 1 we report the other AODV configuration 
parameters. 

TAB. 1 – AODV MAIN CONFIGURATION PARAMETERS 
Parameter Value 

ACTIVE_ROUTE_TIMEOUT 10 sec 
MY_ROUTE_TIMEOUT 20 sec 
NETWORK_DIAMETER 30 
RREQ_RETRIES 2 
REV_ROUTE_LIFE      1.8 sec 
NODE_TRAVERSAL_TIME 0.04 sec 
MAX_RREQ_TIMEOUT 3.0 sec 
DELAY 0.05 sec 
BCAST_ID_SAVE 30 sec 
TTL_START 1 
TTL_THRESHOLD 7 
TTL_INCREMENT 1 

TAB. 2 – OBAMP MAIN CONFIGURATION PARAMETERS 
Parameter Value 

HELLO_PERIOD 5 sec 
FAST_HELLO_PERIOD 1 sec 
ALIVE_HELLO_PERIOD 1 sec 
TREE_CREATE_INTERVAL 5 sec 
OUTER_TREE_CREATE_PERIOD      15 sec 
MAX_HELLO_TTL 4 
Uh (handling delay unit)   250 ms 

TAB. 3 – ALMA (ALMA-H) MAIN CONFIGURATION PARAMETERS 
Parameter Value 

UPDATE_PERIOD 5 sec 
THRESHOLD_LEVEL1 30 ms(1 hops) 
THRESHOLD_LEVEL2 45 ms(2 hops) 
THRESHOLD_LEVEL3 65 ms(2 hops) 
THRESHOLD_LEVEL4 80 ms(3 hops) 

TAB. 4 – ODMRP MAIN CONFIGURATION PARAMETERS 
Parameter Value 

JOIN QUERY refresh interval 3 sec 
Acknowledge timeout for JOIN 
Table 

25 msec 

Maximum JOIN table 
retransmissions  

3 

 
The main configuration parameters of the benchmarked 

multicast protocols are reported in Tab. 2, Tab. 3 and Tab. 4 
for OBAMP, ALMA and ODMRP, respectively. 
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As regards the traffic model, we consider a multi-source 
scenario where each member sends out data packets of 256 
bytes, with an inter-packet interval such that the overall data 
traffic is equal to 16 kbps. This allow us to evaluate the impact 
of the increase in the number of sources while the offered 
traffic remains constant. Our multi-source scenario is more 
realistic for ad hoc networks, since it models many-to-many 
communications (e.g., push-to-talk [19]), which are widely 
believed to be among the most likely sources of load in a 
MANET.  

D. Simulation results 
In the following we compare the four protocols at hand in 

two set of figures. In the first set, we assume a constant speed 
of 10 m/s and we vary the group size; in the second set we 
assume a group size equal to 20 members and we vary the node 
speed. The 95% confidence intervals are always plotted, when 
they are not visible it means that they are smaller than the 
curve markers.  

The first figure, Fig. 4, reports a parameter commonly 
named “byte sent per byte delivered” (BSBD) as a function of 
the group size. The BSBD is the ratio between the overall 
number of bytes sent by the network nodes (on the IP-MAC 
interface) and the number of data bytes delivered to the 
multicast sinks at the application layer (excluding duplicate 
packets).  

In Fig. 5 we plot the delivery ratio, i.e. the ratio between the 
number of non-duplicated delivered data bytes and the number 
of bytes supposed to be received by the multicast sinks, as a 
function of the group size.  

In Fig. 6 we plot the average data latency, i.e., the time 
elapsing between the emission of a packet and its reception by 
the receiving multicast sink, as a function of the group size.  

In Fig. 7 we plot the number of control bytes sent by all 
network nodes, as a function of the group size. In the case of 
overlay protocols (OBAMP, ALMA and ALMA-H) we also 
distinguish between network layer and overlay signalling.  

In Fig. 8 we plot the average tree efficiency vs. group size. 
We recall that the tree efficiency ρ(t) at time t is the ratio 
between the cost of the corresponding minimum spanning tree 
CMST (t) and the cost of the distribution tree Ctree(t) itself. The 
average tree efficiency is the average of ρ(t) over time. 

