
adfa, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Scalability Measurements
in an Information-Centric Network

N. Blefari Melazzi, A. Detti, M. Pomposini

Department of Electronic Engineering, University of Rome Tor Vergata, Roma, Italy

{blefari, andrea.detti, matteo.pomposini}@uniroma2.it

Abstract. Information Centric Networking (ICN) is a new paradigm in which
the network layer provides users with content, instead of providing communica-
tion channels between hosts, and is aware of the name (identifier) of the con-
tents. In this paper, first, we briefly describe the FP7 project CONVERGENCE
and its approach to ICN. Second, we discuss the needs on measurements re-
quired by ICN. ICN is different in several aspects, with respect to the current
networking architecture. The measurement needs in an ICN are virtually end-
less, as designing an ICN is conceptually equivalent to devising a new Internet.
Thus, claiming to address this issue in a single paper would be pretentious.
However, the study on ICN is in its initial stage and we want to focus on some
of the most pressing and specific aspects of ICN, namely the scalability of its
naming and routing functionality. This study is necessary to assess the feasibil-
ity of ICN, before addressing other metrics of interest. Thus, the third and main
part of the paper describes our routing-by-name architecture and reports the re-
sults of specific measurements on routing issues. Measurements are performed
both by means of simulations and by using OneLab, an open, global research
network that supports the development of new network services. Our results
show that the proposed architecture, designed to improve the scalability of rout-
ing tables, is feasible with current technology.

Keywords: Internet Architecture, Future Internet, Information-Centric Net-
working, Routing, Caching, Scalability, Measurements, Simulation, Test-Bed,
Experimental network, OneLab, PlanetLab.

1 Introduction

Information Centric Networking (ICN) is a concept proposed some time ago under
different names [1][2], which is attracting more and more interest, recently (see e.g.
the papers [3][4][5][6][7][8][9][10] and the projects [11][12][13][14][15][16][17]).
ICN proposes a shift from the traditional host-to-host communication to a content-to-
user paradigm, which focuses on the delivery of the desired content to the intended
users. The basic functions of an ICN infrastructure are to: i) address contents,
adopting an addressing scheme based on names (identifiers), which do not include
references to their location; ii) route a user request, which includes a “destination”

content-name, toward the “closest” copy of the content with such a name; this copy
could be stored in the original server, in a cache contained in a network node, or even
in another user’s device; iii) deliver the content back to the requesting host.
In our view, the advantages of an ICN are:

1. efficient content-routing. Even though today’s Content Delivery Networks
(CDNs) offer efficient mechanisms to route contents, they cannot use network
resources in an optimal way, because they operate over-the-top, i.e. without
knowledge of the underlying network topology. ICN would let ISPs perform
native content routing with improved reliability and scalability of content access.
This would be a built-in facility of the network, unlike today’s CDNs;

2. in-network caching. Caching enabled today by off-the-shelf HTTP transparent
proxies requires performing stateful operations. The burden of a stateful
processing makes it very expensive to deploy caches in nodes that handle a large
number of user sessions. ICN would significantly improve efficiency, reliability
and scalability of caching, especially for video [44];

3. simplified support for peer-to-peer like communications, without the need of
overlay dedicated systems. Users could obtain desired contents from other users
(or from caching nodes) thanks to content-routing and forward-by-name
functionality, as it is done today with specialized applications, which, once again,
do not have a full knowledge of the network and involve only a subset of possible
users;

4. simplified handling of mobile and multicast communications. As regards
handovers, when a user changes point of attachment to the network, she will
simply ask the next chunk of the content she is interested in, without the need of
storing states; the next chunk could be provided by a different node than the one
that it would have been used before the handover. Similar considerations apply for
multicasting. Several users can request the same content and the network will
provide the service, without the need of overlay mechanisms;

5. content-oriented security model. Securing the content itself, instead of securing
the communications channels, allows for a stronger, more flexible and
customizable protection of content and of user privacy. In today’s network
contents are protected by securing the channel (connection-based security) or the
applications (application-based security). ICN would protect information at the
source, in a more flexible and robust way than delegating this function to the
channel or the applications [4]. In addition, this is a necessary requirement for an
ICN: in-network caching requires to embed security information in the content
data-unit, because content may arrive from any network or user node and we
cannot trust all nodes; thus, end-users must be able to verify the validity of the
received data; caching nodes must make the same check, to avoid caching fake
contents;

6. content-oriented quality of service differentiation (and possibly pricing);
provision of different performance in terms of both transmission and caching.
Network operators (especially mobile ones) are already trying to differentiate
quality and priority of content, but they are forced to use deep packet inspection

technologies. ICN would let operators differentiate the quality perceived by
different services without complex, high-layer procedures [6], and off-load their
networks via caching, a very handy functionality, particularly for mobile
operators who can differentiate quality and priority of content transferred over the
precious radio real estate;

7. content-oriented access control, providing access to specific information items as
a function of time, place (e.g. country), or profile of user requesting the item. This
functionality also allows implementing: i) digital forgetting, to ensure that content
generated at one period in a user’s life does not come back to haunt the user later
on, ii) and garbage collection, deleting from the network expired information;

8. possibility to create, deliver and consume contents in a modular and personalized
way;

9. network awareness of transferred content, allowing network operators to better
control information and related revenues flows, favoring competition between
operators in the inter-domain market and better balancing the equilibrium of
power towards over the top players;

10. support for time/space-decoupled model of communications, simplifying
implementations of publish/subscribe service models and allowing “pieces” of
network, or sets of devices to operate even when disconnected from the main
Internet (e.g. sensors networks, ad-hoc networks, vehicle networks, social
gatherings, mobile networks on board vehicles, trains, planes). This last point is
maybe the most important one, especially to stimulate early take up of ICN in
selected (and possibly isolated) environments.

On the cons side, ICN has some drawbacks and challenges. A first, obvious, con is
that it requires changes in the basic network operation. A second con is that it raises
scalability concerns: i) the number of different contents and corresponding names is
much bigger than the number of host addresses; this has implications on the size of
routing tables and on the complexity of lookup functions; ii) in some proposed ICN
architectures [3], delivering contents back to requesting users requires maintaining
states in network nodes.

