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Abstract. Information Centric Networking (ICN) is a new paradigm in which 
the network layer provides users with content, instead of providing communica-
tion channels between hosts, and is aware of the name (identifier) of the con-
tents. In this paper, first, we briefly describe the FP7 project CONVERGENCE 
and its approach to ICN. Second, we discuss the needs on measurements re-
quired by ICN. ICN is different in several aspects, with respect to the current 
networking architecture. The measurement needs in an ICN are virtually end-
less, as designing an ICN is conceptually equivalent to devising a new Internet. 
Thus, claiming to address this issue in a single paper would be pretentious. 
However, the study on ICN is in its initial stage and we want to focus on some 
of the most pressing and specific aspects of ICN, namely the scalability of its 
naming and routing functionality. This study is necessary to assess the feasibil-
ity of ICN, before addressing other metrics of interest. Thus, the third and main 
part of the paper describes our routing-by-name architecture and reports the re-
sults of specific measurements on routing issues. Measurements are performed 
both by means of simulations and by using OneLab, an open, global research 
network that supports the development of new network services. Our results 
show that the proposed architecture, designed to improve the scalability of rout-
ing tables, is feasible with current technology.  

Keywords: Internet Architecture, Future Internet, Information-Centric Net-
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1 Introduction 

Information Centric Networking (ICN) is a concept proposed some time ago under 
different names [1][2], which is attracting more and more interest, recently (see e.g. 
the papers [3][4][5][6][7][8][9][10] and the projects [11][12][13][14][15][16][17]). 
ICN proposes a shift from the traditional host-to-host communication to a content-to-
user paradigm, which focuses on the delivery of the desired content to the intended 
users. The basic functions of an ICN infrastructure are to: i) address contents, 
adopting an addressing scheme based on names (identifiers), which do not include 
references to their location; ii) route a user request, which includes a “destination” 



content-name, toward the “closest” copy of the content with such a name; this copy 
could be stored in the original server, in a cache contained in a network node, or even 
in another user’s device; iii) deliver the content back to the requesting host.  
In our view, the advantages of an ICN are: 

1. efficient content-routing. Even though today’s Content Delivery Networks 
(CDNs) offer efficient mechanisms to route contents, they cannot use network 
resources in an optimal way, because they operate over-the-top, i.e. without 
knowledge of the underlying network topology. ICN would let ISPs perform 
native content routing with improved reliability and scalability of content access. 
This would be a built-in facility of the network, unlike today’s CDNs; 

2. in-network caching. Caching enabled today by off-the-shelf HTTP transparent 
proxies requires performing stateful operations. The burden of a stateful 
processing makes it very expensive to deploy caches in nodes that handle a large 
number of user sessions. ICN would significantly improve efficiency, reliability 
and scalability of caching, especially for video [44]; 

3. simplified support for peer-to-peer like communications, without the need of 
overlay dedicated systems. Users could obtain desired contents from other users 
(or from caching nodes) thanks to content-routing and forward-by-name 
functionality, as it is done today with specialized applications, which, once again, 
do not have a full knowledge of the network and involve only a subset of possible 
users; 

4. simplified handling of mobile and multicast communications. As regards 
handovers, when a user changes point of attachment to the network, she will 
simply ask the next chunk of the content she is interested in, without the need of 
storing states; the next chunk could be provided by a different node than the one 
that it would have been used before the handover. Similar considerations apply for 
multicasting. Several users can request the same content and the network will 
provide the service, without the need of overlay mechanisms; 

5. content-oriented security model. Securing the content itself, instead of securing 
the communications channels, allows for a stronger, more flexible and 
customizable protection of content and of user privacy. In today’s network 
contents are protected by securing the channel (connection-based security) or the 
applications (application-based security). ICN would protect information at the 
source, in a more flexible and robust way than delegating this function to the 
channel or the applications [4]. In addition, this is a necessary requirement for an 
ICN: in-network caching requires to embed security information in the content 
data-unit, because content may arrive from any network or user node and we 
cannot trust all nodes; thus, end-users must be able to verify the validity of the 
received data; caching nodes must make the same check, to avoid caching fake 
contents; 

6. content-oriented quality of service differentiation (and possibly pricing); 
provision of different performance in terms of both transmission and caching. 
Network operators (especially mobile ones) are already trying to differentiate 
quality and priority of content, but they are forced to use deep packet inspection 



technologies. ICN would let operators differentiate the quality perceived by 
different services without complex, high-layer procedures [6], and off-load their 
networks via caching, a very handy functionality, particularly for mobile 
operators who can differentiate quality and priority of content transferred over the 
precious radio real estate; 

7. content-oriented access control, providing access to specific information items as 
a function of time, place (e.g. country), or profile of user requesting the item. This 
functionality also allows implementing: i) digital forgetting, to ensure that content 
generated at one period in a user’s life does not come back to haunt the user later 
on, ii) and garbage collection, deleting from the network expired information; 

8. possibility to create, deliver and consume contents in a modular and personalized 
way; 

9. network awareness of transferred content, allowing network operators to better 
control information and related revenues flows, favoring competition between 
operators in the inter-domain market and better balancing the equilibrium of 
power towards over the top players; 

10. support for time/space-decoupled model of communications, simplifying 
implementations of publish/subscribe service models and allowing “pieces” of 
network, or sets of devices to operate even when disconnected from the main 
Internet (e.g. sensors networks, ad-hoc networks, vehicle networks, social 
gatherings, mobile networks on board vehicles, trains, planes). This last point is 
maybe the most important one, especially to stimulate early take up of ICN in 
selected (and possibly isolated) environments. 

On the cons side, ICN has some drawbacks and challenges. A first, obvious, con is 
that it requires changes in the basic network operation. A second con is that it raises 
scalability concerns: i) the number of different contents and corresponding names is 
much bigger than the number of host addresses; this has implications on the size of 
routing tables and on the complexity of lookup functions; ii) in some proposed ICN 
architectures [3], delivering contents back to requesting users requires maintaining 
states in network nodes. 

In this paper, first we briefly describe the approach of the FP7 project 
CONVERGENCE [16] to ICN. Then, we discuss the needs on measurements required 
by ICN. ICN is significantly different with respect to the current networking 
architecture, and poses several new requirements to measurements, which have to be 
performed both in the current network, to understand some of its aspects useful for the 
design of ICN, and (experimentally) in the new one. The third and main part of the 
paper reports the results of specific measurements performed via simulations, and by 
using OneLab, an open, global research network that supports the development of 
new network services [18]. 

2 The CONVERGENCE project 

The CONVERGENCE project [16] has the aim of designing and evaluating an 
Information and Communication Technology (ICT) system based on a common and 



self-contained data unit. The ultimate goal of the CONVERGENCE system is to 
facilitate, enhance and make more efficient the access to and transaction of resources 
in networked environments. Resources can be media contents, data about services, or 
digital representation of real-world objects and people. All information required to 
attain this objective is embedded within the data unit, including signaling, control, and 
security information, minimizing the need of using external information or states 
stored outside the data unit itself (e.g., in network nodes). In the CONVERGENCE 
system, the basic unit of distribution and transaction is called Versatile Digital Item 
(VDI).  