Fig. 9, Fig. 10, Fig. 11 report the following performance 
indicators versus the node speed: byte sent per byte delivered, 
delivery ratio and average latency. The performance of ALMA 
is not reported; in fact, for the considered value of group size 
(equal to 20 members), the performance of ALMA is 
considerably worse than the other protocols and the related 
curves would be so distant from the ones of the other protocols 
to make the figures not easily readable. 

In the following we comment all these figures by comparing 
our solution first to ODMRP and then to ALMA. 

 
Fig. 4 - Bytes sent per bytes delivered vs. group size 

 
Fig. 5 - Delivery ratio vs. group size 

 
Fig. 6 - Average data latency vs. group size 
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Fig. 7 - Number and type of control mega bytes transmitted vs. group size 

 
Fig. 8 - Average tree efficiency vs. group size 

 

 
 Fig. 9 - Bytes sent per bytes delivered vs. node speed 

 

 
Fig. 10 - Delivery ratio vs. node speed 

 
Fig. 11 - Average data latency vs. node speed 

 

1) OBAMP vs. ODMRP 
We start our comparison by looking at the performance as a 

function of the group size. 
As we can see from Fig. 4, the BSBD decreases as the group 

size increases for both OBAMP and ODMRP. This is due to 
the ability of these protocols to exploit radio broadcasting for 
data distribution: when the group size increases, more 
members can be reached by the same broadcast transmission 
and the BSBD decreases. As the group size keeps increasing, 
the effect of control traffic becomes more noticeable and the 
curves flatten. The important result of Fig. 4 is that OBAMP 
limits the network traffic much better than ODMRP. This 
advantage is confirmed by Fig. 7 which shows that the number 
of control bytes of OBAMP is significantly smaller than that of 
ODMRP.  

As regards OBAMP’s user-perceived performance, when the 
group size increases, Fig. 5 and Fig. 6 show that the delivery 
ratio and the latency increase only moderately, demonstrating 
the scalability performance of the proposed protocol. The first 
(positive) effect is due to the natural data redundancy provided 
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by broadcasting, which is more and more apparent as the group 
size increases. The second (negative) effect is due to the 
increase of the control traffic which implies a higher latency. 

Fig. 5 shows that the OBAMP’s delivery ratio remains 
higher than 90% for all values of the considered group sizes 
while ODMRP’s delivery ratio suffers a heavy decrease for 
group sizes greater than 20 nodes, due to its significant 
network load. Correspondingly, Fig. 6 shows that a similar 
phenomenon occurs for the data latency. 

Let us now analyze what happens when we vary the node 
speed. The Fig. 9 and Fig. 10 show that OBAMP performs 
better than ODMRP as regards the byte-sent-per-byte 
parameter and the delivery ratio. On the contrary, Fig. 11 
shows that OBAMP performs worse than ODMRP in terms of 
latency, even if the difference is at most 50 ms. 

Overlooking the specific numerical values, we observe that 
both OBAMP and ODMRP have a weak dependence from the 
node speed; this behaviour is an evidence of their scaling 
properties as a function of the node speed. 

In all fairness, we must observe that the multi-source traffic 
scenario has been selected because it is of interest for a 
MANET but on the other side turns out to be the worst 
possible traffic load for ODMRP. As a matter of fact, in the 
Appendix III, we show that in a single-source traffic scenario 
ODMRP and OBAMP have similar (and good) performance. 
This happens because in the single-source case ODMRP has a 
smaller amount of overhead, with respect to the multi-source 
case.  

2) OBAMP vs. ALMA and ALMA-H 
Also in this case, we begin comparing the protocols by 

varying the group size.  
ALMA does not implement radio broadcasting; as a 

consequence, when the group size increases, the number of 
transmissions must increase and so does the network load, the 
latency and the loss phenomena. In addition, our results show 
that ALMA-H provide better performance than ALMA as 
anticipated by the Authors of [7]. As a consequence, we focus 
the following comparison on ALMA-H vs. OBAMP. 

In the case of ALMA-H we see that the BSBD rapidly 
increases (Fig. 4), the delivery ratio suffers a heavy decrease 
(Fig. 5) and the latency increases to undesirable values (Fig. 6).  

