

1

Abstract— This paper presents a novel MANET multicast
protocol, named Overlay Borůvka-based Ad-hoc Multicast
Protocol (OBAMP), and evaluates its performance. OBAMP is an
overlay protocol: it runs only in the end-systems belonging to the
multicast group. User data are distributed over a shared
distribution tree formed by a set of non-cyclic UDP tunnels.
OBAMP derives the distribution tree by approximating the
Borůvka algorithm; the Borůvka algorithm is a classical tool
(1926) to find the minimum spanning tree; thus, the distribution
tree of OBAMP is an approximation of the minimum spanning
tree of the connectivity topology at hand.

OBAMP shows three distinctive advantages: i) its distribution
tree closely resembles the minimum spanning tree; ii) it exploits
broadcast communications (with favourable consequences on its
efficiency); iii) its design takes into account not only overlay
signalling but also network-layer signalling; thus, the protocol
succeeds in limiting the overall signalling load, network+overlay.
As a consequence, OBAMP has a low-latency and a high delivery
ratio, even when the group size increases.

To prove this statement, we analyze the performance of
OBAMP with ns-2 and compare it with two state-of-the-art
protocols, namely ODMRP (a network-layer protocol) and ALMA
(an overlay protocol). Both OBAMP and ALMA are assumed to
use AODV as underlying routing protocol.

Also, we stress that we have implemented OBAMP, in Java,
and we have tested it on the field, to prove its feasibility.

To allow fellow researchers to reproduce and test our work we
published all simulation and implementation codes, in [11].

I. INTRODUCTION
An attractive use of Mobile Ad-hoc NETworks (MANETs)

consists in performing cooperative work during occasional
team tasks. In such scenarios, multicast traffic plays a more
important role, with respect to the one that it would get in the
public Internet. As a matter of fact, occasional team tasks are
more in need of real time multipoint-to-multipoint services
(e.g., push-to-talk, GPS positioning, etc.) than point-to-point
ones.

MANET multicast protocols can operate as a network layer
protocol or as an application layer protocol (known also as
overlay). In the first case, all nodes run the protocol and all
nodes can be involved in managing a multicast session,
including nodes that are not members of the multicast session
(e.g., ODMRP [2], MAODV [3], etc.).

On the contrary, an overlay multicast protocol involves only
nodes that are members of the multicast session, i.e. the
protocol is peer-to-peer (e.g., AMRoute [1], ALMA [7],

PAST-DM [8]). User data and signalling information are
transferred via transport layer tunnels (e.g. UDP sockets)
among member nodes. Therefore, multicast functionality can
be embedded within end-user applications, without any
multicast support from the underlying network layer. This
feature greatly simplifies the deployment of the multicast
protocol and justifies the interest of the research community in
this topic.

In this paper, we propose an overlay protocol, based on the
so-called Borůvka algorithm [5]; we evaluate its performance
by means of simulations; we compare it with two promising
alternatives, ODMRP [2] (a network-layer protocol) and
ALMA [7] (an overlay protocol); we implement it to assess its
feasibility.

The main aim of OBAMP is to limit the network traffic,
both user data and signalling information, so as to achieve a
high delivery ratio and a low latency. Also, we would like the
protocol to be scalable, i.e., to maintain these properties when
the group size increases. This goal is achieved by: i)
developing an efficient distribution tree that approximates as
much as possible the minimum spanning tree (i.e., the overlay
tree with the minimum number of network hops); ii) exploiting
radio broadcasting; iii) taking into account and minimizing not
only overlay signalling but also network-layer signalling.

An efficient distribution tree is a quite common objective for
designers of overlay protocols. Radio broadcasting is exploited
in only one (recent) proposal [8], while, to the best of our
knowledge, only OBAMP tries to minimize not only overlay
but also network-layer signalling1.

The paper is organized as follows: in section II we discuss
pros and cons of the overlay and network layer approaches;
section III recalls some background on graph theory, useful to
better understand the OBAMP theoretical foundations; section
IV describes the protocol; section V focus on performance
evaluation; section VI presents the conclusions. To avoid
interrupting the flow of the paper, we report some additional
results in appendices: Appendix I shows the sequence
diagrams of the OBAMP procedures; Appendix II describes
the format of the OBAMP messages; in Appendix III we
extend the performance evaluation of section V, by analyzing a

1 For instance, a frequent assumption when evaluating overlay multicast

protocols is to assume a complete and always updated knowledge of the
network topology, without considering the associated cost in terms of signaling
exchanges and the routing inefficiencies due to the dynamics of the network
links.

Overlay, Borůvka-based, Ad-hoc Multicast
Protocol: description and performance analysis

Andrea Detti, Nicola Blefari-Melazzi

University of Rome “Tor Vergata”, Electronic Engineering Dept., Italy

{andrea.detti, blefari}@uniroma2.it

2

different source scenario; in Appendix IV we state three
properties of the tree built by OBAMP.

Finally, we stress that we have implemented OBAMP, in
Java, and we have tested it on the field, to prove its feasibility
(see implementation codes in [11]). To the best of our
knowledge this is the first time that an overlay multicast
protocol is really deployed in practice. We believe that this is
very important as it often happens that some protocol
procedures or mechanisms may seem deceptively easy to
implement. Practice brings about unforeseen problems and
difficulties.

II. OVERLAY APPROACH VERSUS NETWORK LAYER APPROACH
In this section, we briefly discuss pros and cons of the

overlay and network layer approaches to implement a MANET
multicast protocol. We compare the two approaches in terms of
network performance (II.A) and in terms of easy of
implementation (II.B).

We believe that, in line of principle, the network layer
approach is better or at most equivalent than the overlay one,
from a network performance point of view; nevertheless,
particular instances of network layer protocols may turn out to
perform worse than particular instances of overlay protocols.

On the other side, we argue that implementing an overlay
MANET multicast protocol is less complex, quicker to deploy
and easier to customize.

As a consequence, the research challenge that we face
consists in devising an overlay multicast protocol that performs
as better as (or even outperforms) the more promising network
layer multicast protocols available nowadays.

A. Network performance aspects
Obviously, the overlay members are a subset of the network

nodes. As a consequence, all the operations that are performed
by an overlay protocol can be performed as well by a network
layer protocol, exploiting the same set of nodes. However, a
network layer protocol can exploit also the remaining nodes
and thus it can potentially improve the overall performance. In
the worst case, the network layer approach can avoid to exploit
these added degrees of freedom and stay with the “basic”
performance brought about by the set of member nodes.

In addition, an overlay protocol must coexist with an
network layer unicast routing protocol. This implies potential
inefficiencies: the two protocols need to interact and it may
also happen that some functions are executed at both layers
(e.g., neighbours discovery), thus increasing the overall
overhead.

B. Implementation aspects
The main advantages of an overlay multicast protocol lie in:

 lower computational complexity (as pointed out in
[7][9][8]): as a matter of fact, in the overlay case a generic
node has to manage only the routing state(s) of the
multicast session(s) to which it belongs to; instead, in the
network layer case, a generic node has to manage the
routing states of all ongoing multicast sessions.

 Fast deployment and time to market: an overlay multicast

protocol can be integrated within an application software;
this implies that the multicast protocol is distributed
together with the application and can reach more easily all
the interested users. This is especially important in the
actual standardization scenario, in which unicast routing
protocols are well established, whereas network layer
multicast protocols are at a premature level [20]. The
integration of the multicast protocol in the application
package allows to avoid making assumption on the
availability of underlying multicasting functionality, which
is a distinctive advantage, as observed in [21].

 Easy of customization: this may be seen as another
advantage of integrating the multicast protocol and the
application software; the multicast protocol can be
optimized or fine tuned as a function of the requirements of
the application itself.

III. THEORETICAL BACKGROUND
The aim of this section is twofold: a) to recall graph theory

results showing what is the cheapest distribution tree in terms
of number of hops on a given topology: it comes out that the
best tree is the minimum spanning tree for the overlay
approach, and the Steiner tree for the network layer approach;
b) to describe the Borůvka algorithm, which is a classical tool
to find the minimum spanning tree.

A. Graph theory background
Let us consider a generic multicast session at time t, over a

given MANET, without detailing, for the moment, if it is
implemented with an overlay or a network-layer approach. We
can define:
− {N} as the set of network nodes;
− {M} as the set of member nodes of the multicast session,

i.e., nodes belonging to the multicast group (M ⊆ N);
− G=(V,E) as the connection graph, formed by the set {Vi}

of vertices and the set {Eij} of edges, where:
− the vertex Vi is associated with the i-th network node

able to perform multicast routing;
− the edge Eij is associated with the connection service

provided by the underlying layer between vertex Vi
and vertex Vj;

− c(Eij) as the cost (or weight) of the edge Eij measured in
network hops;

− T as the minimum cost tree, i.e. a sub-graph of G that
spans all members M and has the minimum cost,
measured as the sum of the cost of the involved edges.

The graph G contains all the possible routes that can be used
to setup the multicast session in the considered MANET. As a
consequence, T is the minimum cost tree for the considered
MANET.

Now, the graph G and the tree T may vary, depending on if
we consider an overlay or a network-layer approach.

In the overlay case it turns out that: 1) only member nodes
can perform multicast routing; 2) the connection service is
supplied by the underlying TCP or UDP layers, which provide
all Eij connections among members; these connections are

3

named overlay links. In terms of graph theory these two
features translate in: i) the edges of the graph are overlay links
(and thus they may consist of more than one network link); ii)
V=M; iii) G is the fully meshed connection graph connecting
all the vertices; iv) the cost c(Eij) is the number of network
hops of the overlay link between member i and member j
(assuming that the underlying unicast routing protocol
minimizes the path length measured in number of hops, in that
case the overlay link is also the shortest path between member i
and member j); v) T is the sub-graph of G containing all
vertices and having the minimum possible cost, namely the
overlay minimum spanning tree.