In this paper, first we briefly describe the approach of the FP7 project
CONVERGENCE [16] to ICN. Then, we discuss the needs on measurements required
by ICN. ICN is significantly different with respect to the current networking
architecture, and poses several new requirements to measurements, which have to be
performed both in the current network, to understand some of its aspects useful for the
design of ICN, and (experimentally) in the new one. The third and main part of the
paper reports the results of specific measurements performed via simulations, and by
using OneLab, an open, global research network that supports the development of
new network services [18].

2 The CONVERGENCE project

The CONVERGENCE project [16] has the aim of designing and evaluating an
Information and Communication Technology (ICT) system based on a common and

self-contained data unit. The ultimate goal of the CONVERGENCE system is to
facilitate, enhance and make more efficient the access to and transaction of resources
in networked environments. Resources can be media contents, data about services, or
digital representation of real-world objects and people. All information required to
attain this objective is embedded within the data unit, including signaling, control, and
security information, minimizing the need of using external information or states
stored outside the data unit itself (e.g., in network nodes). In the CONVERGENCE
system, the basic unit of distribution and transaction is called Versatile Digital Item
(VDI).

We can describe the CONVERGENCE system, its features and its expected
advantages in terms of four high level components, corresponding also to areas of
work and research: the VDI, the applications, the middleware and the network (see
Fig. 1).

Fig. 1. CONVERGENCE System

2.1 The unit of distribution and transaction

The first area of work is the definition and standardization of a new fundamental
unit of distribution and transaction, the VDI. The VDI is a general purpose container
which can be used to describe and encapsulate, or make reference to, any kind of
resource.

The actual resource can either be physically embedded in the VDI or reside
elsewhere and be referenced within the VDI. Resources can be not only classical
media files (i.e. texts, pictures and movies), but also data about services, people and
Real World Objects (RWOs) (e.g., items of merchandise identified with an RFID).
VDIs bind together meta-information, which describe the resource, and the reference
to the resource or the resource itself (audio, images, video, text, descriptors of RWOs,
descriptors of People, other VDIs, etc.). The meta-data describing the VDI include: i)
structural information, describing the content of the VDI; ii) security information (e.g.
digital certificates) that enable a recipient to verify integrity and provenance of the
resource, and allow legitimate users to decrypt the resource, if necessary; iii) rights
information, defining rights to use the resource, and an expiry date for the resource,
supporting “digital forgetting”.

VDIs are identified by a unique identifier, which is translated (or which is
identical) to the network-level name used to route the VDI. The basis for the
definition and standardization of the VDI is the MPEG-21 Digital Item [19].

The advantages of having a unique and standard unit of distribution and transaction
are easy to understand and include the possibility of defining common mechanisms
for handling structured bundles of different and complex information. The availability
of these mechanisms will also provide new possibilities for integrating information
about RWOs, services and people. Potential beneficiaries include e-auction sites such
as E-Bay, location based services, such as “Friend Finder”, retail, logistic and goods
handling companies. In addition, the combination within the same data unit of data
and metadata will allow/simplify several important functionality, as it will be
described in the following (e.g. searching functions and web engines operation).

2.2 The applications

The second area of work is the definition and implementation of tools and of
applications, relevant to the needs of business and educational organizations
participating in the project, and showing the CONVERGENCE potentiality. Tools are
re-usable Application elements, which facilitate re-use of code in Applications; an
Application can make use of several tools. Our tools and applications exploit the VDI
concept and make use of our middleware and network functionality, so offering to
end-users the advantages brought about by our system.

The project designed and implemented four main applications to show the
usefulness of CONVERGENCE in four real-life scenarios. The four scenarios are: (i)
management of audiovisual material; (ii) management of a large photo archive; (iii)
customer relationship management and logistics for the retailing sector; (iv)
augmented lecture podcast service enabling a collaborative learning environment.

Other two applications have been built later on by integrating the four main
applications; the first integrated application merges the first (video) and fourth
(podcasts) original applications; the second integrated application merges the second
(pictures) and third (retail) original applications. The aim of the integrated
applications is to show that our system is flexible enough to combine different
applications in one and to exploit common VDIs.

The advantages of our tools and applications include: i) the provision of basic,
easy-to-use functionality to applications developers; ii) the solution of specific needs
of consortium partners; iii) the possibility of running real world trials to test the
system, and the provision of a basis for future commercial exploitation.

2.3 The Middleware

The third area of work is the definition and standardization of a new open source,
extensible, middleware. The CONVERGENCE system supports some sophisticated
functionalities (publish/subscribe services, searching functions, security functions),
which we think are too complex to be implemented at the network layer, inside
routers. Thus, we decided to implement them in a subset of nodes and at the
middleware layer.

A first important task of the CONVERGENCE Middleware (CoMid) is the support
of a publish/subscribe service model: subscribers register their interest in a resource
and are asynchronously notified when publishers make available resources that match
their interests. Matching between subscription and publications is based on attributes
contained in the VDIs of published resources and on conditions specified in the
subscriptions. Publish/subscribe differs from the more traditional request-response
service model in a number of ways; the interacting parties do not need to “know” each
other. Also, they do not need to know how many subscribers will consume the data
they have produced. Publishers and subscribers do not need to interact directly: data
consumers will receive the desired data when they will be produced by publishers;
publishers do not have to care or check or wait that subscribers consume the data they
have produced.

Thus, publish/subscribe effectively decouples the application end-points in space
and time. This decoupling of publishers and subscribers offers a much enlarged and
flexible typology of services. For these characteristics, publish/subscribe is well
suited for disseminating data to a wide and dynamic audience.

The data unit of the CoMid is the VDI.
In practical terms, resource providers using CONVERGENCE will publish VDIs

to the middleware, making the middleware aware of the characteristics of the
resources of such VDIs. Such awareness enables consumers to subscribe to and
receive updates (notifications) both for known resources (e.g. the repair manual for a
piece of equipment) or for resources satisfying a given search criteria.