In Fig. 7 we can see how OBAMP and ALMA-H behave 
versus the amount of control traffic. We notice that the amount 
of overlay control signalling of the two protocols (curves 
“OBAMP only” and “ALMA only”) is comparable. Regarding 
the amount of network signalling induced at the network layer 
(curve “AODV only”), OBAMP succeeds in limiting this kind 
of overhead whereas ALMA-H does not. Moreover, the 
induced overhead is a major fraction of the overall control 
traffic of ALMA-H. This fact demonstrates the need of taking 
into due account this source of overhead, when devising an 
overlay protocol. If we do not take care of this issue, we would 
risk that an overlay protocol perfectly working in ideal routing 
conditions, drastically collapses in real settings.  

In Fig. 8 we compare the average tree efficiency of OBAMP 
and ALMA and we find that OBAMP possesses good 

scalability properties, as far as the tree create procedures are 
concerned, and good overall efficiency values. 

We now compare the protocols as a function of the node 
speed. The Fig. 9, Fig. 10 and Fig. 11 show that OBAMP 
performs better than ALMA-H; with the exception of the 
average latency values in the speed range 2 m/s ÷ 5 m/s. 
Furthermore, we note that, when the node speed increases, the 
performance gap between OBAMP and ALMA-H increases as 
well. This is an evidence that OBAMP scales better than 
ALMA-H versus the node speed. 

As regards the difference between a single-source scenario 
and a multi-source one, in the Appendix III we show that no 
significant difference can be observed between the two traffic 
models. The reason is that the considered overlay protocols 
form a shared overlay tree by means of mechanisms that do not 
depend on where the data source are. As a consequence, 
keeping constant the offered traffic, the performance are quite 
independent on the sources location.  

VI. CONCLUSION 

Overlay multicasting is a valuable approach to support 
many-to-many communications in MANETs. A critical figure 
of merit for a MANET scenario is the ability of the multicast 
protocol to scale with the group size and to work satisfactorily 
for a wide range of values of the node speed. To obtain these 
results it is important, in our opinion, to design the protocol 
with the follow three guidelines in mind: i) build a distribution 
tree that approximates the minimum spanning tree as much as 
possible; ii) design the protocol so as to limit not only the 
overlay signalling but also the induced network layer 
signalling; iii) exploit radio broadcasting.  

We did follow these guidelines and we ended up with a 
protocol that exhibits better scalability performance in a many-
to-many communications scenario than two state-of-the-art 
protocols such as ALMA and ODMRP. 

A last consideration is that the OBAMP protocol has the 
ability to account for asymmetric links. This requires only to 
add a suitable field in the HELLO and FASTHELLO messages. 
This feature is not presented in this paper for space limitations, 
but is implemented in the test-bed described in [11]. 
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 APPENDIX I 
ILLUSTRATIVE SEQUENCE DIAGRAMS OF OBAMP 

PROCEDURES 

A. Data-distribution procedure 
Fig. 12 shows the data-distribution procedure in an example 

network. In this example the procedure is carried out by 
member C and the data source is member F. 

At the reception of a data message from F, member C 
performs two types of forwarding: i) toward the neighbours E 
and G, by means of unicast UDP/IP packets: in fact these 
members have a distance from C greater than one network hop 
and they are connected by a tree link with C; ii) toward the 
neighbours A, B and D, by means of a single broadcast UDP/IP 
packet with IP TTL=1, as these members are at one hop 
distance from C and they are connected by a mesh link with C. 

We notice that the JustForwardedMemberCode 
(JFMC) field of the data packet header transmitted by F toward 
C includes only the members F and C. When C subsequently 
forwards this data, it increases the JFMC scope by including 
also members A,B,D,E,G. From now on, no more transmission 
of this data will be allowed, since all members are included in 
the JFMC field. 
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Fig. 12 - The data-distribution procedure performed by C for a data message 

coming from F  

B. Hello sub-procedure 
Fig. 13 shows the hello sub-procedure in an example 

network. The sub-procedure is performed by member A. The 
TTL values reported in the figure are the content of the TTL 
field of the HELLO messages, i.e., the initial TTL value of the 
IP packet that contains the overlay message. 