We can describe the CONVERGENCE system, its features and its expected 
advantages in terms of four high level components, corresponding also to areas of 
work and research: the VDI, the applications, the middleware and the network (see 
Fig. 1).  

 

Fig. 1. CONVERGENCE System 



2.1 The unit of distribution and transaction 

The first area of work is the definition and standardization of a new fundamental 
unit of distribution and transaction, the VDI. The VDI is a general purpose container 
which can be used to describe and encapsulate, or make reference to, any kind of 
resource.  

The actual resource can either be physically embedded in the VDI or reside 
elsewhere and be referenced within the VDI. Resources can be not only classical 
media files (i.e. texts, pictures and movies), but also data about services, people and 
Real World Objects (RWOs) (e.g., items of merchandise identified with an RFID). 
VDIs bind together meta-information, which describe the resource, and the reference 
to the resource or the resource itself (audio, images, video, text, descriptors of RWOs, 
descriptors of People, other VDIs, etc.). The meta-data describing the VDI include: i) 
structural information, describing the content of the VDI; ii) security information (e.g. 
digital certificates) that enable a recipient to verify integrity and provenance of the 
resource, and allow legitimate users to decrypt the resource, if necessary; iii) rights 
information, defining rights to use the resource, and an expiry date for the resource, 
supporting “digital forgetting”.  

VDIs are identified by a unique identifier, which is translated (or which is 
identical) to the network-level name used to route the VDI. The basis for the 
definition and standardization of the VDI is the MPEG-21 Digital Item [19].  

The advantages of having a unique and standard unit of distribution and transaction 
are easy to understand and include the possibility of defining common mechanisms 
for handling structured bundles of different and complex information. The availability 
of these mechanisms will also provide new possibilities for integrating information 
about RWOs, services and people. Potential beneficiaries include e-auction sites such 
as E-Bay, location based services, such as “Friend Finder”, retail, logistic and goods 
handling companies. In addition, the combination within the same data unit of data 
and metadata will allow/simplify several important functionality, as it will be 
described in the following (e.g. searching functions and web engines operation). 

2.2 The applications 

The second area of work is the definition and implementation of tools and of 
applications, relevant to the needs of business and educational organizations 
participating in the project, and showing the CONVERGENCE potentiality. Tools are 
re-usable Application elements, which facilitate re-use of code in Applications; an 
Application can make use of several tools. Our tools and applications exploit the VDI 
concept and make use of our middleware and network functionality, so offering to 
end-users the advantages brought about by our system. 

The project designed and implemented four main applications to show the 
usefulness of CONVERGENCE in four real-life scenarios. The four scenarios are: (i) 
management of audiovisual material; (ii) management of a large photo archive; (iii) 
customer relationship management and logistics for the retailing sector; (iv) 
augmented lecture podcast service enabling a collaborative learning environment. 



Other two applications have been built later on by integrating the four main 
applications; the first integrated application merges the first (video) and fourth 
(podcasts) original applications; the second integrated application merges the second 
(pictures) and third (retail) original applications. The aim of the integrated 
applications is to show that our system is flexible enough to combine different 
applications in one and to exploit common VDIs. 

The advantages of our tools and applications include: i) the provision of basic, 
easy-to-use functionality to applications developers; ii) the solution of specific needs 
of consortium partners; iii) the possibility of running real world trials to test the 
system, and the provision of a basis for future commercial exploitation. 

2.3 The Middleware 

The third area of work is the definition and standardization of a new open source, 
extensible, middleware. The CONVERGENCE system supports some sophisticated 
functionalities (publish/subscribe services, searching functions, security functions), 
which we think are too complex to be implemented at the network layer, inside 
routers. Thus, we decided to implement them in a subset of nodes and at the 
middleware layer.  

A first important task of the CONVERGENCE Middleware (CoMid) is the support 
of a publish/subscribe service model: subscribers register their interest in a resource 
and are asynchronously notified when publishers make available resources that match 
their interests. Matching between subscription and publications is based on attributes 
contained in the VDIs of published resources and on conditions specified in the 
subscriptions. Publish/subscribe differs from the more traditional request-response 
service model in a number of ways; the interacting parties do not need to “know” each 
other. Also, they do not need to know how many subscribers will consume the data 
they have produced. Publishers and subscribers do not need to interact directly: data 
consumers will receive the desired data when they will be produced by publishers; 
publishers do not have to care or check or wait that subscribers consume the data they 
have produced.  

Thus, publish/subscribe effectively decouples the application end-points in space 
and time. This decoupling of publishers and subscribers offers a much enlarged and 
flexible typology of services. For these characteristics, publish/subscribe is well 
suited for disseminating data to a wide and dynamic audience.  

The data unit of the CoMid is the VDI.  
In practical terms, resource providers using CONVERGENCE will publish VDIs 

to the middleware, making the middleware aware of the characteristics of the 
resources of such VDIs. Such awareness enables consumers to subscribe to and 
receive updates (notifications) both for known resources (e.g. the repair manual for a 
piece of equipment) or for resources satisfying a given search criteria.  

For instance, Alice may be interested in receiving offers for a model of camera she 
wishes to buy. Alice issues a subscription to the CONVERGENCE middleware 
describing the camera. When a reseller publishes an offer that matches the request of 
Alice, she will receive such offers by the middleware. Alice will receive the offers 



asynchronously, i.e. when connected to the pub-sub system, independently of the 
connection status of the publisher. Offers are carried by VDIs and, in this scenario, 
the resource in the VDI could be a web-page where Alice can buy the camera.  

It is important to observe that not all CONVERGENCE communications must 
necessarily use a publish/subscribe paradigm. The CONVERGENCE middleware also 
accepts direct requests to immediately provide specific requested data, with a 
traditional request-response service model. 

A second important task of the CoMid is to support searches, including semantic 
searches (see [20] for further details on this CONVERGENCE feature). 

A third important task of the CoMid is the provision of security mechanisms for: i) 
assurance of VDI integrity and provenance (i.e., authenticity of the source); ii) 
governance of VDI access restrictions and confidentiality; iii) issuing and 
enforcement of licenses; iv) protection of user privacy. 

Our CoMid implements the tasks listed above, providing the following overall 
advantages:  

 Dynamicity of VDIs. The information exchanged between providers and 
consumers is increasingly volatile. Our CoMid allows producers of information to 
update the information they have released and consumers to check if a digital 
resource is up to date, to request an update, and to select between several versions 
of the same item. 

 Privacy and security information built into the VDI. This feature avoids the need to 
delegate privacy and security to applications or to transfer protocols, and ensures 
that VDIs are genuinely trustworthy. Protecting information at the source is more 
flexible and robust than delegating this function to applications, or securing only 
the communications channels. 

 Support for “digital forgetting”. Our CoMid provides mechanisms allowing users 
to “unpublish” VDIs and/or to define expiry dates for specific items of 
information. This ensures that content generated at one period in a user’s life does 
not come back to haunt the user late. Such mechanisms allow sites and services to 
perform automatic garbage collection, deleting expired information. 

 Incorporation of multimedia standards and Semantic Web technologies in VDIs 
provides a homogeneous way of searching and handling structured information.  

 CoMid provides interfaces to manipulate VDIs, together with standard mechanisms 
for producing, managing and linking VDIs with the corresponding metadata. 
Characteristic examples of these mechanisms include content protection, rights 
management and event reporting. This facilitates the production and distribution of 
content in a uniform, interoperable way, compliant to MPEG-M [21] and MPEG 
21 [19] standards. 