For instance, Alice may be interested in receiving offers for a model of camera she
wishes to buy. Alice issues a subscription to the CONVERGENCE middleware
describing the camera. When a reseller publishes an offer that matches the request of
Alice, she will receive such offers by the middleware. Alice will receive the offers

asynchronously, i.e. when connected to the pub-sub system, independently of the
connection status of the publisher. Offers are carried by VDIs and, in this scenario,
the resource in the VDI could be a web-page where Alice can buy the camera.

It is important to observe that not all CONVERGENCE communications must
necessarily use a publish/subscribe paradigm. The CONVERGENCE middleware also
accepts direct requests to immediately provide specific requested data, with a
traditional request-response service model.

A second important task of the CoMid is to support searches, including semantic
searches (see [20] for further details on this CONVERGENCE feature).

A third important task of the CoMid is the provision of security mechanisms for: i)
assurance of VDI integrity and provenance (i.e., authenticity of the source); ii)
governance of VDI access restrictions and confidentiality; iii) issuing and
enforcement of licenses; iv) protection of user privacy.

Our CoMid implements the tasks listed above, providing the following overall
advantages:

 Dynamicity of VDIs. The information exchanged between providers and
consumers is increasingly volatile. Our CoMid allows producers of information to
update the information they have released and consumers to check if a digital
resource is up to date, to request an update, and to select between several versions
of the same item.

 Privacy and security information built into the VDI. This feature avoids the need to
delegate privacy and security to applications or to transfer protocols, and ensures
that VDIs are genuinely trustworthy. Protecting information at the source is more
flexible and robust than delegating this function to applications, or securing only
the communications channels.

 Support for “digital forgetting”. Our CoMid provides mechanisms allowing users
to “unpublish” VDIs and/or to define expiry dates for specific items of
information. This ensures that content generated at one period in a user’s life does
not come back to haunt the user late. Such mechanisms allow sites and services to
perform automatic garbage collection, deleting expired information.

 Incorporation of multimedia standards and Semantic Web technologies in VDIs
provides a homogeneous way of searching and handling structured information.

 CoMid provides interfaces to manipulate VDIs, together with standard mechanisms
for producing, managing and linking VDIs with the corresponding metadata.
Characteristic examples of these mechanisms include content protection, rights
management and event reporting. This facilitates the production and distribution of
content in a uniform, interoperable way, compliant to MPEG-M [21] and MPEG
21 [19] standards.

 CoMid provides users with a global identifier for their work (the VDI identifier).

2.4 The Network: Information-Centric Networking

The fourth area of work is the definition and standardization of a new networking
functionality. The middleware, implemented in a subset of all network nodes, needs to

transfer data (i.e., VDIs) for its own purposes and at the service of applications.
Furthermore, applications need to fetch digital resources described by the VDI.

This functionality could be provided by means of standard TCP/IP means.
Instead, CONVERGENCE has taken an alternative approach, which is more

consistent with the use of a common and self-contained data unit at the application
and middleware level.

The chosen approach is Information Centric Networking (ICN), briefly described
in the Introduction. Our CoNet defines its own data unit at the network layer, called
CONET Information Units (CIUs): interest CIUs convey requests of named-data (e.g.
a VDI); named-data CIUs transport chunks of named-data. Named-data is any digital
object, uniquely identified by the network with a name (i.e. a string). A named-data
can be a VDI or the actual resource referenced to by the VDI. For instance, in Fig. 1
we have both cases: the VDI of text1 of cnn.com, and the actual text1 file of cnn.com.
At the network-level, both are named-data; the former is identified by the string
“cnn.com/VDI/text1”, the latter by the string “cnn.com/ text1”.

We identified eight fundamental issues that need to be addressed to design an ICN
infrastructure:

1. Primitives & interfaces, which define the relationship of the ICN protocols with the
overall architecture.

2. The naming scheme, which specifies the identifiers for the data units (CIUs)
addressed by the ICN.

3. The route-by-name mechanism, used by ICN nodes to relay an incoming CIU to an
output interface. The output interface is chosen by looking up a “name-based”
forwarding table.

4. The routing protocols used to disseminate information about location of CIUs, so
as to properly setup the name-based forwarding tables.

5. The data forwarding mechanism that allows CIUS to be sent back to the device that
issued a CIU request. Data forwarding cannot use the forward-by-name
mechanisms, because, typically, devices/interfaces are not addressed by the content
routing plane of an ICN.

6. In-network caching, which concerns the ability of ICN nodes to cache CIUs and to
reply to incoming CIUs requests.

7. Segmentation & transport mechanisms (see e.g. [9]) needed to: 1) split a whole
content (e.g. a VDI) in different CIUs (or chunks); each CIU is an autonomous data
unit with embedded security and addressable by the routing plane; ii) ensure a
reliable transfer of CIUs from the origin node (or from a cache node) towards the
requesting node; iii) counteract congestion.

8. Security & privacy issues tackling (at least) three specific aspects: 1) how to
guarantee content authenticity and protect the network from fake content, which
could also pollute network caches; 2) how to guarantee that content be accessed
only by intended end users, and 3) how to protect information consumers from
profiling or censorship of their requests.

Finally, the network should complement mechanisms provided by the Middleware
for the support of the “digital forgetting” and garbage collection functionality. For
instance, the network should not forward content whose expiry date is terminated.

The Convergence Network (CoNet) is designed according to these principles.
The advantages of ICN in general and of our CoNet in particular are described in

the Introduction.

3 Measurements needs in an ICN

The measurement needs in an ICN are virtually endless, as designing an ICN is
equivalent to devising a new Internet. Thus, claiming to address this issue in a single
paper would be pretentious. However, the study on ICN is in its initial stage and we
want to focus on some of the most pressing and specific performance aspects of ICN,
namely the scalability of its naming and routing functionality. This study is necessary
to assess the feasibility of ICN, before addressing other metrics of interest.

Once the theoretical feasibility of ICN is demonstrated, one could go and study the
performance of the other fundamental functionalities, which we listed in the previous
section, and to assess the advantages of ICN, as identified in the introduction.

Thus, in this paper, we focus on measurement issues regarding the scalability of
routing-by-name functions, assuming that the ICN is used to fetch current Web
contents.