In the network-layer approach it turns out that: 1) all nodes
can perform multicast routing; 2) the connection service is
supplied by the underlying Data Link / MAC layers, which
provide only connections Eij among adjacent nodes; these
connections are named network links. In terms of graph theory
these two features translate in: i) the edges of the graph are
network links; ii) V=N; iii) G is the connection graph
connecting only adjacent nodes; iv) c(Eij)=1; v) T is the sub-
graph of G containing only the vertices of M and having the
minimum possible cost, namely the Steiner tree.

member node = graph vertex

non-member node = graph vertex only for network layer case

graph edgecheapest tree edge

member node = graph vertex

non-member node = graph vertex only for network layer case

graph edgecheapest tree edge

1

1

1 1

Network layer connection
graph G(V,E), i.e.

radio topology

1

1 1

1

1

1

1

1 1

Network layer connection
graph G(V,E), i.e.

radio topology

1

1 1

1

1

Overlay layer
connection

graph G(V,E)

3

2 2

2
2

2

Overlay layer
connection

graph G(V,E)

3

2 2

2
2

2

1

1 1

1

1

Steiner Tree (C=5)

1

1 1

1

1

Steiner Tree (C=5)
(a)

S

2 2

1

1

Minimum Spanning Tree (C=6)

Network link
stressed by
two tree links

1

S

2 2

1

1

Minimum Spanning Tree (C=6)

Network link
stressed by
two tree links

1

(b)
Fig. 1 - Example of connectivity graph and of resulting cheapest tree of a
MANET in the two cases of network-layer (a) and overlay approach (b)

Fig. 1 shows an example of the connection graph G and of

the corresponding cheapest tree in the network layer (a) and
overlay (b) approach. In the network-layer case, the connection
graph G equals the set of radio connections and the cheapest
tree (a Steiner one) consists of 5 hops. In the overlay case, G is
a full mesh among member nodes and the cheapest tree (the
minimum spanning tree) consists of 6 hops.

This said, we can conclude the section with an important
consideration, already discussed in [6][7][9]. The overlay
approach can not exploit non-member nodes for multicast
routing; this implies that it is less efficient than the network-
layer approach because the same network link may be stressed
by more than one tree link (see Fig. 1), i.e. by more than one
transmission of the same user data. In particular, it has been
found that the ratio between the cost of the minimum spanning
tree and that of the Steiner tree is limited to 0.9, in practical ad-
hoc network scenarios [6]. This is an example of the
performance issues discussed in II, about pros and cons of
performing the multicast with an overlay or a network layer
approach.

B. Borůvka algorithm
The Borůvka algorithm (1926) [5] finds the minimum

spanning tree over a given graph. Alternative methods serving
the same purpose are the Kruskal algorithm (1956) [17] and
the PRIM algorithm (1957) [18]. We selected the Borůvka
algorithm because it lends itself more easily to a distributed
implementation. It works as follows:

1. make a list L of {W} trees, where each

tree is composed of a single vertex
2. while L has more than one tree

for each tree in L, find the smallest
edge connecting the tree to another
disjoined tree, thus forming a new tree

3. end

Let us define n-level edges the set of edges of the minimum

spanning tree built by the Borůvka algorithm at the n-th
iteration (in the while loop). It is easy to see that the first-level
edges are the edges that connect nearest vertices. This
definition will be useful in the sequel.

IV. OBAMP

A. Main protocol features
The goal of OBAMP is to limit the network traffic, both user

data and signalling information, so as to achieve a high
delivery ratio and a low latency, and to maintain these
properties when the group size increases. The delivery ratio is
the ratio between the number of non-duplicated delivered data
bytes and the number of bytes supposed to be received by the
multicast sinks. The latency is the time elapsing between the
emission of a packet and its reception by the receiving
multicast sink.

To this end, OBAMP: i) creates a cheap distribution tree; ii)
exploits radio broadcasting; iii) limits the protocol overhead
and the “induced” network layer-signalling.

OBAMP is a mesh-first overlay multicast protocol: first it

4

builds an overlay network spanning all members (i.e., a mesh);
then it builds the distribution tree by selecting a subset of non-
cyclic overlay links belonging to the mesh. Fig. 2 reports an
example of mesh and corresponding distribution tree in a 10-
members case. Red lines are overlay links of the tree (and of
the mesh as well, of course); dashed lines are overlay links of
the mesh and not of the tree. Non-member nodes are not
drawn, although they participate to the network layer routing.

Both the mesh and the distribution tree are periodically
updated, to follow the dynamics of the network links. The
procedures that build the mesh and the tree are named mesh-
create and tree-create, respectively.

A

M

H

B
I

E

L

Tree and Mesh link
Mesh only link

G

F

D

1
2

2

2

2

2

3

3

1

4 2 2

4

4

3

Arrow indicates the parent member

A

M

H

B
I

E

L

Tree and Mesh link
Mesh only link

G

F

D

1
2

2

2

2

2

3

3

1

4 2 2

4

4

3

Arrow indicates the parent member
Fig. 2 - A mesh with a corresponding tree and related hop distance/cost (non-

member nodes are not drawn)

1) Usefulness of the mesh-first approach
The mesh-first approach was originally proposed by

AMRoute [1] and is alternative to the tree-first approach used,
for instance, by ALMA [7], which builds directly the multicast
tree, without previously forming a mesh.

The mesh-first approach constructs a structure more resilient
to overlay link failures. As a matter of fact, in a tree-first
approach the loss of an overlay link (e.g., due to a member
hardware failure) would force a time-consuming process of
neighbour discovery to select the “recovery” overlay link.
During the discovery process, the tree is partitioned and loss
phenomena can occur. On the contrary, in the mesh-first
approach, it is often possible to quickly select a recovery
overlay link among the mesh links, without the need of
discovering available overlay links.

2) Performance issues driving the design process
This sub-section discusses some performance issues that

explain the rationale that lies behind the definition of OBAMP.
Let us define the efficiency ρ(t) of a generic distribution tree

at time t as the ratio between the cost of the corresponding
minimum spanning tree CMST (t) and the cost of the distribution
tree Ctree(t) itself, i.e. ρ (t) = CMST (t)/ Ctree(t). As discussed in

section III, the best choice for an overlay protocol is the
minimum spanning tree and hence ρ(t) ≤1. It is helpful to
express ρ(t) as follow:

)()()(
)()()(

)()()()()(

tCtCt
tCtCt

tttCtCt

treemeshMSTtom

meshMSTMSTmesh

tommeshtreeMST

=
=

⋅==

ρ
ρ

ρρρ
 (1)

where:

- ρmesh(t) is the mesh efficiency, defined as the ratio between
the cost CMST(t) of the minimum spanning tree and the
cost CmeshMST(t) of the minimum spanning tree of the given
mesh at time t. This parameter measures the ability of the
mesh-create procedure to include in the mesh overlay
links belonging to the minimum spanning tree; as a matter
of fact, if all minimum spanning tree links are contained
in the mesh then CmeshMST(t) = CMST(t) and ρmesh(t)=1. On
the other side, the more the mesh is “efficient”, in the
sense just explained, the more are the opportunities for
the tree-create procedure to build a cheap tree.

- ρtom(t) is the tree-over-the-mesh efficiency defined as the
ratio between CmeshMST(t). and the cost Ctree(t). This
parameter is a measure of the effectiveness of the tree-
create procedure; in the best case, when ρtom=1, the
distribution tree will be the minimum spanning tree of the
mesh.

The overall meaning of Eq. (1) is that the creation of a tree
is a two-steps process and thus its efficiency is the product of
the efficiency of the component steps.

Fig. 3 reports a simulation run of the cost of a tree obtained
with OBAMP as a function of the time, Ctree(t); also shown are
CmeshMST(t) and CMST(t).

CMST(t) is the minimum possible cost. If CmeshMST(t) is greater
than CMST(t), the obtained mesh does not contain the minimum
spanning tree and ρmesh(t) < 1. If Ctree(t) is greater than
CmeshMST(t), then the tree-create procedure is not finding the
minimum spanning tree of the mesh and ρton(t)<1.

Fig. 3 - Simulation run of Ctree, CmeshMST and Cton in a multicast group of 10

members.

5

B. Protocol procedures
This section describes the protocol procedures. The

sequence diagrams and messages format can be found in the
Appendix I and II, respectively.

User data are distributed over a distribution tree that is
created by means of suitable procedures. We start the
description of the protocol by describing data distribution and
then we introduce the procedures that we need to create the
distribution tree.

1) Data-distribution
Let us define as neighbours two members connected by a

mesh link. Data-distribution is executed in two different ways,
depending on if the hop distance between the forwarding
member and its neighbour is greater than one or equal to one:
− in the first case, each member forwards in unicast way the

received (or generated) data on all overlay links of the
distribution tree to which it is connected, with the exclusion
of the receiving one.

− in the second case, data are distributed to members
belonging to the mesh by means of only one radio
broadcasting transmission, with a value of the IP Time To
Live (TTL) equal to 1.

The rationale of the second case is that it may happen that
more than one receiving member is within the coverage area of
a sending member. In that case, it is more efficient to reach
such members via radio broadcasting, instead that via unicast
transmissions over the distribution tree.

Data duplication may occur because of loops in the mesh,
loops in the tree, due to the dynamics of the MANET, and to
other reasons. To limit such duplication, we resort to two
mechanisms: i) each data message contains a field (named
JustForwardedMemberCode) that codes the list of the
members to which those data have already being sent.
Members will not forward a message to other members
contained in this list; ii) data duplication is further limited by
means of temporal data caches, as done in [7].

Thanks to these mechanisms, only one transmission is
sufficient to reach neighbours within the same radio coverage,
independently from the tree topology. This feature maintains
good performance even when the group size increases.