 CoMid provides users with a global identifier for their work (the VDI identifier). 

2.4 The Network: Information-Centric Networking 

The fourth area of work is the definition and standardization of a new networking 
functionality. The middleware, implemented in a subset of all network nodes, needs to 



transfer data (i.e., VDIs) for its own purposes and at the service of applications. 
Furthermore, applications need to fetch digital resources described by the VDI.  

This functionality could be provided by means of standard TCP/IP means. 
Instead, CONVERGENCE has taken an alternative approach, which is more 

consistent with the use of a common and self-contained data unit at the application 
and middleware level.  

The chosen approach is Information Centric Networking (ICN), briefly described 
in the Introduction. Our CoNet defines its own data unit at the network layer, called 
CONET Information Units (CIUs): interest CIUs convey requests of named-data (e.g. 
a VDI); named-data CIUs transport chunks of named-data. Named-data is any digital 
object, uniquely identified by the network with a name (i.e. a string). A named-data 
can be a VDI or the actual resource referenced to by the VDI. For instance, in Fig. 1 
we have both cases: the VDI of text1 of cnn.com, and the actual text1 file of cnn.com. 
At the network-level, both are named-data; the former is identified by the string 
“cnn.com/VDI/text1”, the latter by the string “cnn.com/ text1”. 

We identified eight fundamental issues that need to be addressed to design an ICN 
infrastructure: 

1. Primitives & interfaces, which define the relationship of the ICN protocols with the 
overall architecture. 

2. The naming scheme, which specifies the identifiers for the data units (CIUs) 
addressed by the ICN. 

3. The route-by-name mechanism, used by ICN nodes to relay an incoming CIU to an 
output interface. The output interface is chosen by looking up a “name-based” 
forwarding table. 

4. The routing protocols used to disseminate information about location of CIUs, so 
as to properly setup the name-based forwarding tables. 

5. The data forwarding mechanism that allows CIUS to be sent back to the device that 
issued a CIU request. Data forwarding cannot use the forward-by-name 
mechanisms, because, typically, devices/interfaces are not addressed by the content 
routing plane of an ICN. 

6. In-network caching, which concerns the ability of ICN nodes to cache CIUs and to 
reply to incoming CIUs requests. 

7. Segmentation & transport mechanisms (see e.g. [9]) needed to: 1) split a whole 
content (e.g. a VDI) in different CIUs (or chunks); each CIU is an autonomous data 
unit with embedded security and addressable by the routing plane; ii) ensure a 
reliable transfer of CIUs from the origin node (or from a cache node) towards the 
requesting node; iii) counteract congestion. 

8. Security & privacy issues tackling (at least) three specific aspects: 1) how to 
guarantee content authenticity and protect the network from fake content, which 
could also pollute network caches; 2) how to guarantee that content be accessed 
only by intended end users, and 3) how to protect information consumers from 
profiling or censorship of their requests. 



Finally, the network should complement mechanisms provided by the Middleware 
for the support of the “digital forgetting” and garbage collection functionality. For 
instance, the network should not forward content whose expiry date is terminated. 

The Convergence Network (CoNet) is designed according to these principles. 
The advantages of ICN in general and of our CoNet in particular are described in 

the Introduction. 

3 Measurements needs in an ICN 

The measurement needs in an ICN are virtually endless, as designing an ICN is 
equivalent to devising a new Internet. Thus, claiming to address this issue in a single 
paper would be pretentious. However, the study on ICN is in its initial stage and we 
want to focus on some of the most pressing and specific performance aspects of ICN, 
namely the scalability of its naming and routing functionality. This study is necessary 
to assess the feasibility of ICN, before addressing other metrics of interest.  

Once the theoretical feasibility of ICN is demonstrated, one could go and study the 
performance of the other fundamental functionalities, which we listed in the previous 
section, and to assess the advantages of ICN, as identified in the introduction. 

Thus, in this paper, we focus on measurement issues regarding the scalability of 
routing-by-name functions, assuming that the ICN is used to fetch current Web 
contents. 

4 Routing-by-name 

In this Section, we briefly recall our reference model [7], and our Lookup-and-
Cache solution [10][22], which implements the routing-by-name functionality.  

4.1 Reference model 

ICN nodes (see Fig. 2) are interconnected by “sub-systems” [7]. Sub-systems use 
an underlying technology to connect ICN nodes and can be implemented in several 
different ways. For instance, a sub-system could be a public or private IP network, an 
overlay UDP/IP link, a layer-2 network, a PPP link, etc. This is the same concept used 
in current IP networks, in which different layer 2 technologies connect IP hosts and 
routers. Nodes can be: ICN end-nodes (or clients) that download contents; ICN 
serving-nodes (or servers) that provide contents and ICN nodes that relay ICN data-
units between sub-systems, which may also cache data. 

To provide a content, a server splits the content in blocks of data, named chunks, 
and assigns a unique network identifier to each chunks. A network identifier is a 
string like “cnn.com/text1.txt/chunk1”, which is said to be the “name” of the chunk. 

In the CONVERGENCE system, the name could be equal to the VDI identifier or 
derived from it. 



The role of the ICN protocols is to discovery and deliver named chunk. In order to 
fetch a chunk, a user issues a data unit, named Interest message, which contains the 
name of the chunk. ICN nodes route-by-name the Interest message, by using a longest 
prefix matching forwarding strategy and a name-based routing table. We name the 
entries of the name-based routing table ICN routes. An ICN route has a format like: 

<name-prefix, next hop > 

A name-prefix should be either the full name of a chunk, e.g. 
“cnn.com/text1.txt/chunk1”, or a continuous part of it, starting from the first left 
character e.g. “cnn.com/”. 

 

Fig. 2. Network model 

The first “en-route” device, be it an intermediate node or the end-server, that has 
the chunk sends it back within a data unit, named Data message, which includes the 
chunk name. Network nodes forward the Data message towards the requesting client, 
through the same sequence of ICN nodes previously traversed by the Interest 
message. These nodes may store the Data in their cache, so as to provide a so-called 
en-route1, in-network, caching service. The Data forwarding process exploits reverse-
path information either temporary stored in the traversed nodes during the Interest 
forwarding process (see Pending Interest Table of [3]), or contained in the header of 
Data message, and previously collected in the Interest message during its forwarding 

                                                           
1  We point out that en-route caching does not have an impact on the routing plane. Indeed the 

routing-plane only routes-by-name requests toward servers. Conversely, in case of off-route 
caching, the routing-plane should route-by-name requests towards cached contents. The 
temporal dynamics of these additional “caching routes” is a function of the lifespan of 
contents in caches, which could be very short. This could cause an excessive routing traffic 
and processing load. For this reason, an Information Centric Network typically adopts only 
en-route caching. 



process (see reverse-path source-routing in [7]). Therefore, the routing-by-name 
process does not involve Data messages, but only Interest messages  

Downloading a whole content is achieved by sending a flow of Interest messages to 
retrieve all the chunks of the content. The sending rate of Interest message is 
regulated by a receiver-centric congestion control mechanism [23][9], which could be 
based on the same logic used by TCP. Therefore, in our ICN model, we have 
endpoints that exchange Interest-Data sequences and the message exchange rate is 
regulated by the receiver. Dually, in TCP/IP the endpoints exchange Segment-Ack 
sequences and the exchange is regulated by the sender. 