4 Routing-by-name

In this Section, we briefly recall our reference model [7], and our Lookup-and-
Cache solution [10][22], which implements the routing-by-name functionality.

4.1 Reference model

ICN nodes (see Fig. 2) are interconnected by “sub-systems” [7]. Sub-systems use
an underlying technology to connect ICN nodes and can be implemented in several
different ways. For instance, a sub-system could be a public or private IP network, an
overlay UDP/IP link, a layer-2 network, a PPP link, etc. This is the same concept used
in current IP networks, in which different layer 2 technologies connect IP hosts and
routers. Nodes can be: ICN end-nodes (or clients) that download contents; ICN
serving-nodes (or servers) that provide contents and ICN nodes that relay ICN data-
units between sub-systems, which may also cache data.

To provide a content, a server splits the content in blocks of data, named chunks,
and assigns a unique network identifier to each chunks. A network identifier is a
string like “cnn.com/text1.txt/chunk1”, which is said to be the “name” of the chunk.

In the CONVERGENCE system, the name could be equal to the VDI identifier or
derived from it.

The role of the ICN protocols is to discovery and deliver named chunk. In order to
fetch a chunk, a user issues a data unit, named Interest message, which contains the
name of the chunk. ICN nodes route-by-name the Interest message, by using a longest
prefix matching forwarding strategy and a name-based routing table. We name the
entries of the name-based routing table ICN routes. An ICN route has a format like:

<name-prefix, next hop >

A name-prefix should be either the full name of a chunk, e.g.
“cnn.com/text1.txt/chunk1”, or a continuous part of it, starting from the first left
character e.g. “cnn.com/”.

Fig. 2. Network model

The first “en-route” device, be it an intermediate node or the end-server, that has
the chunk sends it back within a data unit, named Data message, which includes the
chunk name. Network nodes forward the Data message towards the requesting client,
through the same sequence of ICN nodes previously traversed by the Interest
message. These nodes may store the Data in their cache, so as to provide a so-called
en-route1, in-network, caching service. The Data forwarding process exploits reverse-
path information either temporary stored in the traversed nodes during the Interest
forwarding process (see Pending Interest Table of [3]), or contained in the header of
Data message, and previously collected in the Interest message during its forwarding

1 We point out that en-route caching does not have an impact on the routing plane. Indeed the

routing-plane only routes-by-name requests toward servers. Conversely, in case of off-route
caching, the routing-plane should route-by-name requests towards cached contents. The
temporal dynamics of these additional “caching routes” is a function of the lifespan of
contents in caches, which could be very short. This could cause an excessive routing traffic
and processing load. For this reason, an Information Centric Network typically adopts only
en-route caching.

process (see reverse-path source-routing in [7]). Therefore, the routing-by-name
process does not involve Data messages, but only Interest messages

Downloading a whole content is achieved by sending a flow of Interest messages to
retrieve all the chunks of the content. The sending rate of Interest message is
regulated by a receiver-centric congestion control mechanism [23][9], which could be
based on the same logic used by TCP. Therefore, in our ICN model, we have
endpoints that exchange Interest-Data sequences and the message exchange rate is
regulated by the receiver. Dually, in TCP/IP the endpoints exchange Segment-Ack
sequences and the exchange is regulated by the sender.

As regards the naming scheme, several proposals (e.g. [2][3][4][24]) agree in
adopting a hierarchical naming. In this paper, we assume a rather general hierarchical
naming scheme where a name is formed by a sequence of Components; i.e. a name
has the form “Component_1/Component_2/../Component_n”. This scheme supports
current Web URL, where the Component_1 is the domain name (e.g., “cnn.com”) and
next Components represent the path of the local resource (e.g., /text1.txt). In addition
to these Components, which represent the content-name, ICN requires other specific
Components, e.g. to represent the chunk number (“/chunk1”), version, etc. The full
sequence of Components is referred to as the chunk-name.

As said before, in this paper we focus on a scenario in which the ICN is used to
distribute current Web contents and Web servers are replaced by ICN servers.
Usually, a Web server provides all contents whose URLs have the same domain-
name, e.g. “cnn.com”. Therefore, we assume that an ICN sever provides all contents
whose names have the same Component_1, which is equal to the domain-name. In
this scenario, we argue that the minimal set of routing information needed to route-
by-name contents offered by ICN servers depends on the number of domain-names,
rather than on the number of content-names or chunk-names. Hence, the name-prefix
of an ICN route is a domain-name and, therefore, the number of ICN routes that a
node of the default-free-zone should handle is in the order of the current domain-
names, i.e. 2 108; we assume 109 to have some margins [10][22].

We remark that these conclusions are dependent on the assumptions stated above.
Changing the assumption would change the results. For example: i) using a “flat”

non-hierarchical naming the number of ICN routes would be higher and likely close
to the number of content-names, i.e. 1011; ii) if we allow more than one route per
name-prefix, e.g. for routing redundancy or multi-homing purposes, the number of
ICN routes would be higher than 109; iii) nodes that have a default route, e.g.
corresponding to a tier-2 or a tier-3 node of the current Internet, would have a number
of ICN routes much lower than 109, and so forth.

4.2 Lookup-and-Cache routing architecture

The routing-by-name of Interest messages is very similar to the routing of IP
packets but, in place of IP-prefixes, the routing-by-name procedure uses name-
prefixes, which, in our “fetching web contents” scenario are domain-names.

Consequently, it is worth analyzing the feasibility of reusing the architecture of an IP
router for an ICN node.

A typical router is composed of three major components: one or two routing
engines, line cards that host a forwarding engine and a switch fabric. The routing
engine handles the routing protocols and stores the routes in a routing table, named
Routing Information Base (RIB). In general, the RIB contains several routes to the
same destination and it is implemented by means of cheap and slow memories such as
DRAM. The forwarding engine of a line card receives incoming packets and selects
the output line card by looking up an on-board routing table, which is named
Forwarding Information Base (FIB) [25][26]. The FIB contains one route per
destination, and therefore a smaller number of routes than the RIB. To support packet
forwarding at line rate, the forwarding process is carried out by dedicated ASIC chips
and the FIB is implemented with fast memories, such as SRAM or TCAM. These
memories are expensive, consume a lot of power, and do not follow Moore's Law
[27]. After the selection of the output interface, the forwarding engine injects the
packet in the switching fabric. The switching fabric is (at least conceptually) an NxN
non-blocking crossbar where N is the number of line cards.