This said, we can now focus on how to create the mesh and
the distribution tree.

2) Mesh-create
From Eq. (1), it is easy to see that the mesh-create procedure

should return a mesh that contains the greatest possible number
of overlay links belonging to the minimum spanning tree.

From this point of view, it is clear that the full-mesh will
have ρmesh = 1 since it will surely contain all the overlay links
of the minimum spanning tree. On the other side, the
maintenance of a mesh link requires the exchange of overlay
control messages and related, “induced”, signalling at the
network layer. The overall amount of signalling increases with
the square of the multicast group size, M, since a full mesh has
M⋅(M-1) overlay links. As a consequence, maintaining a full
mesh is in contrast with the aim of achieving a good scalability

performance, and a trade-off is in order.
For this reason, the mesh-create procedure builds a “trade-

off mesh” that tries to limit the number of overlay links while
at the same time tries to include as many as possible minimum
spanning tree overlay links. We will see that the mesh created
by our procedure will contain the overlay links that connect
nearest members, plus other overlay links eventually needed to
avoid group partition.

If we translate this in the terminology introduced in section
III.B, we can say that the mesh-create procedure will surely
include in the mesh at least the first-level edges of the
minimum spanning tree. On the other side, the inclusion of the
other overlay links of the minimum spanning tree is not
guaranteed; this implies a small loss of mesh efficiency (e.g., in
case of Fig. 3 the resulting mesh efficiency is ρmesh=0.94
instead of the ideal ρmesh=1). This inefficiency is the price to be
paid to curb the signalling overhead, by limiting the number of
mesh links.

The mesh-create procedure is made up of three elementary
sub-procedures: hello, fast-hello and link-pruning. The hello
and fast-hello sub-procedures periodically establish or refresh
mesh links; in other words, their aim is to find the neighbours
of each member, and to estimate their hop distance. We need to
estimate the hop distance for a number of reasons; for instance,
data are distributed differently, depending on the hop distance.

The link-pruning sub-procedure manages the removal of a
mesh link.

The mesh is created (and maintained) in a distributed way:
each member uses a number of parameters and state variables.
An important data structure maintained by each member is the
neighbours list, which contains the status information of the
mesh links connected to the member; the members attached to
the other end of such mesh links are the neighbours of that
member. This status information is stored in a record
containing 12 fields. The most important of these fields are:
NEIGHBOUR_IP_ADDRESS; NEIGHBOUR_CORE_ADDRESS;
HOP_DISTANCE; EXPIRY_TIME; TREE_FLAG (true if mesh link
is a tree link).

a) Hello sub-procedure
The aim of the hello sub-procedure is to find the neighbours

of each member and to evaluate the related hop distance. It is
performed by all members when the nearest member is
perceived to be no more than one network hop away or when
the neighbours list is empty; otherwise the fast-hello sub-
procedure is carried out.

The hello sub-procedure exploits a so-called expanding-ring
search, and is executed every HELLO_PERIOD seconds. To
describe it, let us consider a generic member, S. Member S
sends out a sequence of broadcast HELLO messages, contained
in IP datagrams with incremental values of the IP Time To
Live (TTL) field2. The TTL field is incremented up to
MAX_HELLO_TTL or until member S receives a HELLO REPLY
message from another member. The IP TTL value set by

2 We assume that the underlying network layer routing supports broadcast

forwarding also for application layer data.

6

member S is copied in a specific field of the HELLO message.
When a member, R, receives an HELLO message, it creates

(or refreshes) a mesh link toward member S. This means that a
neighbours list entry is created (or updated) by setting
EXPIRY_TIME equal to the current time plus 1.5 ∗
ALLOWED_HELLO_LOSS ∗ HELLO_PERIOD and by setting
HOP_DISTANCE equal to the IP TTL value contained in the
HELLO message. Then, member R sends to S a unicast HELLO
REPLY message, piggybacking the originating IP TTL.

At the reception of the HELLOREPLY, member S stops the
expanding-ring search and creates (or refreshes) a mesh link
toward member R by creating (or updating) the relevant
neighbours list entry, through the same procedure described
above for R.

At the end of the hello sub-procedure, member S knows who
its neighbours are and has an estimate of how far away each
neighbours is. Thus, in principle, we do not necessarily need
fast-hello sub-procedure. The raison d’être of this latter
procedure is to improve performance.

The problem is that the estimate of the hop distance
performed by the hello sub-procedure may be wrong, due to
the fact that members are moving. This has serious
implications in the data forwarding phase: if a member believes
that its target is one hop away, it will use broadcast with a
value of the IP TTL equal to 1 to reach it. If the target is NOT
one hop away, the broadcast transmission will not be able to
reach the target, causing data loss3.

To alleviate this problem we have to improve the quality of
the estimate of the hop distance. To do so, we could simply
execute the hello sub-procedure more often, so that moving
members are better tracked. However, this would increase the
signalling overhead, especially when the hop distance is
greater than one. Our solution is to devise a new sub-
procedure, to be executed more frequently and only when the
nearest member is perceived to be one network hop away.

b) Fast-hello sub-procedure
The fast-hello sub-procedure is executed only when the

nearest member is perceived to be one network hop away. It is
repeated with a period equal to FAST_HELLO_PERIOD,
which is smaller than HELLO_PERIOD.

To describe it, let us consider a generic member, S. Member
S sends out a FASTHELLO messages contained in a IP datagram
with TTL=1 by means of a single broadcast transmission.
When a member, R, receives a FASTHELLO message, it creates
(or refreshes) a mesh link toward member S. This means that a
neighbours list entry is created (or updated) by setting
EXPIRY_TIME equal to the current time plus 1.5 ∗
ALLOWED_HELLO_LOSS ∗ FAST_HELLO_PERIOD and by
setting HOP_DISTANCE equal to one.

An interesting comment is that the scope of the HELLO
messages in both sub-procedures, hello and fast-hello, is
limited to the hop distance between member S and its nearest

3 On the contrary, unicast transmissions do not have this problem: unicast
exploits network layer procedures that route the data to the destination and thus
can find the target member even when the latter is moving.

member. Therefore, nearest members will be surely connected
by mesh links, as previously stated.

Moreover, most of the HELLO messages are transferred with
UDP/IP broadcast packets, avoiding the possible production of
network layer signalling to perform route-discovery.

c) Link-pruning sub-procedure
The link-pruning sub-procedure removes outdated mesh

links by using a soft-state approach. When the EXPIRY_TIME
of a given mesh links is reached, then that mesh link is pruned
by deleting its entry in the neighbours list, unless the mesh link
is also a tree link. In the latter case: i) the mesh link is not
pruned, to avoid group partition; ii) the related entry in the
neighbours list is not deleted, but its hop distance is set to
MAX_HELLO_TTL + 1, which has the meaning of unknown
distance.

3) Tree-create procedure
Once that the mesh is built, OBAMP creates a shared

distribution tree over the mesh by using the tree-create
approach proposed by AMRoute [1]. We selected this
approach for its capability of avoiding persistent tree loops
(even if it does not avoid temporary tree loops).

In addition, to improve the tree-over-the-mesh efficiency,
ρtom (see Eq. 1),we add to the AMRoute mechanism a novel
feature, named handling delay.

The tree-create procedure is initiated by a special member,
named core, which is chosen by means of a suitable procedure,
named core election, described in the following sub-section 5.

Each member stores the identifier of its core (i.e., its IP
address) and accept only control packet coming from its core.

The core sends out TREECREATE #x messages toward its
neighbours4 periodically, with a period equal to
TREE_CREATE_INTERVAL. Each round of such messages
refreshes the tree topology; the value of x identifies the x-th
refresh round and is reported in a specific field of the
TREECREATE message. Another field of the TREECREATE
message indicates if the destination neighbour is or not the
current nearest neighbour. TREECREATE messages are sent via
broadcasting to neighbours at one hop distance, and via
unicasting otherwise.

When a member, R, receives a TREECREATE message from
another member, F, it delays the handling of this message for a
time equal to HANDLING_DELAY. The member R determines
the value of HANDLING_DELAY as follows:

if [(F is the nearest member of R) or (R is the

nearest member of F)]

then HANDLING_DELAY=0

else HANDLING_DELAY =(dist -1)*Uh+r(0,1)* Uh /10;

where Uh is the HANDLING_DELAY time unit; dist is the
HOP_DISTANCE of the mesh link connecting F to R; r(0,1) is

4 Two members are said to be neighbours of each other if they are connected
by a mesh link.

7

a uniform random value in the (0,1) interval, used to
differentiate the delays of paths with the same hop distance.

The first time that R handles a TREECREATE #x message, it
marks the member from which it received the message as
current parent member; the parent member of the previous
refresh round is marked as old parent member. The current
parent member is the closest upstream vertex of the tree toward
the core.

If there is not a tree link between R and its current parent
member, then R creates it by using a two ways handshake setup
procedure (see Appendix I.B).

If old parent member is different from current parent
member, then R tears down the tree link toward old parent
member by means of two ways handshake tear-down
procedure.

At this time, R can forward the TREECREATE #x message
toward its neighbours, with the exclusion of the receiving one;
TREECREATEs #x messages, which show up after that R has
handled the first TREECREATE #x message, are discarded.

a) Three properties of the OBAMP tree
The OBAMP tree is characterized by the following three

properties, demonstrated in Appendix IV.
Property A: the tree created by OBAMP does not have

persistent tree loops.
Property B: OBAMP builds a distribution tree that contains

at least the fist-level edges of the minimum spanning tree.
Property C: the links of the OBAMP tree that are not first-

level edges of the minimum spanning tree are the links of the
macro-mesh that belong to the shortest-path rooted at the core.