As regards the naming scheme, several proposals (e.g. [2][3][4][24]) agree in 
adopting a hierarchical naming. In this paper, we assume a rather general hierarchical 
naming scheme where a name is formed by a sequence of Components; i.e. a name 
has the form “Component_1/Component_2/../Component_n”. This scheme supports 
current Web URL, where the Component_1 is the domain name (e.g., “cnn.com”) and 
next Components represent the path of the local resource (e.g., /text1.txt). In addition 
to these Components, which represent the content-name, ICN requires other specific 
Components, e.g. to represent the chunk number (“/chunk1”), version, etc. The full 
sequence of Components is referred to as the chunk-name. 

As said before, in this paper we focus on a scenario in which the ICN is used to 
distribute current Web contents and Web servers are replaced by ICN servers. 
Usually, a Web server provides all contents whose URLs have the same domain-
name, e.g. “cnn.com”. Therefore, we assume that an ICN sever provides all contents 
whose names have the same Component_1, which is equal to the domain-name. In 
this scenario, we argue that the minimal set of routing information needed to route-
by-name contents offered by ICN servers depends on the number of domain-names, 
rather than on the number of content-names or chunk-names. Hence, the name-prefix 
of an ICN route is a domain-name and, therefore, the number of ICN routes that a 
node of the default-free-zone should handle is in the order of the current domain-
names, i.e. 2 108; we assume 109 to have some margins [10][22].  

We remark that these conclusions are dependent on the assumptions stated above. 
Changing the assumption would change the results. For example: i) using a “flat” 

non-hierarchical naming the number of ICN routes would be higher and likely close 
to the number of content-names, i.e. 1011; ii) if we allow more than one route per 
name-prefix, e.g. for routing redundancy or multi-homing purposes, the number of 
ICN routes would be higher than 109; iii) nodes that have a default route, e.g. 
corresponding to a tier-2 or a tier-3 node of the current Internet, would have a number 
of ICN routes much lower than 109, and so forth. 

4.2 Lookup-and-Cache routing architecture 

The routing-by-name of Interest messages is very similar to the routing of IP 
packets but, in place of IP-prefixes, the routing-by-name procedure uses name-
prefixes, which, in our “fetching web contents” scenario are domain-names. 



Consequently, it is worth analyzing the feasibility of reusing the architecture of an IP 
router for an ICN node.  

A typical router is composed of three major components: one or two routing 
engines, line cards that host a forwarding engine and a switch fabric. The routing 
engine handles the routing protocols and stores the routes in a routing table, named 
Routing Information Base (RIB). In general, the RIB contains several routes to the 
same destination and it is implemented by means of cheap and slow memories such as 
DRAM. The forwarding engine of a line card receives incoming packets and selects 
the output line card by looking up an on-board routing table, which is named 
Forwarding Information Base (FIB) [25][26]. The FIB contains one route per 
destination, and therefore a smaller number of routes than the RIB. To support packet 
forwarding at line rate, the forwarding process is carried out by dedicated ASIC chips 
and the FIB is implemented with fast memories, such as SRAM or TCAM. These 
memories are expensive, consume a lot of power, and do not follow Moore's Law 
[27]. After the selection of the output interface, the forwarding engine injects the 
packet in the switching fabric. The switching fabric is (at least conceptually) an NxN 
non-blocking crossbar where N is the number of line cards.  

If we want to reuse this architecture to route-by-name ICN Interest messages, we 
should store ICN routes in the FIB and RIB, and properly update the routing and 
forwarding logics. Hence, a fundamental check is to verify the practical feasibility of 
storing all required routes in a FIB and in a RIB. As regards the FIB, the maximum 
size of a SRAM chip is today 32 MByte [28]. Assuming that an ICN routing entry is 
45 bytes long [2], the number of routing entries storable in a FIB is in the order of 106 

(i.e. 32MB/45B). In the previous section we estimated that an ICN node should 
handle 109 routes and thus current FIB technology cannot store the whole set of ICN 
routes.  

Let us now analyze the RIB issue. As in IP, the RIB would contain more than one 
route per name-prefix; this redundancy mainly depending on the peering relationships 
among Autonomous Systems. For instance, current BGP data obtained from the 
AS6447 node [29] show that, on average, its RIB contains 31 routes per destination. 
As a consequence, we assume that the RIB of an ICN node should handle a number of 
routes in the order to 1010, i.e. one order of magnitude greater than the number of 
name-prefixes. In this case, the RIB would require hundreds of Gbytes (i.e., 1010 

*45B) of DRAM memory and a motherboards with hundreds of memory slots. 
Current DRAM chips are of 4 GB and motherboards of “expensive” carrier-grade IP 
routers can host up to 4 memory slot [30][31]. This means that the required increase 
of capacity is in the order of 102. We can conclude that supplying each network node 
with a motherboard with hundreds of memory slots would dramatically increase the 
deployment cost of an ICN network, with respect to an IP network.  

In order to cope with the capacity issue of the FIB and with the cost issue of the 
RIB, we propose a Lookup-and-Cache routing architecture. In our solution, we use 
the FIB of a Forwarding Engine as a route cache and deploy a centralized routing 
engine, that runs on a server named Name Routing System (NRS), which logically 
serves all the ICN nodes of a sub-system. Fig. 3 reports an example of Lookup-and-
Cache operations. Node N receives an Interest message for 



“ccn.com/text1.txt/chunk1”. Since the FIB lacks the related route, the node 
temporarily queues the Interest message, lookups the route in a remote RIB, gets the 
routing information and stores it in the FIB, and then it can forward the Interest 
message. In what follows, we discuss the rationale underlying the Lookup-and-Cache 
architecture. 

4.2.1 FIB as a route cache.  
It is well-known that the relative frequency with which Web contents are requested 

follows the Zipf’s law [32] and that there is a time and space locality of Web content 
interests. Therefore, a large number of flows of Interest messages that an ICN node 
should concurrently route-by-name refer to a small set of contents and, more 
important, these flows use an even much smaller set of ICN routes, since ICN routes 
address domain-names rather than single contents. In Section 5, we show that the set 
of these active-routes can be comfortably stored in a SRAM memory. Therefore, we 
propose to use the FIB as a route cache, which should contain, at least, the entire set 
of active-routes. When the FIB lacks a route, the node lookups the route in a “remote” 
RIB and then caches the route in its FIB. When all FIB rows are filled in, new routing 
entries may substitute old ones, according to a specific route replacement algorithm. 
Furthermore, a routing entry could be removed or updated by a FIB-RIB consistency 
mechanism [22]. 

 
 

Fig. 3. Lookup-and-Cache concept 

4.2.2 Centralized Routing Engine 
All ICN routes are contained in the RIB of a Routing Engine, which logically 

serves all the ICN nodes of a sub-system and runs on a centralized server, named 
Name Routing System (NRS) node. Thus, the cost of an expensive Routing Engine is 
taken for only one network device, rather than for all network nodes. Of course, the 
DRAM memory of the NRS node must be able to contain all the ICN routes of all the 
ICN nodes that it serves. A single NRS node may also serve more than one sub-



system; for instance all sub-systems administered by the same company (e.g. a whole 
autonomous system).  