At the beginning of the hello sub-procedure, member A 
transmits an HELLO message within an UDP/IP broadcast 
packet with IP TTL = 1. This HELLO message is received only 
by an intermediate node (denoted by a white circle) that 
discards the packet, as the node does not belong to the 
multicast group.  

After a short timeout, member A re-transmits the HELLO 
message and increases the IP TTL to 2 hops. This time, the 
intermediate node re-broadcasts the HELLO message, which is 

received by member B. Member B, in turn, creates (or 
refreshes) the mesh link B-A, by inserting A in its neighbour 
list; moreover, member B sends back the HELLOREPLY 
message in a unicast way.  

At the reception of HELLOREPLY, member A creates (or 
refreshes) the mesh link A-B and the current round of the hello 
sub-procedure ends.  

 
HELLO (TTL=1)

HELLO(TTL=2) HELLO(TTL=2)

HELLOREPLY(TTL=2)HELLOREPLY (TTL=2)

A B

Hello procedure start

Creation (refresh) of the 
mesh links toward B with
HOP_DISTANCE = 2

Creation (refresh) of the 
mesh links toward A with 
HOP_DISTANCE = 2
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A B
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mesh links toward B with
HOP_DISTANCE = 2

Creation (refresh) of the 
mesh links toward A with 
HOP_DISTANCE = 2

 
Fig. 13 - Example of hello sub-procedure performed by member A .  

C. Fast-hello sub-procedure 
Fig. 14 reports the exchange of FASTHELLO messages 

between member B and C, which are one hop away from each 
other. When C receives a FASTHELLO message from B, it 
creates or refreshes the mesh links toward B, and vice-versa. 

 

B

Creation (refresh) of the 
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C

Creation (refresh) of the 
mesh link toward A with
HOP_DISTANCE=1

FASTHELLO

FASTHELLO

FASTHELLO

FASTHELLO

B

Creation (refresh) of the 
mesh link toward B with 
HOP_DISTANCE=1

C

Creation (refresh) of the 
mesh link toward A with
HOP_DISTANCE=1

FASTHELLO

FASTHELLO

FASTHELLO

FASTHELLO

 
Fig. 14 - FASTHELLO messages exchanged between members B and C. 

D. Tree-create procedure 
Fig. 15 shows the tree-create procedure performed in an 

example network, with a distribution tree having a cost of 4 
hops and formed by two tree links: A-B and A-C (Fig. 15a). 
Member B is the A’s nearest, while the B’s nearest is C and 
vice-versa. 

At the procedure starts, the core A sends out two 
TREECREATE #x messages toward its mesh neighbours: B and 
C.  

At the reception of the TREECREATE #x message (Fig. 15b): 
i) B applies an handling delay equal to zero seconds, since B is 
the nearest of A; ii) C applies an handling delay equals to 
0.25*1 + 0.95*0.25/10 seconds, since the hop distance A-C is 
equals to 2 hops, Uh is equals to 0.25 and assuming that 
r(0,1) draws the random number 0.95.  

Consequently, B immediately handles the TREECREATE #x 
message coming from A (Fig. 15c) and confirms the overlay 
link toward A as a tree link, since this TREECREATE message is 
the first handled one during the refresh round #x. In other 
words, A becomes B’s parent member and B is a descendant of 
A. Because the overlay link A-B is already set as tree link, no 
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tree link switching occurs and B forwards the TREECREATE #x 
message to C.  

When C receives this TREECREATE #x message from B (Fig. 
15d), it applies an handling delay equals to zero seconds, as B 
is its nearest member. Consequently, C immediately handles 
such control message. This TREECREATE message is the first 
one handled during the round #x, therefore C setups a tree link 
toward B and tears down the tree link toward A (Fig. 15e).  

The tree-link-setup procedure is the following (Fig. 15f): C 
sends a TREECREATEACK message toward B and sets the C-B 
overlay link as tree link. At the reception of the 
TREECREATEACK message, B sends back a TREECREATECONF 
message and sets the B-C overlay link as tree link. When C 
receives the TREECREATECONF message, the tree-link-setup 
procedure ends and the tree link tear down procedure starts. 

The tree-link-tear-down procedure is the following (Fig. 
15f): C sends a TREECREATENACK message toward A. At the 
reception of the TREECREATENACK message, A sends back a 
TREECREATENACKCONF message and sets the A-C overlay link 
as mesh link. When C receives the TREECREATENACKCONF 
message, it sets the C-A overlay link as mesh link and the tree-
link-tear-down procedure ends6.  