If we want to reuse this architecture to route-by-name ICN Interest messages, we
should store ICN routes in the FIB and RIB, and properly update the routing and
forwarding logics. Hence, a fundamental check is to verify the practical feasibility of
storing all required routes in a FIB and in a RIB. As regards the FIB, the maximum
size of a SRAM chip is today 32 MByte [28]. Assuming that an ICN routing entry is
45 bytes long [2], the number of routing entries storable in a FIB is in the order of 106

(i.e. 32MB/45B). In the previous section we estimated that an ICN node should
handle 109 routes and thus current FIB technology cannot store the whole set of ICN
routes.

Let us now analyze the RIB issue. As in IP, the RIB would contain more than one
route per name-prefix; this redundancy mainly depending on the peering relationships
among Autonomous Systems. For instance, current BGP data obtained from the
AS6447 node [29] show that, on average, its RIB contains 31 routes per destination.
As a consequence, we assume that the RIB of an ICN node should handle a number of
routes in the order to 1010, i.e. one order of magnitude greater than the number of
name-prefixes. In this case, the RIB would require hundreds of Gbytes (i.e., 1010

*45B) of DRAM memory and a motherboards with hundreds of memory slots.
Current DRAM chips are of 4 GB and motherboards of “expensive” carrier-grade IP
routers can host up to 4 memory slot [30][31]. This means that the required increase
of capacity is in the order of 102. We can conclude that supplying each network node
with a motherboard with hundreds of memory slots would dramatically increase the
deployment cost of an ICN network, with respect to an IP network.

In order to cope with the capacity issue of the FIB and with the cost issue of the
RIB, we propose a Lookup-and-Cache routing architecture. In our solution, we use
the FIB of a Forwarding Engine as a route cache and deploy a centralized routing
engine, that runs on a server named Name Routing System (NRS), which logically
serves all the ICN nodes of a sub-system. Fig. 3 reports an example of Lookup-and-
Cache operations. Node N receives an Interest message for

“ccn.com/text1.txt/chunk1”. Since the FIB lacks the related route, the node
temporarily queues the Interest message, lookups the route in a remote RIB, gets the
routing information and stores it in the FIB, and then it can forward the Interest
message. In what follows, we discuss the rationale underlying the Lookup-and-Cache
architecture.

4.2.1 FIB as a route cache.
It is well-known that the relative frequency with which Web contents are requested

follows the Zipf’s law [32] and that there is a time and space locality of Web content
interests. Therefore, a large number of flows of Interest messages that an ICN node
should concurrently route-by-name refer to a small set of contents and, more
important, these flows use an even much smaller set of ICN routes, since ICN routes
address domain-names rather than single contents. In Section 5, we show that the set
of these active-routes can be comfortably stored in a SRAM memory. Therefore, we
propose to use the FIB as a route cache, which should contain, at least, the entire set
of active-routes. When the FIB lacks a route, the node lookups the route in a “remote”
RIB and then caches the route in its FIB. When all FIB rows are filled in, new routing
entries may substitute old ones, according to a specific route replacement algorithm.
Furthermore, a routing entry could be removed or updated by a FIB-RIB consistency
mechanism [22].

Fig. 3. Lookup-and-Cache concept

4.2.2 Centralized Routing Engine
All ICN routes are contained in the RIB of a Routing Engine, which logically

serves all the ICN nodes of a sub-system and runs on a centralized server, named
Name Routing System (NRS) node. Thus, the cost of an expensive Routing Engine is
taken for only one network device, rather than for all network nodes. Of course, the
DRAM memory of the NRS node must be able to contain all the ICN routes of all the
ICN nodes that it serves. A single NRS node may also serve more than one sub-

system; for instance all sub-systems administered by the same company (e.g. a whole
autonomous system).

Since many Interest flows use a small set of active-routes, the temporal dynamics
of active-routes is slower than the flow dynamics. Indeed, a route is used for a period
of time that is greater or equal than/to the duration of a single flow. This limits the
lookup rate that a centralized Routing Engine should deal with and, in Section 5, we
show that this rate is easily supported by current technologies.

So far we have described the “data-plane” of our Lookup-and-Cache architecture,
i.e. the procedures carried out to forward ICN messages. In addition to the data-plane,
the Lookup-and-Cache architecture (as the IP one) needs “routing-plane” procedures
that run on NRS nodes and whose goal is to setup the RIBs. The routing-plane is out
of the scope of this paper; anyhow we point out that our architecture does not impose
a specific routing-protocol. For instance, we can support both name-based version of
BGP, as suggested in [3], or DONA [2], where the DONA Resolution Handler (RH)
has the same function of the NRS node. We conclude by observing that, as it occurs
in the current Internet for BGP messages, the ICN nodes should give highest priority
to routing signaling messages (e.g., lookup and routing messages), to limit the number
of failed communication attempts and the delay.

4.2.3 Route replacement algorithm
When a node receives an Interest message for a given content and it is not possible to
find a matching route in the FIB, we have a route-cache-miss event. In this case: i) if
the FIB is not full, the node performs a lookup in the remote RIB and stores the new
route in the FIB; ii) the forwarding of the Interest messages is subject to a route-
lookup delay. When the FIB is full, the insertion of a new route implies the
replacement of an old route. In this case, a route replacement algorithm decides
whether to lookup the new route or not. In the first case it also decides which old
route has to be replaced. In the second case, the Interest message is dropped and
subsequently retransmitted by transport level mechanisms.
An inefficient design of the route replacement algorithm would result in an excessive
rate of route lookups, with a consequent worsening of delay performance (as more
Interest messages will be subject to the route-lookup delay) and an increase of the
load of the NRS node. To mitigate these inconveniences, it would be desirable to
replace inactive routes. Consequently, the design of the route replacement algorithm
aims at solving two problems: first, how to identify inactive routes and, second, how
to behave in case of FIB overload, i.e. when there are no inactive routes and a new
route needs to be added in the FIB.
In [10][22] we proposed a route replacement algorithm, which assumes that each
route contained in the FIB has an inactivity time out (ITO), after which the route is
considered inactive; its performance are compared with the Least Recently Used
(LRU) policy [43]. Results show that, if the FIB size is over dimensioned and the FIB
operates in an unloaded condition, the least recently used route is likely inactive;
hence the simple LRU works well, as the more complex ITO. If the FIB size is under
dimensioned and the FIB works in overload condition, ITO overcomes LRU as LRU
causes an in/out flapping of routes from the FIB.