4) Outer-tree-create procedure
Up to now, we have implicitly assumed that the mesh spans

all members. In reality, the mesh-create procedure discovers
only nearest members whose distance is at maximum
MAX_HELLO_TTL hops. Hence, the mesh-create procedure
may create partitioned meshes with different cores and give
rise to different distribution trees, one for each partitioned
mesh. To cope with this issue the outer-tree-create procedure
connects these different meshes and distribution trees by means
of a tree link, creating a mesh and related distribution tree that
span all members. The procedure works as follows.

Every OUTER_TREE_CREATE_INTERVAL, the core
member of each partitioned mesh floods all the network with
an OUTERTREECREATE message. To limit the signalling
overhead, we choose for the
OUTER_TREE_CREATE_INTERVAL a quite large value.

Only mesh cores handle OUTERTREECREATE messages.
When core A of mesh A receives an OUTERTREECREATE from
core B of mesh B, the procedure core-election is invoked and
two things can happen:
1) core B is elected core of a new mesh resulting from the

joining of mesh A and B; core A stops behaving as core and
sets up a tree link with B, thus attaching “its” mesh to mesh
B; this implies that also the related trees are now connected.

2) core B is not elected core of a new mesh resulting from the
joining of mesh A and B; in that case core A floods all the

network with another OUTERTREECREATE message,
without waiting for the
OUTER_TREE_CREATE_INTERVAL. In other words,
since the joining operation failed, we start a new trial
immediately to save time.

5) Core-election procedure
The procedure core-election is used to uniquely identify the

core of the mesh and is used: i) when two meshes, each with its
own core must be connected; ii) when a core leaves the
network or when the network gets radio partitioned and a new
core must be found.

In the first case, the procedure elects as new core the
member with smallest IP address. This happens during the
outer-tree-create procedure, as seen above.

In the second case, all members connected by means of a
tree link with the old core become cores. The remaining
members will: i) receive TREECREATE messages from these
new cores; ii) accept only those coming along tree links; iii)
elect as new core the generator of the accepted TREECREATE
message. This is the only exception to the rule according to
which members accept only control packet coming from their
current core.

6) Member-join and member-leave procedures
When a member wants to join a group it simply elects itself

core of a mesh formed by itself only; then the outer-tree-create
procedure will take care of the joining of such atomic mesh
with the rest of the group.

When a member wants to leave the group, it simply switches
itself off. The neighbours connected to that member through
tree links will perform the tree-link-recovery procedure (see
below).

7) Tree-link-recovery procedure
The tree-link-recovery procedure has the aim of re-

establishing the connectivity of the distribution tree in case of a
failure of a member or when a member goes out of radio
coverage.

Each member, H, monitors the activity of the tree links
connected to itself. Each member sends out an ALIVEHELLO
unicast message every ALIVE_HELLO_PERIOD on all tree
links, unless H does not need to send other kind of unicast
messages in this period.

If a member H does not receive any unicast message on a
tree link in a period of time equal to
1.5*ALLOWED_ALIVE_HELLO_LOSS*ALIVE_HELLO_PERIOD,
then the tree link, L, is considered as faulty; hence, L is pruned
and the neighbour connected to L is eliminated from the
neighbours list5. Moreover, the following actions take place: i)
if the eliminated neighbour is the current parent member of H
but it is not the core of H, then H establishes a new tree link
with the core in order to recover the connectivity of the tree; ii)
if the eliminated neighbour is not the current parent member of
H, then H does not do anything, because it will be the remote

5 It is worth noting that similar events occur at the other end of the faulty

link; thus, the tree-link-recovery procedure assures a symmetric pruning.

8

member of the faulty link that will establish a new tree link, in
order to recover the connectivity of the tree; iii) finally, if the
eliminated neighbour is the current parent member of H and it
is also the core of H, then it means that the mesh of H has lost
the core and H elects itself as core.

V. PERFORMANCE EVALUATION
In this section, we analyze the performance of OBAMP with

ns-2 and compare it with two state-of-the-art protocols, namely
ODMRP [2] and ALMA. ODMRP is a network-layer protocol;
as a consequence, the comparison between ODMRP and
OBAMP must also take into account this aspect: with
performance being equal, an overlay protocol should be
preferred for its implementation advantages, mentioned in the
Introduction.

ALMA [7] is one of the most promising overlay protocol
and thus a good test for OBAMP. We compare OBAMP to
ALMA and also to a modified version of ALMA, that we
denote by ALMA-H.

Although we have implemented OBAMP, in Java, and we
have tested it on the field, to prove its feasibility (see
implementation codes in [11]), the limited number of available
computers did not allow us to evaluate the OBAMP scalability
when the group size increases. Thus, we resorted to carefully-
designed simulations, taking into due account the
recommendations given in [14] on how to produce meaningful
simulation results. We start this section by describing the
criteria that we followed to assure the so-called “simulation
credibility”.

A. Simulation credibility criteria
Credibility criteria adopted: i) we publish all the simulator

source code and support files (e.g., movement scenarios, TCL
files, post-processing routines, etc.) in [11], to assure the
reproducibility of our study; ii) we produce the movement
traces to be used as inputs of the simulations by using the
“random trip model” [10], to assure that the stationary regime
is reached; iii) we repeat each simulation ten times with
different movement traces and random seeds and we plot the
95% confidence intervals in all figures; iv) we check, by means
of post-processing procedures, that all simulation results do not
significantly change in the last 100 seconds of simulation, to
assure that we have reached the stationary regime within each
simulation run.

B. Simulation tool
The simulation tool is based on ns2.29 [13] running on a

cygwin32 platform. Unfortunately, none of the benchmarked
protocols is available in the all-in-one ns2.29 package. Thus,
we had to add the code simulating the three protocols as
follows.

As regards OBAMP, we modelled it from scratch. The
ODMRP simulation code has been taken from [12]. As regards
ALMA, we developed the code from scratch too, implementing
two versions of this protocol, both proposed in [7]; in the first
one, the metric used for parent selection is the round trip time
(and we call it simply ALMA); in the second one (that we call

ALMA-H) the metric is the number of hops. According to the
ALMA Authors, the latter choice improves the performance of
ALMA, in terms of tree efficiency. Finally, we assume that the
ALMA signalling packets are 8 bytes long (this value is not
given in [7]).

C. Simulation details
Each simulation run lasts 800 s and all members join the

group within the first 10 seconds. The simulated network is
made up of 50 mobile nodes that move in a region of 1000m x
1000m. Nodes move according to a random way point model
with constant pause times of 30 s and with a constant speed.
The radio channel is modelled as free-space. The transmission
power is regulated so that the radio coverage of each node is
250m. The MAC layer is IEEE 802.11 operating in DCF mode
with a constant 2 Mbps bit rate. We use AODV as underlying
routing protocol [4], without local repair and with link-layer
detection. In Tab. 1 we report the other AODV configuration
parameters.

TAB. 1 – AODV MAIN CONFIGURATION PARAMETERS
Parameter Value

ACTIVE_ROUTE_TIMEOUT 10 sec
MY_ROUTE_TIMEOUT 20 sec
NETWORK_DIAMETER 30
RREQ_RETRIES 2
REV_ROUTE_LIFE 1.8 sec
NODE_TRAVERSAL_TIME 0.04 sec
MAX_RREQ_TIMEOUT 3.0 sec
DELAY 0.05 sec
BCAST_ID_SAVE 30 sec
TTL_START 1
TTL_THRESHOLD 7
TTL_INCREMENT 1

TAB. 2 – OBAMP MAIN CONFIGURATION PARAMETERS
Parameter Value

HELLO_PERIOD 5 sec
FAST_HELLO_PERIOD 1 sec
ALIVE_HELLO_PERIOD 1 sec
TREE_CREATE_INTERVAL 5 sec
OUTER_TREE_CREATE_PERIOD 15 sec
MAX_HELLO_TTL 4
Uh (handling delay unit) 250 ms

TAB. 3 – ALMA (ALMA-H) MAIN CONFIGURATION PARAMETERS
Parameter Value

UPDATE_PERIOD 5 sec
THRESHOLD_LEVEL1 30 ms(1 hops)
THRESHOLD_LEVEL2 45 ms(2 hops)
THRESHOLD_LEVEL3 65 ms(2 hops)
THRESHOLD_LEVEL4 80 ms(3 hops)

TAB. 4 – ODMRP MAIN CONFIGURATION PARAMETERS
Parameter Value

JOIN QUERY refresh interval 3 sec
Acknowledge timeout for JOIN
Table

25 msec

Maximum JOIN table
retransmissions

3

The main configuration parameters of the benchmarked

multicast protocols are reported in Tab. 2, Tab. 3 and Tab. 4
for OBAMP, ALMA and ODMRP, respectively.

9

As regards the traffic model, we consider a multi-source
scenario where each member sends out data packets of 256
bytes, with an inter-packet interval such that the overall data
traffic is equal to 16 kbps. This allow us to evaluate the impact
of the increase in the number of sources while the offered
traffic remains constant. Our multi-source scenario is more
realistic for ad hoc networks, since it models many-to-many
communications (e.g., push-to-talk [19]), which are widely
believed to be among the most likely sources of load in a
MANET.

D. Simulation results
In the following we compare the four protocols at hand in

two set of figures. In the first set, we assume a constant speed
of 10 m/s and we vary the group size; in the second set we
assume a group size equal to 20 members and we vary the node
speed. The 95% confidence intervals are always plotted, when
they are not visible it means that they are smaller than the
curve markers.

The first figure, Fig. 4, reports a parameter commonly
named “byte sent per byte delivered” (BSBD) as a function of
the group size. The BSBD is the ratio between the overall
number of bytes sent by the network nodes (on the IP-MAC
interface) and the number of data bytes delivered to the
multicast sinks at the application layer (excluding duplicate
packets).