To cope with control packets loss, the setup and tear down 
procedures adopt a retransmission policy based on timeouts.  

As a final comment on Fig. 15, we observe that the handling 
delay mechanism has changed the distribution tree from a sub-
optimal tree, with a cost of 4 hops (Fig. 15a), to a more 
efficient tree, formed by 3 hops (Fig. 15e). Without the 
handling delay mechanism, the tree would have remained that 
of Fig. 15a. 

E. Outer-tree-create procedure 
Fig. 16a shows two disjoined meshes and inner trees, whose 

cores are members A and D, respectively.  
At a given time, the core A performs the outer-tree-create 

procedure by flooding the network with the 
OUTERTREECREATE message.  

At the reception of this message, the core D executes the 
core-election procedure, which returns as winner core core A. 
Therefore, D stops to behave as core, sets A as its core and 
establishes a tree link with A by means of the tree link setup 
procedure. The two disjoined meshes and inner trees are now 
connected. 

Let us notice that, at the end of the tree link setup procedure, 
the descendants of D, i.e., members E and F, still have as their 
core member D. This core ambiguity will be solved with the 
next tree-create procedure; the TREECREATE message sent by 
core A will pass through the tree links D-E and D-F and the 
receiving members E and F will switch the core from D to A 
(see IV.B.5).  

 
 
 
 

 
6 We point out that a temporary loop in the tree occurs since the start of the 

tree create setup procedure and till the end of tree link tear down procedure. 
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Fig. 15 - Steps of the tree-create procedure in an example network (a,b,c,d,e) 
and exchange of control packets for the tree-link-setup and tree-link-tear-down 

procedures (f); non-member nodes are not drawn. 
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Fig. 16 - The outer-tree-create procedure in an example network (a,b) and the 
related exchange of control packets (c). 

F. Tree-link-recovery procedure 
We report the behaviour of the tree-link-recovery procedure 

in two example cases. In the first one, the procedure faces a 
radio partition; in the second one, a hardware failure.  

Fig. 17a shows a working network configuration, which in 
Fig. 17b suffers of a radio partition that impedes the 
connection between member D and core A. In this situation, no 
unicast message will be exchanged on this tree link and the 
procedure detects the overlay link failure. Then, core A purges 
D from its neighbour list (being D a descendant of A), and 
implicitly tears down the A-D tree link. At the other end of the 
link, D elects itself as core (being A both the core and the 
parent member of D), so forming a disjoined mesh and inner 
tree. When, eventually, the radio propagation will allow to 
reconnect the two meshes, then the outer-tree-create procedure 
will perform this task, as shown in Fig. 17c (see section 
IV.B.4).  
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Fig. 17 - Tree-link-recovery procedure facing a radio partition (non-member 

nodes are not drawn) 

Fig. 18a shows a working network configuration, which in 
Fig. 18b suffers of the hardware failure of member D (if D 

leaves the group, the same chain of events here described will 
occur). The descendants E and F detect the failure by not 
receiving any more unicast messages from D. Consequently, E 
and F select as parent member the core A, re-establishing a 
suboptimal tree connectivity. The tree inefficiency will be 
recovered at the next tree-create procedure. When the faulty 
member will repair its hardware (or join again the group), it 
will be the core of a mesh formed by only itself and it will 
connect itself to the other members, by means of the outer-
tree-create procedure.  
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Fig. 18 - Tree-link-recovery procedure facing a hardware failure  
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APPENDIX II  
FORMAT OF THE OBAMP MESSAGES 

In the following we will describe each field only once, even 
if it is contained in more than one message. 

A. Data message 
Fig. 19 reports the DATA message structure.  
The MessageID field is contained in all the OBAMP 

messages and identifies the message type (DATA, HELLO, 
FASTHELLO, etc.). 

The SequenceNumber field counts the number of 
messages generated for each message type. 

The SourceIP field contains the IP address of the member 
that generates the message.  

The JustForwardedMemberCode (JMFC) field is the 
bit-map that codes the list of the members for which further 
forwarding is forbidden7. 