5 Feasibility check

In this section we show that our architecture is feasible by using currently available
technology. To this end we verify that: i) the capacity provided by current FIB
technology is enough to store the expected number of active-routes; ii) the route
lookup rate can be supported by current database technology.

On a given node and at a given time, an ICN route is “active” if there is at least one
flow of Interest messages using that route. This concept is sketched in Fig. 4, where
there are 3 flows of Interest messages toward “cnn.com”. The route toward “cnn.com”
becomes active at the start of the first flow and becomes inactive at the end of the last
flow. In Fig. 4 there is also a single flow of Interests for “bbc.com”, thus the related
route activity has the same duration of the flow.

In the current Internet, a client sends TCP ACK and receives TCP segments from
the Web server. In an ICN, a client sends Interest messages and receives Data
messages from the ICN server, or from an en-route cache. So, if a client used the ICN
to download Web contents, then the traditional flows of TCP ACK messages would
be replaced by a flow of Interest messages. Furthermore, on the base of our
hierarchical naming assumption, the couple <IP destination address, destination Port>
contained in TCP ACK messages would be replaced, in Interest messages, by a
chunk-name that contains the domain-name of the destination Web server.

For instance, assume that in the current Internet a host sends an HTTP request
towards the domain name “cnn.com”. The domain name “cnn.com” will be translated
by DNS into an IP address, e.g. 157.166.226.25, a request will be sent to this address
and then the data will be directed from 157.166.226.25:80 towards the requesting
host, while a flow of TCP ACKs will be directed by the client to 157.166.226.25:80.
In the proposed ICN scenario the flow of TCP ACKs would be replaced by a flow of
Interest messages for chunks, whose names contain the “cnn.com” name-prefix.

Fig. 4. Flows and active-routes

Interests flow to cnn.com

time

Interests flow to cnn.com

Interests flow to cnn.com

Interests flow to bbc.com

Lookup and caching
of cnn.com

Lookup and caching
of bbc.com

Active routes
inter‐arrival
time

Inactivity timeout

Inactivity timeout

Active‐route toward cnn.com

Active‐route toward bbc.com

Using such a mapping between the flow of TCP ACKs and the flow of ICN Interests,
we could use current Internet traces to assess the feasibility of ICN. We could replace
each ACK of an Internet trace with an Interest message, thus creating a would-be ICN
trace. Unfortunately, IP traces usually have anonymized IP addresses, which do not
include the domain-names of HTTP GET messages. Hence, we cannot derive the
domain-names to be used for the conversion from TCP ACKs to Interest messages, by
using such anonymized traces.
To circumvent this problem, we use a simulation approach to associate a domain-
name to a flow of TCP ACKs directed towards an anonymized IP address.
The simulation model is depicted in Fig. 5. Briefly, for a given anonymous trace, we
randomly associate the web servers’ anonymous IP addresses of the trace to a set of
public IP addresses, derived (as described below) from the 1 million most used
domain-names [33]. Then, we associate each anonymous flow of the trace to a
domain-name, randomly extracted among those domain-names that have the public IP
address associated with the web server’s anonymous IP address of the flow.

Fig. 5. Simulation model to associate an anonymous IP address to an actual domain-name

More in details, the simulation model is formed by three phases, as follows:
Phase-1: data structures setup

1. we collect the top 1 million domain-names in a list named {DN};
2. for each domain-name DNi, we model its occurrence probability opDNi in an

Internet trace as a function of its rank position, and according to a Zipf’s law.
Following the results of [34] we set the value of the Zipf alpha parameter to 1(2);

2 We remind that we are considering the occurrence distribution of domain-names, rather than

that of specific contents, and that the parameter alpha of the domain-name Zipf [34] is great-
er than the one of the content Zipf [32] (e.g, 0.6, 0.8).

3. we resolve the list {PubIP} of public IP addresses associated to each domain-
name(3) (from a machine located in the campus of University of Rome Tor
Vergata);

4. for each element PubIPi, we compute its occurrence probability opPubIPi as the
sum of the occurrence probability opDNj of the domain-names that use the IP
address PubIPi ;

5. from the anonymized trace, we extract the list {AnIP} of unique anonymized IP
addresses of web servers;

6. for each element AnIPi , we compute its occurrence probability opAnIPi as the ratio
between the number of HTTP flows that have AnIPi as destination address and the
total number of HTTP flows of the trace.

Phase-2: Random association of anonymous IP addresses to public IP addresses

7. since the number of public IP addresses {PubIP} is in the order of 580k while the
number of anonymous IP addresses of our trace is lower, we randomly extract a
subset of public IP addresses, by using their occurrence probability {opPubIP}.
We refer to this restricted set as {rPubIP};

8. we map, one-to-one, elements of {AnIP} to elements of {rPubIP}. We
preventively sorted the elements of {AnIP} and of {rPubIP} on the base of the
occurrence probabilities of their elements. Consequently, the element of AnIPk
with rank k in terms of occurrence probability is mapped to the element rPubIPk
that has the same rank.

Phase-3: Random association of anonymous flows to domain-names

9. for each flow of the trace, we map its destination anonymous IP address AnIPi, to
the public address rPubIPi and we randomly associate to it a domain-name
randomly extracted among the ones that use rPubIPi . The extraction is properly
weighted by the occurrence probability opDNi.