In Fig. 5 we plot the delivery ratio, i.e. the ratio between the
number of non-duplicated delivered data bytes and the number
of bytes supposed to be received by the multicast sinks, as a
function of the group size.

In Fig. 6 we plot the average data latency, i.e., the time
elapsing between the emission of a packet and its reception by
the receiving multicast sink, as a function of the group size.

In Fig. 7 we plot the number of control bytes sent by all
network nodes, as a function of the group size. In the case of
overlay protocols (OBAMP, ALMA and ALMA-H) we also
distinguish between network layer and overlay signalling.

In Fig. 8 we plot the average tree efficiency vs. group size.
We recall that the tree efficiency ρ(t) at time t is the ratio
between the cost of the corresponding minimum spanning tree
CMST (t) and the cost of the distribution tree Ctree(t) itself. The
average tree efficiency is the average of ρ(t) over time.

Fig. 9, Fig. 10, Fig. 11 report the following performance
indicators versus the node speed: byte sent per byte delivered,
delivery ratio and average latency. The performance of ALMA
is not reported; in fact, for the considered value of group size
(equal to 20 members), the performance of ALMA is
considerably worse than the other protocols and the related
curves would be so distant from the ones of the other protocols
to make the figures not easily readable.

In the following we comment all these figures by comparing
our solution first to ODMRP and then to ALMA.

Fig. 4 - Bytes sent per bytes delivered vs. group size

Fig. 5 - Delivery ratio vs. group size

Fig. 6 - Average data latency vs. group size

10

Fig. 7 - Number and type of control mega bytes transmitted vs. group size

Fig. 8 - Average tree efficiency vs. group size

 Fig. 9 - Bytes sent per bytes delivered vs. node speed

Fig. 10 - Delivery ratio vs. node speed

Fig. 11 - Average data latency vs. node speed

1) OBAMP vs. ODMRP
We start our comparison by looking at the performance as a

function of the group size.
As we can see from Fig. 4, the BSBD decreases as the group

size increases for both OBAMP and ODMRP. This is due to
the ability of these protocols to exploit radio broadcasting for
data distribution: when the group size increases, more
members can be reached by the same broadcast transmission
and the BSBD decreases. As the group size keeps increasing,
the effect of control traffic becomes more noticeable and the
curves flatten. The important result of Fig. 4 is that OBAMP
limits the network traffic much better than ODMRP. This
advantage is confirmed by Fig. 7 which shows that the number
of control bytes of OBAMP is significantly smaller than that of
ODMRP.

As regards OBAMP’s user-perceived performance, when the
group size increases, Fig. 5 and Fig. 6 show that the delivery
ratio and the latency increase only moderately, demonstrating
the scalability performance of the proposed protocol. The first
(positive) effect is due to the natural data redundancy provided

11

by broadcasting, which is more and more apparent as the group
size increases. The second (negative) effect is due to the
increase of the control traffic which implies a higher latency.

Fig. 5 shows that the OBAMP’s delivery ratio remains
higher than 90% for all values of the considered group sizes
while ODMRP’s delivery ratio suffers a heavy decrease for
group sizes greater than 20 nodes, due to its significant
network load. Correspondingly, Fig. 6 shows that a similar
phenomenon occurs for the data latency.

Let us now analyze what happens when we vary the node
speed. The Fig. 9 and Fig. 10 show that OBAMP performs
better than ODMRP as regards the byte-sent-per-byte
parameter and the delivery ratio. On the contrary, Fig. 11
shows that OBAMP performs worse than ODMRP in terms of
latency, even if the difference is at most 50 ms.

Overlooking the specific numerical values, we observe that
both OBAMP and ODMRP have a weak dependence from the
node speed; this behaviour is an evidence of their scaling
properties as a function of the node speed.

In all fairness, we must observe that the multi-source traffic
scenario has been selected because it is of interest for a
MANET but on the other side turns out to be the worst
possible traffic load for ODMRP. As a matter of fact, in the
Appendix III, we show that in a single-source traffic scenario
ODMRP and OBAMP have similar (and good) performance.
This happens because in the single-source case ODMRP has a
smaller amount of overhead, with respect to the multi-source
case.

2) OBAMP vs. ALMA and ALMA-H
Also in this case, we begin comparing the protocols by

varying the group size.
ALMA does not implement radio broadcasting; as a

consequence, when the group size increases, the number of
transmissions must increase and so does the network load, the
latency and the loss phenomena. In addition, our results show
that ALMA-H provide better performance than ALMA as
anticipated by the Authors of [7]. As a consequence, we focus
the following comparison on ALMA-H vs. OBAMP.

In the case of ALMA-H we see that the BSBD rapidly
increases (Fig. 4), the delivery ratio suffers a heavy decrease
(Fig. 5) and the latency increases to undesirable values (Fig. 6).

In Fig. 7 we can see how OBAMP and ALMA-H behave
versus the amount of control traffic. We notice that the amount
of overlay control signalling of the two protocols (curves
“OBAMP only” and “ALMA only”) is comparable. Regarding
the amount of network signalling induced at the network layer
(curve “AODV only”), OBAMP succeeds in limiting this kind
of overhead whereas ALMA-H does not. Moreover, the
induced overhead is a major fraction of the overall control
traffic of ALMA-H. This fact demonstrates the need of taking
into due account this source of overhead, when devising an
overlay protocol. If we do not take care of this issue, we would
risk that an overlay protocol perfectly working in ideal routing
conditions, drastically collapses in real settings.

In Fig. 8 we compare the average tree efficiency of OBAMP
and ALMA and we find that OBAMP possesses good

scalability properties, as far as the tree create procedures are
concerned, and good overall efficiency values.

We now compare the protocols as a function of the node
speed. The Fig. 9, Fig. 10 and Fig. 11 show that OBAMP
performs better than ALMA-H; with the exception of the
average latency values in the speed range 2 m/s ÷ 5 m/s.
Furthermore, we note that, when the node speed increases, the
performance gap between OBAMP and ALMA-H increases as
well. This is an evidence that OBAMP scales better than
ALMA-H versus the node speed.

As regards the difference between a single-source scenario
and a multi-source one, in the Appendix III we show that no
significant difference can be observed between the two traffic
models. The reason is that the considered overlay protocols
form a shared overlay tree by means of mechanisms that do not
depend on where the data source are. As a consequence,
keeping constant the offered traffic, the performance are quite
independent on the sources location.

VI. CONCLUSION

Overlay multicasting is a valuable approach to support
many-to-many communications in MANETs. A critical figure
of merit for a MANET scenario is the ability of the multicast
protocol to scale with the group size and to work satisfactorily
for a wide range of values of the node speed. To obtain these
results it is important, in our opinion, to design the protocol
with the follow three guidelines in mind: i) build a distribution
tree that approximates the minimum spanning tree as much as
possible; ii) design the protocol so as to limit not only the
overlay signalling but also the induced network layer
signalling; iii) exploit radio broadcasting.

We did follow these guidelines and we ended up with a
protocol that exhibits better scalability performance in a many-
to-many communications scenario than two state-of-the-art
protocols such as ALMA and ODMRP.

A last consideration is that the OBAMP protocol has the
ability to account for asymmetric links. This requires only to
add a suitable field in the HELLO and FASTHELLO messages.
This feature is not presented in this paper for space limitations,
but is implemented in the test-bed described in [11].

ACKNOWLEDGMENT

This work has been developed by the University of Rome
“Tor Vergata” and RadioLabs within the project Virtual
Immersive COMmunications (VICOM) founded by the Italian
Ministry of Instruction University and Research (MIUR).

The authors would like to thank the Ph.D. Claudio Loreti of
Univeristy of Rome “Tor Vergata” for ns-2 simulation code
and protocol design; in addition, Remo Pomposini of
RadioLabs for the Java implementation and test-bed.

12

REFERENCES
[1] J. Xie, et al., “AMRoute: Ad Hoc Multicast Routing

Protocol,”ACM/Baltzer Mobile Networks and Applications, vol. 7 , no. 6,
2002, pp. 429 – 439.

[2] Sung Ju Lee, William Su, and Mario Gerla, "On-demand multicast
routing protocol in multihop wireless mobile networks," ACM/Baltzer
Mobile Networks and Applications, vol. 7, no. 6, 2002, pp. 441-453.

[3] E. M. Royer and C. E. Perkins, "Multicast Ad hoc On-Demand Distance
Vector (MAODV) Routing, " In Proc. of the Second IEEE Workshop on
Mobile Computing Systems and Applications, 1999.

[4] C. Perkins, E. Royer and S. Das. “Ad Hoc On Demand Distance Vector
(AODV) Routing,” IETF RFC 3561.

[5] J. Nesetril, E. Milkov and H. Nesetrilov, “Otakar Boruvka on minimum
spanning tree problem: translation of both the 1926 papers, comments,
history”, Discrete Math., vol. 233, 2001, pp. 3-36.

[6] A. Detti, C. Loreti, P. Loreti, “Effectiveness of Overlay Multicasting in
Mobile Ad-Hoc Networks, ” IEEE International Conference on
Communications, vol.7, 20-24 June 2004, pp. 3891 - 3895

[7] Min Ge, Srikanth V. Krishnamurthy and Michalis Faloutsos, “Application
versus network layer multicasting in ad hoc networks: the ALMA routing
protocol,” Elsevier Ad Hoc Networks Journal, vol. 4, no. 2, pp. 283-300,
2006.

[8] Ki-Il Kim; Sang-Ha Kim, "A novel overlay multicast protocol in mobile
ad hoc networks: design and evaluation," Vehicular Technology, IEEE
Transactions on , vol.54, no.6, pp. 2094- 2101, Nov. 2005

[9] C. Gui and P. Mohapatra, “Efficient Overlay Multicast for Mobile Ad
Hoc Networks,” Proc. 2003 IEEE Wireless Comm. and Networking
Conf., vol.2, pp. 1118-1123.