 
1 byte 1 byte 
MessageID SourceIP 
SequenceNumber JustForwardedMemberCode 
(8 bytes) 

Fig. 19 –DATA message 

B. HELLO messages 
Fig. 20 reports the structure of the HELLO message.  
The CoreAddress field is the IP address of the core of the 

member originating the HELLO message.  
 
1 byte 1 byte 
MessageID SourceIP 
SequenceNumber TTL 
CoreAddress  

Fig. 20 – HELLO message 

Fig. 21 reports the structure of the HELLOCONF message.  
The HelloSequenceNumber field is used to piggy back 

the sequence number value of the originating HELLO message. 
This allows the source of the HELLO message to avoid handling 
outdated responses. 

 
1 byte 1 byte 
MessageID SourceIP 
HelloSequenceNumber TTL 
CoreAddress  

Fig. 21 – HELLOCONF message 

Fig. 22 and Fig. 23 report the structures of the FASTHELLO 
ad ALIVEHELLO messages, respectively.  

 
 

7 This field coding aims at reducing the field length. The coding assumes 
that the network contains at most 64 hosts and is assigned a class C addressing 
space, and works as follows: the k-th bit is set to 1 when we want to forbid 
forwarding to the member whose least significant byte of its IP address is equal 
to k. Under different assumptions, the coding must be suitably modified, 
eventually resorting to a brute-force approach of creating a list of IP addresses. 

1 byte 1 byte 
MessageID SourceIP 
SequenceNumber CoreAddress 

Fig. 22 – FASTHELLO message 
 

1 byte 1 byte 
MessageID SourceIP 

Fig. 23 – ALIVEHELLO message 
 

C. TreeCreate messages 
Fig. 24 reports the structure of the TREECREATE message 

and of the OUTERTREECREATE message, being equal to each 
other. The NearestFlag field is used by the forwarding 
member to inform the receiver that it is the nearest neighbour. 

The JustForwardedMemberCode field codes the list of 
members for which further forwarding is forbidden, since these 
members have just handled this TREECREATE message. Each 
member puts itself in this list before forwarding the 
TREECREATE message. 

 
1 byte 1 byte 
MessageID SourceIP 
SequenceNumber CoreAddress 
Nearest flag  JustForwardedMemberCode 
(8 bytes) 

Fig. 24 –TREECREATE and OUTERTREECREATE messages 

Fig. 25, Fig. 26, Fig. 27 and Fig. 28 report the control 
messages used during the tree-link-setup (TREECEATEACK and 
TREECREATECONF) and tree-link-tear-down 
(TREECREATENACK and TREECREATENACKCONF) procedures.  

The fields not described up to now are 
ACKSequenceNumber and NACKSequencenumber. Such 
fields are used to piggy back the sequence number value of the 
originating TREECREATEACK and TREECREATENACK 
messages, respectively. This allows the source of the 
TREECREATEACK messages (and of the TREECREATENACK 
messages) to avoid handling outdated responses. 

 
1 byte 1 byte 
MessageID SourceIP 
SequenceNumber CoreAddress 

Fig. 25 – TREECEATEACK message 

1 byte 1 byte 
MessageID SourceIP 
ACKSequenceNumber CoreAddress 

Fig. 26 – TREECREATECONF message 

1 byte 1 byte 
MessageID SourceIP 
SequenceNumber CoreAddress 

Fig. 27 –TREECREATENACK message 

1 byte 1 byte 
MessageID SourceIP 
NACKSequenceNumber CoreAddress 

Fig. 28 –TREECREATENACKCONF message 
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APPENDIX III 
PERFORMANCE EVALUATION OF A SINGLE-SOURCE 

SCENARIO 
The aim of this section is to replicate the analysis of section 

V with a single-source traffic model, which is believed to be a 
more favourable scenario for ODMRP. We analyze the 
performance only as a function of the group size. 

We assume a single-source traffic model in which a single 
member node sends out CBR traffic at 16 kbps, with a payload 
of the data packets equal to 256 bytes.  

Fig. 29, Fig. 30, Fig. 31, Fig. 32 reports the following 
performance indicators as a function of the group size: byte 
sent per byte delivered, delivery ratio, average latency and tree 
efficiency. We first compare OBAMP and ODMRP and then 
OBAMP and ALMA. 