Since each flow has now an associated domain-name, we can convert the TCP ACKs
of a flow in Interest messages, and evaluate the average number of ICN active-routes
and the average active-route inter-arrival time by using real Internet trace. Results are
reported in Table 1. The Equinix-sanjose-* and Equinix-chicago-* traces [35] are
captured on a 10 GigE interfaces of a tier-1 ISP. The Mawi-* traces [36] are captured
on a trans-Pacific line operating at 150 Mbit/sec. The Rome-Tor-Vergata trace is
captured on the 1 GigE interface of the router gateway of our University [37], which
is a tier-3 network. Even in the worst case of the Equinix-sanjose-dirA trace, the
average number of active-routes is in the order of 103; this value is much lower (by a
factor of 103) than the capacity provided by an off-the-shelf SRAM based FIB, i.e. 106

ICN routing entries, as discussed in Section 4.2.

3 Since the same IP address may serve several domain-names, the number of unique elements

of {PubIP} is lower than the length of {DN}. In our case the ratio between the length of
{DN} and the number of unique elements of {PubIP} is equal to about 1.7.

Trace id Average value of ICN
active-routes (Nicn)

Average ICN active-
routes inter-arrival (Iicn)

Equinix-sanjose-dirA 4680 0.5 ms
Equinix-sanjose-dirB 1782 1.1 ms
Equinix-chicago-dirB 1576 1.2 ms
Mawi-1 250 4.5 ms
Mawi-2 267 3.3 ms
Rome-Tor-Vergata 185 5.6 ms

Table 1. Average number of active routes and inter-arrival times

Let us now investigate if current database technology can support the required lookup
rate. Table 1 reports that the average inter-arrival time between the starts of two
consecutive active-routes is in the order of half a millisecond, for the worst trace.
When the FIB memory is dimensioned for containing all active-routes, the inverse of
the active-routes inter-arrival time is an upper bound of the lookup rate. Indeed, we
need a lookup at the start of the route activity only if that route is not already cached
in the FIB. Therefore, an average active-route inter-arrival time in the order of 0.5 ms
implies a lookup rate in the order of 2000 lookups per second, in the worst case. This
value is easily achievable with current database technology. For instance, we have
implemented an NRS node with a Bind9 server, running on an old Linux laptop with
an Intel Pentium Processor M at 1.4 Ghz, and we measured a sustainable rate of about
15 000 lookups per second.
We also evaluated the number of active-routes versus time for the Equinix-sanjose-
dirA trace (Fig. 6). The number of active-routes has a limited variation around its
average value. This simplifies the dimensioning of the FIB size, which can be set
close to the observed mean, without requiring a large margin.

Fig. 6. Number of active-routes for the Equinix-sanjose-dirA trace

Finally, we investigated the effectiveness of FIB over-provisioning, to reduce the
lookup rate. A FIB is said to be over-provisioned, when it has a capacity significantly
greater than then average number of expected active-routes. For this analysis we used
an ideal route replacement policy that randomly replaces inactive-routes. Fig. 7 shows
the resulting lookup rate vs. the FIB size for the Equinix-sanjose-dirA trace; we
observe a significant reduction of the lookup rate as the FIB size increases.

Fig. 7. Lookup rate versus FIB size for the Equinix-sanjose-dirA trace

6 Experiments on OneLab

In this section we show the functionality of Lookup and Cache architecture and
evaluate its main performance by using the OneLab test-bed facility [18].
Specifically, we use 20 devices, located in different countries and belonging to the
PlanetLab Europe network [18]. We implemented our Lookup-and-Cache architecture
with a software package, mainly composed of a modified version of CCNx 0.5.0 [38]
and a Java-based implementation of the NRS node. All the software is available in
[39]. For the FIB replacement algorithm, we used LRU [43].

We analyzed the case of an ICN network formed by 19 ICN nodes and by a single
centralized NRS node. The network topology is shown in Fig. 8, where each ICN
node is marked with the country code of the supporting PlanetLab device. The NRS is
located in Ireland. The connectivity graph of the network resembles a subset of the
Pan-European GEANT research network [40].

As shown in the figure for the IE node, we assume that each ICN node serves a
sub-system, containing ICN clients and ICN servers. Furthermore, each ICN node is
connected with its neighbors by means of an overlay UDP/IP link. We setup this
overlay network by properly configuring the next hop of the ICN routing tables. For
instance, the ICN routing table of the IE node has the UK node as next-hop for any

content, with the exclusion of contents published by the ICN server handled by the IE
device.

This scenario may represent, for instance, the case of a single Autonomous System
that uses ICN technology to exchange contents located in internal servers and, to this
aim, deploys 19 ICN nodes/sub-systems, whose routing-by-name function is
controlled by a centralized NRS device. To simplify the test-bed, we virtualize all the
ICN servers and ICN clients contained in an ICN sub-system by using only one client
and only one server, both contained in the PlanetLab device that hosts the ICN node
of the sub-system. Therefore, each PlanetLab device of Fig. 8 (excluding the NRS)
has the role of ICN client, ICN server and ICN node.

Fig. 8. ICN topology implemented on PlanetLab

Each ICN server handles 20 unique domain-names and, for each domain name, it
publishes 5 contents of 500kB. For instance, a server that handles the domain-name
www.cnn.com, publishes the contents www.cnn.com/text1.txt,
www.cnn.com/text2.txt, ... , www.cnn.com/text5.txt. Therefore, in the whole network
we have 380 domain-names, i.e. ICN routes, and 1900 contents (231800 chunks),
uniformly distributed among network nodes. Each client generates 300 requests of
contents with an inter-arrival time that follows a negative exponential distribution,
with average 4s. To select a content, a client first chooses the domain-name according
to a Zipf distribution with alpha=1 [34], then it randomly singles out one of the 5
contents associated to the selected domain-name.

The NRS node contains the ICN routes of all 380 domain-names, for all 19 ICN
nodes. To compute the ICN routes, the NRS node uses a shortest path routing on the
topology depicted in Fig. 8. For instance, a content request issued by the ES node for
a content stored in the UK node is routed-by-name on the path: ES-CH-FR-UK.