[10] Le Boudec, J.-Y.; Vojnovic, M., "Perfect simulation and stationarity of a
class of mobility models," Proc. of IEEE INFOCOM 2005, vol.4, 13-17
March 2005, pp. 2743- 2754.

[11] www.radiolabs.it/obamp
[12] “Wireless Multicast Extensions for ns-2.1b8” at

http://www.monarch.cs.cmu.edu/multicast_extensions.html .
[13] “The Network Simulator - ns-2” at http://www.isi.edu/nsnam/ns/ .
[14] S. Kurkowski, T. Camp , M. Colagrosso, “MANET simulation studies:

the incredibles,” SIGMOBILE Mob. Comput. Commun. Rev., vol. 9, no. 4,
pp. 50-61, Oct. 2005,

[15] S. Lee, W. Su, J. Hsu, M. Gerla, R. Bagrodia, “A Performance
Comparison Study of Ad Hoc Wireless Multicast Protocols,”, Proc. IEEE
INFCOM 2000, vol. 2, March 2000, pp. 565 – 574

[16] A. Detti, C. Loreti, R. Pomposini, “Overlay Borůvka based Ad Hoc
Multicast Protocol – Demonstration”, Proc. IFIP Med-Hoc-Net 2006 –
demo session, 14-17 June 2006, Lipari (Italy)

[17] J. B. Kruskal, “On the shortest spanning subtree and the traveling
salesman problem”, Proc. of the American Mathematical Society, no. 7,
pp. 48–50, 1956

[18] R. C. Prim, “Shortest connection networks and some generalisations”,
Bell System Technical Journal, no. 36, pp. 1389–1401, 1957

[19] L.A. DaSilva, G.E. Morgan, C.W. Bostian, D.G. Sweeney, S.F. Midkiff,
J.H. Reed, C. Thompson, “The resurgence of push-to-talk technologies”,
IEEE Communication Magazine, vol. 54, no. 6, pp. 48-55, January 2006.

[20] Internet-Drafts Database Interface, MANET Working Group at
https://datatracker.ietf.org/public/idindex.cgi?command=show_wg_id&id
=1132

[21] H. Eriksson, “MBone: The Multicast Backbone,” Communications of the
ACM, vol. 37, no.8, 1994, pp. 54–60.

13

 APPENDIX I
ILLUSTRATIVE SEQUENCE DIAGRAMS OF OBAMP

PROCEDURES

A. Data-distribution procedure
Fig. 12 shows the data-distribution procedure in an example

network. In this example the procedure is carried out by
member C and the data source is member F.

At the reception of a data message from F, member C
performs two types of forwarding: i) toward the neighbours E
and G, by means of unicast UDP/IP packets: in fact these
members have a distance from C greater than one network hop
and they are connected by a tree link with C; ii) toward the
neighbours A, B and D, by means of a single broadcast UDP/IP
packet with IP TTL=1, as these members are at one hop
distance from C and they are connected by a mesh link with C.

We notice that the JustForwardedMemberCode
(JFMC) field of the data packet header transmitted by F toward
C includes only the members F and C. When C subsequently
forwards this data, it increases the JFMC scope by including
also members A,B,D,E,G. From now on, no more transmission
of this data will be allowed, since all members are included in
the JFMC field.

D

C

A

B

data
source

1 1

1
1

1 1

F E

G
2 2

3

core

DATA (unicast) toward E

CF

DATA (unicast)

DATA (unicast) toward G

DATA(broadcast) toward {A,B,D}

JFMC ={F,C}

JFMC = {F,C,A,B,D,E,G}

Mesh only linkTree and Mesh link

D

C

A

B

data
source

1 1

1
1

1 1

F E

G
2 2

3

core

DATA (unicast) toward E

CF

DATA (unicast)

DATA (unicast) toward G

DATA(broadcast) toward {A,B,D}

JFMC ={F,C}

JFMC = {F,C,A,B,D,E,G}

Mesh only linkTree and Mesh link

Fig. 12 - The data-distribution procedure performed by C for a data message

coming from F

B. Hello sub-procedure
Fig. 13 shows the hello sub-procedure in an example

network. The sub-procedure is performed by member A. The
TTL values reported in the figure are the content of the TTL
field of the HELLO messages, i.e., the initial TTL value of the
IP packet that contains the overlay message.

At the beginning of the hello sub-procedure, member A
transmits an HELLO message within an UDP/IP broadcast
packet with IP TTL = 1. This HELLO message is received only
by an intermediate node (denoted by a white circle) that
discards the packet, as the node does not belong to the
multicast group.

After a short timeout, member A re-transmits the HELLO
message and increases the IP TTL to 2 hops. This time, the
intermediate node re-broadcasts the HELLO message, which is

received by member B. Member B, in turn, creates (or
refreshes) the mesh link B-A, by inserting A in its neighbour
list; moreover, member B sends back the HELLOREPLY
message in a unicast way.

At the reception of HELLOREPLY, member A creates (or
refreshes) the mesh link A-B and the current round of the hello
sub-procedure ends.

HELLO (TTL=1)

HELLO(TTL=2) HELLO(TTL=2)

HELLOREPLY(TTL=2)HELLOREPLY (TTL=2)

A B

Hello procedure start

Creation (refresh) of the
mesh links toward B with
HOP_DISTANCE = 2

Creation (refresh) of the
mesh links toward A with
HOP_DISTANCE = 2

HELLO (TTL=1)

HELLO(TTL=2) HELLO(TTL=2)

HELLOREPLY(TTL=2)HELLOREPLY (TTL=2)

A B

Hello procedure start

Creation (refresh) of the
mesh links toward B with
HOP_DISTANCE = 2

Creation (refresh) of the
mesh links toward A with
HOP_DISTANCE = 2

Fig. 13 - Example of hello sub-procedure performed by member A .

C. Fast-hello sub-procedure
Fig. 14 reports the exchange of FASTHELLO messages

between member B and C, which are one hop away from each
other. When C receives a FASTHELLO message from B, it
creates or refreshes the mesh links toward B, and vice-versa.

B

Creation (refresh) of the
mesh link toward B with
HOP_DISTANCE=1

C

Creation (refresh) of the
mesh link toward A with
HOP_DISTANCE=1

FASTHELLO

FASTHELLO

FASTHELLO

FASTHELLO

B

Creation (refresh) of the
mesh link toward B with
HOP_DISTANCE=1

C

Creation (refresh) of the
mesh link toward A with
HOP_DISTANCE=1

FASTHELLO

FASTHELLO

FASTHELLO

FASTHELLO

Fig. 14 - FASTHELLO messages exchanged between members B and C.

D. Tree-create procedure
Fig. 15 shows the tree-create procedure performed in an

example network, with a distribution tree having a cost of 4
hops and formed by two tree links: A-B and A-C (Fig. 15a).
Member B is the A’s nearest, while the B’s nearest is C and
vice-versa.

At the procedure starts, the core A sends out two
TREECREATE #x messages toward its mesh neighbours: B and
C.

At the reception of the TREECREATE #x message (Fig. 15b):
i) B applies an handling delay equal to zero seconds, since B is
the nearest of A; ii) C applies an handling delay equals to
0.25*1 + 0.95*0.25/10 seconds, since the hop distance A-C is
equals to 2 hops, Uh is equals to 0.25 and assuming that
r(0,1) draws the random number 0.95.

Consequently, B immediately handles the TREECREATE #x
message coming from A (Fig. 15c) and confirms the overlay
link toward A as a tree link, since this TREECREATE message is
the first handled one during the refresh round #x. In other
words, A becomes B’s parent member and B is a descendant of
A. Because the overlay link A-B is already set as tree link, no

14

tree link switching occurs and B forwards the TREECREATE #x
message to C.

When C receives this TREECREATE #x message from B (Fig.
15d), it applies an handling delay equals to zero seconds, as B
is its nearest member. Consequently, C immediately handles
such control message. This TREECREATE message is the first
one handled during the round #x, therefore C setups a tree link
toward B and tears down the tree link toward A (Fig. 15e).

The tree-link-setup procedure is the following (Fig. 15f): C
sends a TREECREATEACK message toward B and sets the C-B
overlay link as tree link. At the reception of the
TREECREATEACK message, B sends back a TREECREATECONF
message and sets the B-C overlay link as tree link. When C
receives the TREECREATECONF message, the tree-link-setup
procedure ends and the tree link tear down procedure starts.

The tree-link-tear-down procedure is the following (Fig.
15f): C sends a TREECREATENACK message toward A. At the
reception of the TREECREATENACK message, A sends back a
TREECREATENACKCONF message and sets the A-C overlay link
as mesh link. When C receives the TREECREATENACKCONF
message, it sets the C-A overlay link as mesh link and the tree-
link-tear-down procedure ends6.

To cope with control packets loss, the setup and tear down
procedures adopt a retransmission policy based on timeouts.

As a final comment on Fig. 15, we observe that the handling
delay mechanism has changed the distribution tree from a sub-
optimal tree, with a cost of 4 hops (Fig. 15a), to a more
efficient tree, formed by 3 hops (Fig. 15e). Without the
handling delay mechanism, the tree would have remained that
of Fig. 15a.

E. Outer-tree-create procedure
Fig. 16a shows two disjoined meshes and inner trees, whose

cores are members A and D, respectively.
At a given time, the core A performs the outer-tree-create

procedure by flooding the network with the
OUTERTREECREATE message.

At the reception of this message, the core D executes the
core-election procedure, which returns as winner core core A.
Therefore, D stops to behave as core, sets A as its core and
establishes a tree link with A by means of the tree link setup
procedure. The two disjoined meshes and inner trees are now
connected.