Since many Interest flows use a small set of active-routes, the temporal dynamics 
of active-routes is slower than the flow dynamics. Indeed, a route is used for a period 
of time that is greater or equal than/to the duration of a single flow. This limits the 
lookup rate that a centralized Routing Engine should deal with and, in Section 5, we 
show that this rate is easily supported by current technologies. 

So far we have described the “data-plane” of our Lookup-and-Cache architecture, 
i.e. the procedures carried out to forward ICN messages. In addition to the data-plane, 
the Lookup-and-Cache architecture (as the IP one) needs “routing-plane” procedures 
that run on NRS nodes and whose goal is to setup the RIBs. The routing-plane is out 
of the scope of this paper; anyhow we point out that our architecture does not impose 
a specific routing-protocol. For instance, we can support both name-based version of 
BGP, as suggested in [3], or DONA [2], where the DONA Resolution Handler (RH) 
has the same function of the NRS node. We conclude by observing that, as it occurs 
in the current Internet for BGP messages, the ICN nodes should give highest priority 
to routing signaling messages (e.g., lookup and routing messages), to limit the number 
of failed communication attempts and the delay. 

4.2.3 Route replacement algorithm 
When a node receives an Interest message for a given content and it is not possible to 
find a matching route in the FIB, we have a route-cache-miss event. In this case: i) if 
the FIB is not full, the node performs a lookup in the remote RIB and stores the new 
route in the FIB; ii) the forwarding of the Interest messages is subject to a route-
lookup delay. When the FIB is full, the insertion of a new route implies the 
replacement of an old route. In this case, a route replacement algorithm decides 
whether to lookup the new route or not. In the first case it also decides which old 
route has to be replaced. In the second case, the Interest message is dropped and 
subsequently retransmitted by transport level mechanisms. 
An inefficient design of the route replacement algorithm would result in an excessive 
rate of route lookups, with a consequent worsening of delay performance (as more 
Interest messages will be subject to the route-lookup delay) and an increase of the 
load of the NRS node. To mitigate these inconveniences, it would be desirable to 
replace inactive routes. Consequently, the design of the route replacement algorithm 
aims at solving two problems: first, how to identify inactive routes and, second, how 
to behave in case of FIB overload, i.e. when there are no inactive routes and a new 
route needs to be added in the FIB.  
In [10][22] we proposed a route replacement algorithm, which assumes that each 
route contained in the FIB has an inactivity time out (ITO), after which the route is 
considered inactive; its performance are compared with the Least Recently Used 
(LRU) policy [43]. Results show that, if the FIB size is over dimensioned and the FIB 
operates in an unloaded condition, the least recently used route is likely inactive; 
hence the simple LRU works well, as the more complex ITO. If the FIB size is under 
dimensioned and the FIB works in overload condition, ITO overcomes LRU as LRU 
causes an in/out flapping of routes from the FIB. 



5 Feasibility check 

In this section we show that our architecture is feasible by using currently available 
technology. To this end we verify that: i) the capacity provided by current FIB 
technology is enough to store the expected number of active-routes; ii) the route 
lookup rate can be supported by current database technology. 

On a given node and at a given time, an ICN route is “active” if there is at least one 
flow of Interest messages using that route. This concept is sketched in Fig. 4, where 
there are 3 flows of Interest messages toward “cnn.com”. The route toward “cnn.com” 
becomes active at the start of the first flow and becomes inactive at the end of the last 
flow. In Fig. 4 there is also a single flow of Interests for “bbc.com”, thus the related 
route activity has the same duration of the flow.  

In the current Internet, a client sends TCP ACK and receives TCP segments from 
the Web server. In an ICN, a client sends Interest messages and receives Data 
messages from the ICN server, or from an en-route cache. So, if a client used the ICN 
to download Web contents, then the traditional flows of TCP ACK messages would 
be replaced by a flow of Interest messages. Furthermore, on the base of our 
hierarchical naming assumption, the couple <IP destination address, destination Port> 
contained in TCP ACK messages would be replaced, in Interest messages, by a 
chunk-name that contains the domain-name of the destination Web server.  

For instance, assume that in the current Internet a host sends an HTTP request 
towards the domain name “cnn.com”. The domain name “cnn.com” will be translated 
by DNS into an IP address, e.g. 157.166.226.25, a request will be sent to this address 
and then the data will be directed from 157.166.226.25:80 towards the requesting 
host, while a flow of TCP ACKs will be directed by the client to 157.166.226.25:80. 
In the proposed ICN scenario the flow of TCP ACKs would be replaced by a flow of 
Interest messages for chunks, whose names contain the “cnn.com” name-prefix. 

 

Fig. 4. Flows and active-routes 
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Using such a mapping between the flow of TCP ACKs and the flow of ICN Interests, 
we could use current Internet traces to assess the feasibility of ICN. We could replace 
each ACK of an Internet trace with an Interest message, thus creating a would-be ICN 
trace. Unfortunately, IP traces usually have anonymized IP addresses, which do not 
include the domain-names of HTTP GET messages. Hence, we cannot derive the 
domain-names to be used for the conversion from TCP ACKs to Interest messages, by 
using such anonymized traces. 
To circumvent this problem, we use a simulation approach to associate a domain-
name to a flow of TCP ACKs directed towards an anonymized IP address. 
The simulation model is depicted in Fig. 5. Briefly, for a given anonymous trace, we 
randomly associate the web servers’ anonymous IP addresses of the trace to a set of 
public IP addresses, derived (as described below) from the 1 million most used 
domain-names [33]. Then, we associate each anonymous flow of the trace to a 
domain-name, randomly extracted among those domain-names that have the public IP 
address associated with the web server’s anonymous IP address of the flow. 

 

Fig. 5. Simulation model to associate an anonymous IP address to an actual domain-name 

More in details, the simulation model is formed by three phases, as follows: 
Phase-1: data structures setup 

1. we collect the top 1 million domain-names in a list named {DN}; 
2. for each domain-name DNi, we model its occurrence probability opDNi in an 

Internet trace as a function of its rank position, and according to a Zipf’s law. 
Following the results of [34] we set the value of the Zipf alpha parameter to 1(2); 

                                                           
2 We remind that we are considering the occurrence distribution of domain-names, rather than 

that of specific contents, and that the parameter alpha of the domain-name Zipf [34] is great-
er than the one of the content Zipf [32] (e.g, 0.6, 0.8). 



3. we resolve the list {PubIP} of public IP addresses associated to each domain-
name( 3 ) (from a machine located in the campus of University of Rome Tor 
Vergata); 

4. for each element PubIPi, we compute its occurrence probability opPubIPi as the 
sum of the occurrence probability opDNj of the domain-names that use the IP 
address PubIPi ; 

5. from the anonymized trace, we extract the list {AnIP} of unique anonymized IP 
addresses of web servers; 

6. for each element AnIPi , we compute its occurrence probability opAnIPi as the ratio 
between the number of HTTP flows that have AnIPi as destination address and the 
total number of HTTP flows of the trace.  