 
Fig. 29 - Bytes sent per bytes delivered vs. group size 

 

 
Fig. 30 - Delivery ratio vs. group size 

 
Fig. 31 - Average data latency vs. group size 

 
Fig. 32 - Tree efficiency vs. group size 

1) OBAMP vs. ODMRP 
If we compare the ODMRP performance in single and multi 

source cases (V.D), we find out that the single-source traffic 
model is a more favourable scenario for ODMRP. 

The Fig. 29, Fig. 30 and Fig. 31 show that OBAMP and 
ODMRP have similar performance in the single-source case, 
with the exception of a small penalty of OBAMP as regards the 
average latency (with a gap of about 30 ms).  

2) OBAMP vs. ALMA 
The performance of OBAMP and of ALMA in the single-

source case (Fig. 29, Fig. 30, Fig. 31, Fig. 32) are very similar 
to the corresponding ones in the multi-source case case (Fig. 4, 
Fig. 5, Fig. 6). Thus, we can state that the conclusions reached 
for the multi-source case hold for the single-source case as 
well. 
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APPENDIX IV 
THREE PROPERTIES OF THE OBAMP TREE 

In this section we proof three properties of the OBAMP tree.  
 
Property A: the tree created by OBAMP does not have 

persistent tree loops.  
 
Proof of property A: let us consider the tree as if it were a 

directed tree rooted at the core. Under this working 
assumption, we can say that a tree loop is generated when 
during the same refresh round a member H chooses as current 
parent member a member K that is connected lower down in 
the tree (i.e., a descendant) with respect to itself. Then, in a 
generic refresh round #x, a generic member H can not select as 
current parent member any member K that is placed on a tree 
vertex that descends from H. In fact, if K forwarded the 
TREECREATE #x message to H, then H would discard it, since 
the same message has already passed through H (given that K 
is a descendant of H). As a consequence, the tree-create 
procedure avoids tree loops and, in turn, group partition. 

 
Property B: OBAMP builds a distribution tree that contains 

at least the fist-level edges of the minimum spanning tree. 
 
Assumption: for the sake of simplicity we assume that the 

handling-delay is the only source of delay in the network. The 
consequence of this assumption and the way to make it 
uninfluential in practical cases are discussed at the end of the 
section. 

 
Proof of property B: let us define first-level tree a tree 

formed at the first iteration of the while loop of the Borůvka 
algorithm (see III.B). A first-level tree is a set of connected 
first-level edges; this set may contain, at a minimum, a single 
edge. As previously discussed, the OBAMP mesh surely 
contains all the first-level edges and, hence, it contains all the 
first-level trees. To complete the proof we must now show that, 
during a refresh round of the tree-create procedure, the first-
level edges will be surely marked as tree link. Let us focus our 
attention on a given first-level tree, T. Let us define as tk the 
time instant in which the first TREECREATE #x message is 
handled by any member of T. Given that we are assuming that 
the TREECREATE #x message does not experience any other 
delay than the handling delay, the TREECREATE #x message 
will be immediately forwarded on all mesh links that form T 
and immediately handled by the members of T. In fact, the 
handling delay is set to zero, for these overlay links. Now, 
since this is the first TREECREATE #x message of the refresh 
round #x, all these mesh links will be surely selected as tree 
links; q.e.d.  

To give an example of property B, let us consider Fig. 33, 
where the first-level trees are: {A-B-C}, {D-E}, {F-G}, {H-I-
L} and {M-O}. Let us focus our attention on a generic first-
level tree, i.e., {H-I-L}. 
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Fig. 33 - An example mesh and tree configuration; the core is member A  

When at time tk member I handles the first TREECREATE #x 
message coming from the core A on the overlay link A-I, 
member I forwards this message toward members H and L. The 
receiving members H and L immediately handle this message 
because the related handling delay is zero; as a matter of fact H 
is the nearest member of member I and I is the nearest member 
of member L(8). Consequently, the I-H and I-L overlay links are 
set as tree links and these overlay links are precisely first-level 
edges. The same thing occurs within the other first-level tree, 
as anticipated by property B. 