Let us notice that, at the end of the tree link setup procedure,
the descendants of D, i.e., members E and F, still have as their
core member D. This core ambiguity will be solved with the
next tree-create procedure; the TREECREATE message sent by
core A will pass through the tree links D-E and D-F and the
receiving members E and F will switch the core from D to A
(see IV.B.5).

6 We point out that a temporary loop in the tree occurs since the start of the

tree create setup procedure and till the end of tree link tear down procedure.

Mesh only linkTree and Mesh link

core
nearest

neighbour = B

2 2

1nearest
neighbour = C

TREECREATEs
#x

B C

A

nearest
neighbour = B

core
nearest

neighbour = B

2 2

1nearest
neighbour = C

TREECREATEs
#x

B C

A

nearest
neighbour = B

1
HANDLING_DELAY=0 s

TREECREATE
#x

C

TREECREATE
#x

2 2

A

HANDLING_DELAY=
0.25*1+0.95*0.25/10 s

B
1

HANDLING_DELAY=0 s

TREECREATE
#x

C

TREECREATE
#x

2 2

A

HANDLING_DELAY=
0.25*1+0.95*0.25/10 s

B

(a)

(b)

1

TREECREATE #x from A handled,
mesh link A-B held as tree link,
TREECREATE #x forwarded

A

B C

TREECREATE
#x

2 2

1

TREECREATE #x from A handled,
mesh link A-B held as tree link,
TREECREATE #x forwarded

A

B C

TREECREATE
#x

2 2

2 2

1

TREECREATE
#x

A

B C
HANDLING_DELAY=0 s

2 2

1

TREECREATE
#x

A

B C
HANDLING_DELAY=0 s

(c)

(d)

2 2

1

TREECREATE #x form B handled,
mesh link B-C setup as tree link,
old A-C tree link torn down,
pending TREECREATE #x from A discarded

A

B C

2 2

1

TREECREATE #x form B handled,
mesh link B-C setup as tree link,
old A-C tree link torn down,
pending TREECREATE #x from A discarded

A

B C

TREECREATEACK

TREECREATECONF

B C A

B-C tree link
established

A-C tree link
torn down

TREECREATENACK

TREECREATENACK
CONF

TREECREATEACK

TREECREATECONF

B C A

B-C tree link
established

A-C tree link
torn down

TREECREATENACK

TREECREATENACK
CONF

(e)

(f)

Fig. 15 - Steps of the tree-create procedure in an example network (a,b,c,d,e)
and exchange of control packets for the tree-link-setup and tree-link-tear-down

procedures (f); non-member nodes are not drawn.

15

Tree and Mesh linkMesh only link Available
network
path

Tree and Mesh linkMesh only link Available
network
path

B
2

A

6

C
1 2

D 2 F

E
1 2

B
2

A

6

C
1 2

D 2 F

E
1 2

B
2

A

6

C
1 2

D 2 F

E
1 2

B
2

A

6

C
1 2

D 2 F

E
1 2

TREECREATEACK

TREECREATECONF

A-D tree link
establishment

A D

OUTERTREECREATE

TREECREATEACK

TREECREATECONF

A-D tree link
establishment

A D

OUTERTREECREATE

(a) (b) (c)

Fig. 16 - The outer-tree-create procedure in an example network (a,b) and the
related exchange of control packets (c).

F. Tree-link-recovery procedure
We report the behaviour of the tree-link-recovery procedure

in two example cases. In the first one, the procedure faces a
radio partition; in the second one, a hardware failure.

Fig. 17a shows a working network configuration, which in
Fig. 17b suffers of a radio partition that impedes the
connection between member D and core A. In this situation, no
unicast message will be exchanged on this tree link and the
procedure detects the overlay link failure. Then, core A purges
D from its neighbour list (being D a descendant of A), and
implicitly tears down the A-D tree link. At the other end of the
link, D elects itself as core (being A both the core and the
parent member of D), so forming a disjoined mesh and inner
tree. When, eventually, the radio propagation will allow to
reconnect the two meshes, then the outer-tree-create procedure
will perform this task, as shown in Fig. 17c (see section
IV.B.4).

B
2

A

C
1 2

D
2

F

E
1 2

B
2

A

C
1 2

D
2

F

E
1 2

B
2

A

C
1 2

D
2

F

E
1 2

Before radio
partition

During radio
partition

At the end of
radio partition
and after
outer-tree-create procedure

Mesh only linkTree and Mesh link

B
2

A

C
1 2

D
2

F

E
1 2

B
2

A

C
1 2

D
2

F

E
1 2

B
2

A

C
1 2

D
2

F

E
1 2

Before radio
partition

During radio
partition

At the end of
radio partition
and after
outer-tree-create procedure

Mesh only linkTree and Mesh link

(a)

(b)

(c)

Fig. 17 - Tree-link-recovery procedure facing a radio partition (non-member

nodes are not drawn)

Fig. 18a shows a working network configuration, which in
Fig. 18b suffers of the hardware failure of member D (if D

leaves the group, the same chain of events here described will
occur). The descendants E and F detect the failure by not
receiving any more unicast messages from D. Consequently, E
and F select as parent member the core A, re-establishing a
suboptimal tree connectivity. The tree inefficiency will be
recovered at the next tree-create procedure. When the faulty
member will repair its hardware (or join again the group), it
will be the core of a mesh formed by only itself and it will
connect itself to the other members, by means of the outer-
tree-create procedure.

B
2

A

Mesh only link

C
1 2

D

9

F

E7 2

B
2

A

C
1 2

D
2

F

E
1 2

Before hardware
Failure of D

Just after hardware failure
of D and the exceution of
tree-link-recovery
procedure

After the next tree-create
procedure B

2
A

C
1 2

D F

E7 2

Tree and Mesh link

B
2

A

Mesh only link

C
1 2

D

9

F

E7 2

B
2

A

C
1 2

D
2

F

E
1 2

Before hardware
Failure of D

Just after hardware failure
of D and the exceution of
tree-link-recovery
procedure

After the next tree-create
procedure B

2
A

C
1 2

D F

E7 2

Tree and Mesh link

(a)

(b)

(c)

Fig. 18 - Tree-link-recovery procedure facing a hardware failure

16

APPENDIX II
FORMAT OF THE OBAMP MESSAGES

In the following we will describe each field only once, even
if it is contained in more than one message.

A. Data message
Fig. 19 reports the DATA message structure.
The MessageID field is contained in all the OBAMP

messages and identifies the message type (DATA, HELLO,
FASTHELLO, etc.).

The SequenceNumber field counts the number of
messages generated for each message type.

The SourceIP field contains the IP address of the member
that generates the message.

The JustForwardedMemberCode (JMFC) field is the
bit-map that codes the list of the members for which further
forwarding is forbidden7.

1 byte 1 byte
MessageID SourceIP
SequenceNumber JustForwardedMemberCode
(8 bytes)

Fig. 19 –DATA message

B. HELLO messages
Fig. 20 reports the structure of the HELLO message.
The CoreAddress field is the IP address of the core of the

member originating the HELLO message.

1 byte 1 byte
MessageID SourceIP
SequenceNumber TTL
CoreAddress

Fig. 20 – HELLO message

Fig. 21 reports the structure of the HELLOCONF message.
The HelloSequenceNumber field is used to piggy back

the sequence number value of the originating HELLO message.
This allows the source of the HELLO message to avoid handling
outdated responses.

1 byte 1 byte
MessageID SourceIP
HelloSequenceNumber TTL
CoreAddress

Fig. 21 – HELLOCONF message

Fig. 22 and Fig. 23 report the structures of the FASTHELLO
ad ALIVEHELLO messages, respectively.

7 This field coding aims at reducing the field length. The coding assumes
that the network contains at most 64 hosts and is assigned a class C addressing
space, and works as follows: the k-th bit is set to 1 when we want to forbid
forwarding to the member whose least significant byte of its IP address is equal
to k. Under different assumptions, the coding must be suitably modified,
eventually resorting to a brute-force approach of creating a list of IP addresses.

1 byte 1 byte
MessageID SourceIP
SequenceNumber CoreAddress

Fig. 22 – FASTHELLO message

1 byte 1 byte
MessageID SourceIP

Fig. 23 – ALIVEHELLO message

C. TreeCreate messages
Fig. 24 reports the structure of the TREECREATE message

and of the OUTERTREECREATE message, being equal to each
other. The NearestFlag field is used by the forwarding
member to inform the receiver that it is the nearest neighbour.

The JustForwardedMemberCode field codes the list of
members for which further forwarding is forbidden, since these
members have just handled this TREECREATE message. Each
member puts itself in this list before forwarding the
TREECREATE message.

1 byte 1 byte
MessageID SourceIP
SequenceNumber CoreAddress
Nearest flag JustForwardedMemberCode
(8 bytes)

Fig. 24 –TREECREATE and OUTERTREECREATE messages

Fig. 25, Fig. 26, Fig. 27 and Fig. 28 report the control
messages used during the tree-link-setup (TREECEATEACK and
TREECREATECONF) and tree-link-tear-down
(TREECREATENACK and TREECREATENACKCONF) procedures.

The fields not described up to now are
ACKSequenceNumber and NACKSequencenumber. Such
fields are used to piggy back the sequence number value of the
originating TREECREATEACK and TREECREATENACK
messages, respectively. This allows the source of the
TREECREATEACK messages (and of the TREECREATENACK
messages) to avoid handling outdated responses.