Phase-2: Random association of anonymous IP addresses to public IP addresses  

7. since the number of public IP addresses {PubIP} is in the order of 580k while the 
number of anonymous IP addresses of our trace is lower, we randomly extract a 
subset of public IP addresses, by using their occurrence probability {opPubIP}. 
We refer to this restricted set as {rPubIP}; 

8. we map, one-to-one, elements of {AnIP} to elements of {rPubIP}. We 
preventively sorted the elements of {AnIP} and of {rPubIP} on the base of the 
occurrence probabilities of their elements. Consequently, the element of AnIPk 
with rank k in terms of occurrence probability is mapped to the element rPubIPk 
that has the same rank. 

Phase-3: Random association of anonymous flows to domain-names 

9. for each flow of the trace, we map its destination anonymous IP address AnIPi, to 
the public address rPubIPi and we randomly associate to it a domain-name 
randomly extracted among the ones that use rPubIPi . The extraction is properly 
weighted by the occurrence probability opDNi. 

Since each flow has now an associated domain-name, we can convert the TCP ACKs 
of a flow in Interest messages, and evaluate the average number of ICN active-routes 
and the average active-route inter-arrival time by using real Internet trace. Results are 
reported in Table 1. The Equinix-sanjose-* and Equinix-chicago-* traces [35] are 
captured on a 10 GigE interfaces of a tier-1 ISP. The Mawi-* traces [36] are captured 
on a trans-Pacific line operating at 150 Mbit/sec. The Rome-Tor-Vergata trace is 
captured on the 1 GigE interface of the router gateway of our University [37], which 
is a tier-3 network. Even in the worst case of the Equinix-sanjose-dirA trace, the 
average number of active-routes is in the order of 103; this value is much lower (by a 
factor of 103) than the capacity provided by an off-the-shelf SRAM based FIB, i.e. 106 

ICN routing entries, as discussed in Section 4.2. 
 

                                                           
3 Since the same IP address may serve several domain-names, the number of unique elements 

of {PubIP} is lower than the length of {DN}. In our case the ratio between the length of 
{DN} and the number of unique elements of {PubIP} is equal to about 1.7. 



Trace id Average value of ICN 
active-routes (Nicn) 

Average ICN active-
routes inter-arrival (Iicn) 

Equinix-sanjose-dirA 4680 0.5 ms 
Equinix-sanjose-dirB 1782 1.1 ms 
Equinix-chicago-dirB 1576 1.2 ms 
Mawi-1 250 4.5 ms 
Mawi-2 267 3.3 ms 
Rome-Tor-Vergata 185 5.6 ms 

Table 1. Average number of active routes and inter-arrival times 

Let us now investigate if current database technology can support the required lookup 
rate. Table 1 reports that the average inter-arrival time between the starts of two 
consecutive active-routes is in the order of half a millisecond, for the worst trace. 
When the FIB memory is dimensioned for containing all active-routes, the inverse of 
the active-routes inter-arrival time is an upper bound of the lookup rate. Indeed, we 
need a lookup at the start of the route activity only if that route is not already cached 
in the FIB. Therefore, an average active-route inter-arrival time in the order of 0.5 ms 
implies a lookup rate in the order of 2000 lookups per second, in the worst case. This 
value is easily achievable with current database technology. For instance, we have 
implemented an NRS node with a Bind9 server, running on an old Linux laptop with 
an Intel Pentium Processor M at 1.4 Ghz, and we measured a sustainable rate of about 
15 000 lookups per second. 
We also evaluated the number of active-routes versus time for the Equinix-sanjose-
dirA trace (Fig. 6). The number of active-routes has a limited variation around its 
average value. This simplifies the dimensioning of the FIB size, which can be set 
close to the observed mean, without requiring a large margin. 

 

Fig. 6. Number of active-routes for the Equinix-sanjose-dirA trace 



Finally, we investigated the effectiveness of FIB over-provisioning, to reduce the 
lookup rate. A FIB is said to be over-provisioned, when it has a capacity significantly 
greater than then average number of expected active-routes. For this analysis we used 
an ideal route replacement policy that randomly replaces inactive-routes. Fig. 7 shows 
the resulting lookup rate vs. the FIB size for the Equinix-sanjose-dirA trace; we 
observe a significant reduction of the lookup rate as the FIB size increases. 

 

Fig. 7. Lookup rate versus FIB size for the Equinix-sanjose-dirA trace 

6 Experiments on OneLab 

In this section we show the functionality of Lookup and Cache architecture and 
evaluate its main performance by using the OneLab test-bed facility [18]. 
Specifically, we use 20 devices, located in different countries and belonging to the 
PlanetLab Europe network [18]. We implemented our Lookup-and-Cache architecture 
with a software package, mainly composed of a modified version of CCNx 0.5.0 [38] 
and a Java-based implementation of the NRS node. All the software is available in 
[39]. For the FIB replacement algorithm, we used LRU [43]. 

We analyzed the case of an ICN network formed by 19 ICN nodes and by a single 
centralized NRS node. The network topology is shown in Fig. 8, where each ICN 
node is marked with the country code of the supporting PlanetLab device. The NRS is 
located in Ireland. The connectivity graph of the network resembles a subset of the 
Pan-European GEANT research network [40]. 

As shown in the figure for the IE node, we assume that each ICN node serves a 
sub-system, containing ICN clients and ICN servers. Furthermore, each ICN node is 
connected with its neighbors by means of an overlay UDP/IP link. We setup this 
overlay network by properly configuring the next hop of the ICN routing tables. For 
instance, the ICN routing table of the IE node has the UK node as next-hop for any 



content, with the exclusion of contents published by the ICN server handled by the IE 
device.  

This scenario may represent, for instance, the case of a single Autonomous System 
that uses ICN technology to exchange contents located in internal servers and, to this 
aim, deploys 19 ICN nodes/sub-systems, whose routing-by-name function is 
controlled by a centralized NRS device. To simplify the test-bed, we virtualize all the 
ICN servers and ICN clients contained in an ICN sub-system by using only one client 
and only one server, both contained in the PlanetLab device that hosts the ICN node 
of the sub-system. Therefore, each PlanetLab device of Fig. 8 (excluding the NRS) 
has the role of ICN client, ICN server and ICN node. 

 

Fig. 8. ICN topology implemented on PlanetLab 

Each ICN server handles 20 unique domain-names and, for each domain name, it 
publishes 5 contents of 500kB. For instance, a server that handles the domain-name 
www.cnn.com, publishes the contents www.cnn.com/text1.txt, 
www.cnn.com/text2.txt, ... , www.cnn.com/text5.txt. Therefore, in the whole network 
we have 380 domain-names, i.e. ICN routes, and 1900 contents (231800 chunks), 
uniformly distributed among network nodes. Each client generates 300 requests of 
contents with an inter-arrival time that follows a negative exponential distribution, 
with average 4s. To select a content, a client first chooses the domain-name according 
to a Zipf distribution with alpha=1 [34], then it randomly singles out one of the 5 
contents associated to the selected domain-name.  

The NRS node contains the ICN routes of all 380 domain-names, for all 19 ICN 
nodes. To compute the ICN routes, the NRS node uses a shortest path routing on the 
topology depicted in Fig. 8. For instance, a content request issued by the ES node for 
a content stored in the UK node is routed-by-name on the path: ES-CH-FR-UK. 