 
The third property is concerned with the other links of the 

OBAMP tree; i.e., those links that are not the fist-level edges 
of the minimum spanning tree.  

In order to focus our analysis only on those links that are not 
fist-level edges, in the following we introduce a new mesh, 
named macro-mesh, in which the first-level edges are hidden, 
as follows. Let us define as macro-member the set of members 
forming a first-level tree and the mesh links connecting such 
members. The OBAMP mesh can be seen also as a mesh 
connecting such macro-members, which we call macro-mesh. 
In the same way, the OBAMP tree can be seen also as a tree 
connecting such macro-members, which we call macro-tree. 

In Fig. 34 we give an example of such definitions by 
reporting the macro-tree and the macro-mesh of the 
configuration shown in Fig. 33. 

 

 
8 We are assuming that in case of mesh links with equal hop distance, the 

shortest mesh link is considered the one that at the other end has a member with 
the smallest IP address. 
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Fig. 34 - Macro-mesh and macro-tree related to the configuration of Fig. 33 

This said, we can state the: 
 
Property C: the links of the OBAMP tree that are not first-

level edges of the minimum spanning tree are the links of the 
macro-mesh that belong to the shortest-path rooted at the core. 

 
Assumption: as for property B, we assume that the 

handling-delay is the only source of delay in the network. 
 
Proof of property C: during a generic tree-create refresh 

round #x, the TREECREATE #x message passes through a 
macro-member instantaneously, since within the macro-
member the path forming the first-level tree has an handling 
delay equal to zero. In addition, the handling delay of the mesh 
links connecting macro-members is an increasing function of 
the hop distance. As a consequence, the first TREECREATE #x 
message that is handled by a member of macro-member M and 
that turns the transporting mesh link into a tree link, is received 
on the shortest-path of the macro-mesh from the core to M.  

To present an example of this property we consider again 
Fig. 33 and focus our attention on the overlay links that 
connect macro-members. These overlay links are the links of 
the macro-mesh reported in Fig. 34. 

Let us consider a generic macro-member, e.g., M2, and 
assume that the core sends out the TREECREATE #x at time t0. 
The macro-member M2 can receive the TREECREATE #x 
message from the following paths: M0-M1-M2, M0-M3-M2, 
M0-M4-M3-M2, whose hop distances on the macro-mesh are 
equal to 5,6 and 8 hops, respectively. 

The TREECREATE #x message passing through the path M0-
M1-M2 will be handled by M2 at time t0+2*Uh+3* Uh(9). 
Where 2*Uh is the handling delay of the overlay link M0-M1 
and 3*Uh is the handling delay of the overlay link M1-M2. 
Hence, the overall handling delay is a linear function of the 
hop distance of the path on the macro-mesh, that is 2+3=5 
hops.  

The same reasoning can be repeated for the other paths M0-
 

9 We are neglecting the small r(0,1) random value of the handling delay 
computational algorithm (IV.B.3) 

M3-M2, M0-M4-M3-M2.  
Consequently, the first TREECREATE #x message handled by 

M2 passes through the overlay link M1-M2 because this 
overlay link belongs to the path of the macro-mesh that has the 
smaller hop distance from the core to M2 (property C), that is 
the path M0-M1-M2. The same reasoning can be repeated for 
the other tree links that connect other macro-members. 

We notice that the shortest path approach followed by 
OBAMP for the tree links that not are first-level edges leads to 
a distribution tree that is suboptimal with respect to the 
minimum spanning tree. For instance, in Fig. 33, the cheapest 
overlay link to connect macro-member M3 to the rest of the 
tree should be G-H; instead, the shortest path approach of 
OBAMP set as tree link the more expensive overlay link A-I . 

Future work could try to identify better performing 
procedures to limit this inefficiency, possibly without 
increasing too much the signalling load. 

We conclude this section by commenting the assumption 
requiring that the handling delay is the only source of delay in 
the network. Actually, it can be shown that the two properties 
hold also if the handling delay time unit, Uh, is greater than the 
maximum network delay. In other words, this parameter must 
be chosen great enough so that the other sources of delay do 
not alter the order of precedence in choosing tree links 
established by the handling delay parameter by itself. 

Thus, a proper choice of the parameter Uh makes not needed 
the assumption made at the beginning of this section.  
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