1 byte 1 byte
MessageID SourceIP
SequenceNumber CoreAddress

Fig. 25 – TREECEATEACK message

1 byte 1 byte
MessageID SourceIP
ACKSequenceNumber CoreAddress

Fig. 26 – TREECREATECONF message

1 byte 1 byte
MessageID SourceIP
SequenceNumber CoreAddress

Fig. 27 –TREECREATENACK message

1 byte 1 byte
MessageID SourceIP
NACKSequenceNumber CoreAddress

Fig. 28 –TREECREATENACKCONF message

17

APPENDIX III
PERFORMANCE EVALUATION OF A SINGLE-SOURCE

SCENARIO
The aim of this section is to replicate the analysis of section

V with a single-source traffic model, which is believed to be a
more favourable scenario for ODMRP. We analyze the
performance only as a function of the group size.

We assume a single-source traffic model in which a single
member node sends out CBR traffic at 16 kbps, with a payload
of the data packets equal to 256 bytes.

Fig. 29, Fig. 30, Fig. 31, Fig. 32 reports the following
performance indicators as a function of the group size: byte
sent per byte delivered, delivery ratio, average latency and tree
efficiency. We first compare OBAMP and ODMRP and then
OBAMP and ALMA.

Fig. 29 - Bytes sent per bytes delivered vs. group size

Fig. 30 - Delivery ratio vs. group size

Fig. 31 - Average data latency vs. group size

Fig. 32 - Tree efficiency vs. group size

1) OBAMP vs. ODMRP
If we compare the ODMRP performance in single and multi

source cases (V.D), we find out that the single-source traffic
model is a more favourable scenario for ODMRP.

The Fig. 29, Fig. 30 and Fig. 31 show that OBAMP and
ODMRP have similar performance in the single-source case,
with the exception of a small penalty of OBAMP as regards the
average latency (with a gap of about 30 ms).

2) OBAMP vs. ALMA
The performance of OBAMP and of ALMA in the single-

source case (Fig. 29, Fig. 30, Fig. 31, Fig. 32) are very similar
to the corresponding ones in the multi-source case case (Fig. 4,
Fig. 5, Fig. 6). Thus, we can state that the conclusions reached
for the multi-source case hold for the single-source case as
well.

18

APPENDIX IV
THREE PROPERTIES OF THE OBAMP TREE

In this section we proof three properties of the OBAMP tree.

Property A: the tree created by OBAMP does not have

persistent tree loops.

Proof of property A: let us consider the tree as if it were a

directed tree rooted at the core. Under this working
assumption, we can say that a tree loop is generated when
during the same refresh round a member H chooses as current
parent member a member K that is connected lower down in
the tree (i.e., a descendant) with respect to itself. Then, in a
generic refresh round #x, a generic member H can not select as
current parent member any member K that is placed on a tree
vertex that descends from H. In fact, if K forwarded the
TREECREATE #x message to H, then H would discard it, since
the same message has already passed through H (given that K
is a descendant of H). As a consequence, the tree-create
procedure avoids tree loops and, in turn, group partition.

Property B: OBAMP builds a distribution tree that contains

at least the fist-level edges of the minimum spanning tree.

Assumption: for the sake of simplicity we assume that the

handling-delay is the only source of delay in the network. The
consequence of this assumption and the way to make it
uninfluential in practical cases are discussed at the end of the
section.

Proof of property B: let us define first-level tree a tree

formed at the first iteration of the while loop of the Borůvka
algorithm (see III.B). A first-level tree is a set of connected
first-level edges; this set may contain, at a minimum, a single
edge. As previously discussed, the OBAMP mesh surely
contains all the first-level edges and, hence, it contains all the
first-level trees. To complete the proof we must now show that,
during a refresh round of the tree-create procedure, the first-
level edges will be surely marked as tree link. Let us focus our
attention on a given first-level tree, T. Let us define as tk the
time instant in which the first TREECREATE #x message is
handled by any member of T. Given that we are assuming that
the TREECREATE #x message does not experience any other
delay than the handling delay, the TREECREATE #x message
will be immediately forwarded on all mesh links that form T
and immediately handled by the members of T. In fact, the
handling delay is set to zero, for these overlay links. Now,
since this is the first TREECREATE #x message of the refresh
round #x, all these mesh links will be surely selected as tree
links; q.e.d.

To give an example of property B, let us consider Fig. 33,
where the first-level trees are: {A-B-C}, {D-E}, {F-G}, {H-I-
L} and {M-O}. Let us focus our attention on a generic first-
level tree, i.e., {H-I-L}.

C

B A
O

M
D

LE

F G

I
H

1
1

2

3

1

3

1

3

3

2

2

macro
member (M0)

macro
member (M4)

Mesh only link, not first-level edge

Tree and mesh link, first-level edge

2

4

macro
member (M1)

macro
member (M2)

macro
member (M3)

Tree and mesh link, not first-level edge

1

frst-level tree

C

B A
O

M
D

LE

F G

I
H

1
1

2

3

1

3

1

3

3

2

2

macro
member (M0)

macro
member (M4)

Mesh only link, not first-level edge

Tree and mesh link, first-level edge

2

4

macro
member (M1)

macro
member (M2)

macro
member (M3)

Tree and mesh link, not first-level edge

1

frst-level tree

Fig. 33 - An example mesh and tree configuration; the core is member A

When at time tk member I handles the first TREECREATE #x
message coming from the core A on the overlay link A-I,
member I forwards this message toward members H and L. The
receiving members H and L immediately handle this message
because the related handling delay is zero; as a matter of fact H
is the nearest member of member I and I is the nearest member
of member L(8). Consequently, the I-H and I-L overlay links are
set as tree links and these overlay links are precisely first-level
edges. The same thing occurs within the other first-level tree,
as anticipated by property B.

The third property is concerned with the other links of the

OBAMP tree; i.e., those links that are not the fist-level edges
of the minimum spanning tree.

In order to focus our analysis only on those links that are not
fist-level edges, in the following we introduce a new mesh,
named macro-mesh, in which the first-level edges are hidden,
as follows. Let us define as macro-member the set of members
forming a first-level tree and the mesh links connecting such
members. The OBAMP mesh can be seen also as a mesh
connecting such macro-members, which we call macro-mesh.
In the same way, the OBAMP tree can be seen also as a tree
connecting such macro-members, which we call macro-tree.

In Fig. 34 we give an example of such definitions by
reporting the macro-tree and the macro-mesh of the
configuration shown in Fig. 33.

8 We are assuming that in case of mesh links with equal hop distance, the

shortest mesh link is considered the one that at the other end has a member with
the smallest IP address.

19

C

B A
O

M
D

LE

F G

I
H

1
1

2

3

1

3

1

3

3

2

2

macro-mesh link

2

4

macro-tree link

1

M2

M3

M4M0

M1

C

B A
O

M
D

LE

F G

I
H

1
1

2

3

1

3

1

3

3

2

2

macro-mesh link

2

4

macro-tree link

1

M2

M3

M4M0

M1

Fig. 34 - Macro-mesh and macro-tree related to the configuration of Fig. 33

This said, we can state the:

Property C: the links of the OBAMP tree that are not first-

level edges of the minimum spanning tree are the links of the
macro-mesh that belong to the shortest-path rooted at the core.

Assumption: as for property B, we assume that the

handling-delay is the only source of delay in the network.

Proof of property C: during a generic tree-create refresh

round #x, the TREECREATE #x message passes through a
macro-member instantaneously, since within the macro-
member the path forming the first-level tree has an handling
delay equal to zero. In addition, the handling delay of the mesh
links connecting macro-members is an increasing function of
the hop distance. As a consequence, the first TREECREATE #x
message that is handled by a member of macro-member M and
that turns the transporting mesh link into a tree link, is received
on the shortest-path of the macro-mesh from the core to M.

To present an example of this property we consider again
Fig. 33 and focus our attention on the overlay links that
connect macro-members. These overlay links are the links of
the macro-mesh reported in Fig. 34.

Let us consider a generic macro-member, e.g., M2, and
assume that the core sends out the TREECREATE #x at time t0.
The macro-member M2 can receive the TREECREATE #x
message from the following paths: M0-M1-M2, M0-M3-M2,
M0-M4-M3-M2, whose hop distances on the macro-mesh are
equal to 5,6 and 8 hops, respectively.

The TREECREATE #x message passing through the path M0-
M1-M2 will be handled by M2 at time t0+2*Uh+3* Uh(9).
Where 2*Uh is the handling delay of the overlay link M0-M1
and 3*Uh is the handling delay of the overlay link M1-M2.
Hence, the overall handling delay is a linear function of the
hop distance of the path on the macro-mesh, that is 2+3=5
hops.

The same reasoning can be repeated for the other paths M0-

9 We are neglecting the small r(0,1) random value of the handling delay
computational algorithm (IV.B.3)

M3-M2, M0-M4-M3-M2.
Consequently, the first TREECREATE #x message handled by

M2 passes through the overlay link M1-M2 because this
overlay link belongs to the path of the macro-mesh that has the
smaller hop distance from the core to M2 (property C), that is
the path M0-M1-M2. The same reasoning can be repeated for
the other tree links that connect other macro-members.

We notice that the shortest path approach followed by
OBAMP for the tree links that not are first-level edges leads to
a distribution tree that is suboptimal with respect to the
minimum spanning tree. For instance, in Fig. 33, the cheapest
overlay link to connect macro-member M3 to the rest of the
tree should be G-H; instead, the shortest path approach of
OBAMP set as tree link the more expensive overlay link A-I .

Future work could try to identify better performing
procedures to limit this inefficiency, possibly without
increasing too much the signalling load.

We conclude this section by commenting the assumption
requiring that the handling delay is the only source of delay in
the network. Actually, it can be shown that the two properties
hold also if the handling delay time unit, Uh, is greater than the
maximum network delay. In other words, this parameter must
be chosen great enough so that the other sources of delay do
not alter the order of precedence in choosing tree links
established by the handling delay parameter by itself.

Thus, a proper choice of the parameter Uh makes not needed
the assumption made at the beginning of this section.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