ICN nodes do not use default routes, even though this could be possible in case of 
leaf nodes, for instance the IE one. Therefore, each time that a node has to forward an 
Interest message, if it does not have the related route in its FIB, it has to lookup-and-
cache that route, by querying the NRS node.  

The queries to the NRS node use a direct UDP/IP connection (not reported in the 
figure) between the ICN node and the NRS node. Therefore, the signaling traffic 
between ICN nodes and NRS is not routed-by-name on the ICN topology of Fig. 8, 
but it is transferred by using underlying, traditional, IP means. As a future work, we 
will support also NRS queries with ICN means, as proposed in [10]. 

To conclude the description of the test-bed, we remind that, in addition to the FIB 
memory that we use as a cache of routes, an ICN node has a storage space used as a 
cache of content-chunks (i.e., a cache of network layer data units, CIUs) to implement 
the in-network caching functionality discussed in the introduction (second advantage, 
in-network caching). In our ICN nodes, we use the default CCNx content cache 
replacement algorithm, i.e. FIFO. 

Fig. 9 shows the average download time versus the FIB size, comparing the case of 
nodes without content cache and the case of nodes with a content cache; the content 
cache size is equal to 10% of the total number of published chunks. The x-axis 
includes also an out-of-scale point, representative of a full preloaded FIB (labeled 
“Full-FIB”) where, for each node, we use an unlimited FIB, pre-loaded with all ICN 
routes that the node could use. This measurement allows highlighting the worsening 
of performance deriving from the use of a limited FIB as a cache of routes and from 
the use of a centralized remote RIB. 

 

Fig. 9. Average download time versus FIB size 

As expected, as the FIB size increase, the performance tends to the full-FIB case, 
while caching contents leads to a decrease of the download time as some chunks are 
delivered by the cache of nearby nodes, rather than from far away servers. 



If we look at the curve representing the no content cache case, the download time 
decreases of about 600 ms, when the FIB size increases from 50 to the full-FIB case. 
We argue that this delay is due to the connectivity/processing delay brought about by 
the NRS node. This lookup delay (in the worst case equal to about 350 ms) would not 
occur if the traffic from/to the NRS had priority on the other user traffic and if the 
NRS were implemented by using a suitable powerful hardware. 

Fig. 10 shows the number of lookups per second, measured at the NRS node, 
versus the FIB size. As measured in real Internet traces (see Fig. 7), also in the 
OneLab test-bed we obtain a significant reduction of the lookup rate by increasing the 
FIB size.  

However, we have been surprised to see that the in-network caching of contents 
has a small impact on the lookup rate. We expected that the reduction of the average 
path length brought about by in-network content would have lowered the number of 
nodes involved in transferring a content, and the number of NRS lookups.  

Thus, we analyzed the ICN network traffic, and found out that a content caching 
strategy based on chunks, like the one we (and CCNx) are using, may reduce the 
potential benefit of in-network content caching on the lookup rate. 

In fact, even though the probability of finding a single chunk in the cache may be 
high, the probability of finding all the chunks of a given content (122 in our 
workload) in the cache is rather small. If only a single chunk of a complete content is 
not found in a cache of a node, that node will require to forward the Interest message 
and this may produce an NRS lookup. The same situation may occur if no chunk is 
stored in the content cache of the node; when the first Interest message is received, 
the node may perform an NRS lookup and cache the ICN route in the FIB. The FIB 
will then be used to forward other Interest for other chunks of that content. Thus, in 
both cases of single-chunk-cache-miss and no-chunk-in-the-cache a single lookup 
may be executed. This explains the low impact of content caching on the lookup rate. 

This result suggests a future work consisting in analyzing in-network content 
caching mechanisms that cache the whole content, rather than chunks of it. 

Fig. 11 shows the amount of total traffic exchanged by ICN nodes during the test, 
versus the size of the content cache size of the nodes, in case of a FIB size equal to 
100. As already stated in [24], we find out that the increase of the content cache size 
yields a decrease of the network traffic that eventually follows a logarithmic decay. 
This logarithmic behavior implies that the en-route caching technique has a benefit-
to-cost ratio that is good for small caches, whose lookup table can be implemented 
with off-the-shelf hardware. Conversely, if we want to deploy very big caches, not 
only are they very expensive, but the performance improvement is relatively small. A 
way to further reduce traffic is to complement en-route caching with pre-fetching 
techniques, à la CDN. 



 

Fig. 10. Lookup rate measured at the NRS node versus FIB size 

 

Fig. 11. Total network traffic versus content-cache size, in case of a FIB size equal to 100 

7 Conclusions 

The Information Centric Networking paradigm poses several technical challenges. 
Among them, an important one concerns the scalability of its, distinctive, routing-by-
name functionality. To evaluate the scalability of routing we must consider two 
different issues. The first one concerns the size of the routing tables; the second one 
concerns the rate of routing message updates [45].  



In this paper we presented a proposal for a Lookup-and-cache architecture, which 
copes with the first scalability issue. The design of an ICN routing protocol that limits 
the rate of routing messages remains an "orthogonal", open issue, which we leave to 
further studies. Indeed, our Lookup-and-Cache architecture does not impose the use 
of a specific ICN routing protocol to exchange routing entries among NRS nodes. For 
instance name-based versions of BGP [41] or OSPF [42] could be viable candidates. 

We used simulations and experiments over OneLab: i) to show that our Lookup 
and Cache architecture is feasible with current memory technology, and ii) to evaluate 
its performance. Our findings are that: i) it is necessary to carefully dimension the 
path from ICN nodes to the NRS, otherwise the lookup delay can become significant. 
However, this delay has to be compared with the current DNS resolution delay, as far 
as user perceptions are concerned, so it does not appear that this is a very limiting 
factor; ii) in-network content-caching based on chunks does not seem very useful in 
reducing the lookup rate; it could be worthwhile to analyze mechanisms that cache the 
whole content rather than chunks of content; iii) the rate of improvement of en-route 
content caching as a function of the content cache size is not very steep; this suggests 
to explore also other caching strategies, à la CDN.  

Finally, it is worth to note that the Lookup and Cache architecture is very much in 
agreement with the so-called Software Defined Networking (SDN) paradigm. In 
SDN, the network control plane is implemented in a dedicated device, which remotely 
controls packet switches providing data plane functionality. Indeed, we are 
implementing the Lookup and Cache architecture in the OpenFlow framework 
[46][47], which is a popular implementation of the SDN concept.  

8 References 

1. D. Cheriton, M. Gritter, “TRIAD: a scalable deployable NAT-based internet architecture”, 
Technical Report (2000) 

2. T. Koponen, M. Chawla, B.G. Chun, A. Ermolinskiy, Kye Hyun Kim, S. Shenker, I. 
Stoica: “A data-oriented (and beyond) network architecture”, Proc. of ACM SIGCOMM 
2007, August 27-31, Kyoto, Japan 

3. V. Jacobson, et al., ”Networking named content”, in Proc. of ACM CoNEXT 2009, 
December 1-4. Rome, Italy 

4. D. Smetters, V. Jacobson: “Securing Network Content”, PARC technical report, October 
2009 

5. D. Trossen, M. Sarela, and K. Sollins: "Arguments for an information-centric 
internetworking architecture" SIGCOMM Computer Communication Review, vol. 40, pp. 
26-33, 2010 

6. S. Oueslati, J. Roberts, N. Sbihi: “Ideas on Traffic Management in CCN”, Information-
Centric Networking, Dagstuhl Seminar 

7. A. Detti, N. Blefari Melazzi, S. Salsano, M. Pomposini, “CONET: A Content Centric 
Inter-Networking Architecture”, ACM SIGCOMM Workshop on Information-Centric 
Networking (ICN 2011), August 19, 2011, Toronto, Canada 

8. A. Detti, S. Salsano, N. Blefari Melazzi, “IPv4 and IPv6 Options to support Information 
Centric Networking”, Internet Draft, draft-detti-conet-ip-option-02, Work in progress, 
October 2011 



9. S. Salsano, A. Detti, M. Cancellieri, M. Pomposini, N. Blefari Melazzi, “Transport-layer 
issues in Information Centric Networks”, ACM SIGCOMM Workshop on Information-
Centric Networking (ICN 2012), August 17, 2012, Helsinki, Finland 

10. N. Blefari Melazzi, A. Detti, M. Pomposini, S. Salsano: “Route discovery and caching: a 
way to improve the scalability of Information-Centric Networking”, IEEE Global 
Communications Conference 2012 (Globecom 2012), Dec., 3-7 2012, Anaheim, 
California. 

11. SAIL project website, http://www.sail-project.eu/  
12. PURSUIT project website: www.fp7-pursuit.eu 
13. COMET project website: www.comet-project.org/ 
14. Named-Data Networking (NDN) project website, http://named-data.org/  
15. COAST project website: http://www.coast-fp7.eu/  
16. CONVERGENCE project website: www.ict-convergence.eu 
17. OFELIA project website: http://www.fp7-ofelia.eu/ 
18. OneLab website: http://www.onelab.eu/ 
19. ISO/IEC 21000-2 – Information technology – Multimedia framework (MPEG-21) – Part 2: 

Digital Item Declaration. 
20. L. Chiariglione, A. Difino, N. Blefari Melazzi, S. Salsano, A. Detti, G. Tropea, A. C. G. 

Anadiotis, A. S. Mousas, I. S. Venieris, C. Z. Patrikakis: “Publish/Subscribe over 
Information Centric Networks: a Standardized Approach in CONVERGENCE”, Future 
Network & Mobile Summit 2012, 4 - 6 July 2012, Berlin, Germany 

21. ISO/IEC 23006 – Information Technology – Multimedia Service Platform Technologies 
(MPEG-M) 

22. A. Detti, M. Pomposini, N. Blefari Melazzi, S. Salsano, “Supporting the Web with an 
Information Centric Network that Routes by Name”, Elsevier Computer Networks, vol. 56, 
issue 17,  p. 3705–3722 

23. A. Kuzmanovic, E.W. Knightly. “Receiver-Centric Congestion Control with a 
Misbehaving Receiver: Vulnerabilities and End-point Solutions”, Elsevier Computer 
Networks. 2007, 51, 2717–2737 

24. A. Ghodsi, T. Koponen, B. Raghavan, S. Shenker, A. Singla, and J. Wilcox , "Information-
Centric Networking: Seeing the Forest for the Trees", in Proc. of the 10th ACM Workshop 
on Hot Topics in Networks (HotNets-X), November 14-15, 2011, Cambridge, MA 
Cambridge, Massachusetts. 

25. Xiaoliang Zhao, Dante J. Pacella, and Jason Schiller, “Routing Scalability: An Operator’s 
View”, IEEE Journal on Selected Areas in communications, vol. 28, no. 8, October 2010 

26. G. Trotter, “Terminology for Forwarding Information Base (FIB) based Router 
Performance”, IETF RFC 3222 

27. D. Meyer , L. Zhang , K. Fall , “Report from the IAB Workshop on Routing and 
Addressing”, IETF RFC 4984 

28. D. Perino, M. Varvello, “A Reality Check for Content Centric Networking”, ACM 
SIGCOMM Workshop on Information-Centric Networking (ICN 2011), August 19, 2011, 
Toronto, Canada 

29. “BGP Routing Table Analysis Report”, available at http://bgp.potaroo.net 
30. “Cisco Carrier Routing System”, available at 

http://www.cisco.com/en/US/prod/collateral/routers/ps5763/prod_brochure0900aecd800f8
118.pdf 

31. “Juniper T Series Core Routers” available at 
http://www.juniper.net/elqNow/elqRedir.htm?ref=http://www.juniper.net/us/en/local/pdf/d
atasheets/1000051-en.pdf 



32. L. Breslau et al., “Web Caching and zipf-like Distribution: Evidence and Implications”, in 
Proc. IEEE INFOCOM, 1999, 21-25 March 1999, New York, NY, USA 

33. Alexa Web Information Company, “Top 1,000,000 Sites” available at 
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip 

34. J. Jung, E. Sit, H. Balakrishnan, R. Morris “DNS Performance and the Effectiveness of 
Caching”, IEEE/ACM Transactions on Networking, Vol. 10, No. 5, October 2002 

35. CAIDA Internet Trace Storage, https://data.caida.org/datasets/passive-2010/ 
36. MAWI Working Group Traffic Archive, http://mawi.wide.ad.jp/mawi/samplepoint-

F/2011/ 
37. http://netgroup.uniroma2.it/Andrea_Detti/Lookup-and-Cache/Feasibility-check/traces/ 
38. CCNx project web site: http://www.ccnx.org 
39. http://netgroup.uniroma2.it/Andrea_Detti/Lookup-and-Cache-OneLab/lc_onelab.tar.gz 
40. GEANT Pan-European research network, http://www.geant.net/ 
41. A. Narayanan, S. Previdi, B. Field “BGP advertisements for content URIs”, INTERNET-

DRAFT draft-narayanan-icnrg-bgp-uri-00, July 2012  
42. Lan Wang, A K M Mahmudul Hoque, Cheng Yi, Adam Alyyan, Beichuan Zhang 

“OSPFN: An OSPF Based Routing Protocol for Named Data Networking”, NDN 
Technical Report NDN-0003, July 2012 

43. A. Dan and D. Towsley “An approximate analysis of the LRU and FIFO buffer 
replacement schemes”, SIGMETRICS Perform. Eval. Rev., 18:143-152, April 1990 

44. A. Detti, M. Pomposini, N. Blefari Melazzi, S. Salsano, A. Bragagnini, “Offloading 
cellular networks with Information-Centric Networking: the case of video streaming”, 
IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks 
2012 (WoWMoM 2012) 

45. A. Elmokashfi, A. Kvalbein, and C. Dovrolis. “On the scalability of BGP: the roles of 
topology growth and update rate-limiting”, in Proc. of ACM CoNEXT 2008, Dec 9-12, 
2008, Madrid, Spain 

46. N. Blefari Melazzi, A. Detti, G. Morabito, S. Salsano, L. Veltri, ” Supporting Information-
Centric Functionality in Software Defined Networks”, IEEE International Conference on 
Communications (ICC 2012), June 10-15, Ottawa, Canada 

47. N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. 
Shenker, and J. Turner, “OpenFlow: Enabling Innovation in Campus Networks”. White 
paper. March 2008 (available at: http://www.openflow.org). 