ICN nodes do not use default routes, even though this could be possible in case of
leaf nodes, for instance the IE one. Therefore, each time that a node has to forward an
Interest message, if it does not have the related route in its FIB, it has to lookup-and-
cache that route, by querying the NRS node.

The queries to the NRS node use a direct UDP/IP connection (not reported in the
figure) between the ICN node and the NRS node. Therefore, the signaling traffic
between ICN nodes and NRS is not routed-by-name on the ICN topology of Fig. 8,
but it is transferred by using underlying, traditional, IP means. As a future work, we
will support also NRS queries with ICN means, as proposed in [10].

To conclude the description of the test-bed, we remind that, in addition to the FIB
memory that we use as a cache of routes, an ICN node has a storage space used as a
cache of content-chunks (i.e., a cache of network layer data units, CIUs) to implement
the in-network caching functionality discussed in the introduction (second advantage,
in-network caching). In our ICN nodes, we use the default CCNx content cache
replacement algorithm, i.e. FIFO.

Fig. 9 shows the average download time versus the FIB size, comparing the case of
nodes without content cache and the case of nodes with a content cache; the content
cache size is equal to 10% of the total number of published chunks. The x-axis
includes also an out-of-scale point, representative of a full preloaded FIB (labeled
“Full-FIB”) where, for each node, we use an unlimited FIB, pre-loaded with all ICN
routes that the node could use. This measurement allows highlighting the worsening
of performance deriving from the use of a limited FIB as a cache of routes and from
the use of a centralized remote RIB.

Fig. 9. Average download time versus FIB size

As expected, as the FIB size increase, the performance tends to the full-FIB case,
while caching contents leads to a decrease of the download time as some chunks are
delivered by the cache of nearby nodes, rather than from far away servers.

If we look at the curve representing the no content cache case, the download time
decreases of about 600 ms, when the FIB size increases from 50 to the full-FIB case.
We argue that this delay is due to the connectivity/processing delay brought about by
the NRS node. This lookup delay (in the worst case equal to about 350 ms) would not
occur if the traffic from/to the NRS had priority on the other user traffic and if the
NRS were implemented by using a suitable powerful hardware.

Fig. 10 shows the number of lookups per second, measured at the NRS node,
versus the FIB size. As measured in real Internet traces (see Fig. 7), also in the
OneLab test-bed we obtain a significant reduction of the lookup rate by increasing the
FIB size.

However, we have been surprised to see that the in-network caching of contents
has a small impact on the lookup rate. We expected that the reduction of the average
path length brought about by in-network content would have lowered the number of
nodes involved in transferring a content, and the number of NRS lookups.

Thus, we analyzed the ICN network traffic, and found out that a content caching
strategy based on chunks, like the one we (and CCNx) are using, may reduce the
potential benefit of in-network content caching on the lookup rate.

In fact, even though the probability of finding a single chunk in the cache may be
high, the probability of finding all the chunks of a given content (122 in our
workload) in the cache is rather small. If only a single chunk of a complete content is
not found in a cache of a node, that node will require to forward the Interest message
and this may produce an NRS lookup. The same situation may occur if no chunk is
stored in the content cache of the node; when the first Interest message is received,
the node may perform an NRS lookup and cache the ICN route in the FIB. The FIB
will then be used to forward other Interest for other chunks of that content. Thus, in
both cases of single-chunk-cache-miss and no-chunk-in-the-cache a single lookup
may be executed. This explains the low impact of content caching on the lookup rate.

This result suggests a future work consisting in analyzing in-network content
caching mechanisms that cache the whole content, rather than chunks of it.

Fig. 11 shows the amount of total traffic exchanged by ICN nodes during the test,
versus the size of the content cache size of the nodes, in case of a FIB size equal to
100. As already stated in [24], we find out that the increase of the content cache size
yields a decrease of the network traffic that eventually follows a logarithmic decay.
This logarithmic behavior implies that the en-route caching technique has a benefit-
to-cost ratio that is good for small caches, whose lookup table can be implemented
with off-the-shelf hardware. Conversely, if we want to deploy very big caches, not
only are they very expensive, but the performance improvement is relatively small. A
way to further reduce traffic is to complement en-route caching with pre-fetching
techniques, à la CDN.

Fig. 10. Lookup rate measured at the NRS node versus FIB size

Fig. 11. Total network traffic versus content-cache size, in case of a FIB size equal to 100

7 Conclusions

The Information Centric Networking paradigm poses several technical challenges.
Among them, an important one concerns the scalability of its, distinctive, routing-by-
name functionality. To evaluate the scalability of routing we must consider two
different issues. The first one concerns the size of the routing tables; the second one
concerns the rate of routing message updates [45].

In this paper we presented a proposal for a Lookup-and-cache architecture, which
copes with the first scalability issue. The design of an ICN routing protocol that limits
the rate of routing messages remains an "orthogonal", open issue, which we leave to
further studies. Indeed, our Lookup-and-Cache architecture does not impose the use
of a specific ICN routing protocol to exchange routing entries among NRS nodes. For
instance name-based versions of BGP [41] or OSPF [42] could be viable candidates.

We used simulations and experiments over OneLab: i) to show that our Lookup
and Cache architecture is feasible with current memory technology, and ii) to evaluate
its performance. Our findings are that: i) it is necessary to carefully dimension the
path from ICN nodes to the NRS, otherwise the lookup delay can become significant.
However, this delay has to be compared with the current DNS resolution delay, as far
as user perceptions are concerned, so it does not appear that this is a very limiting
factor; ii) in-network content-caching based on chunks does not seem very useful in
reducing the lookup rate; it could be worthwhile to analyze mechanisms that cache the
whole content rather than chunks of content; iii) the rate of improvement of en-route
content caching as a function of the content cache size is not very steep; this suggests
to explore also other caching strategies, à la CDN.

Finally, it is worth to note that the Lookup and Cache architecture is very much in
agreement with the so-called Software Defined Networking (SDN) paradigm. In
SDN, the network control plane is implemented in a dedicated device, which remotely
controls packet switches providing data plane functionality. Indeed, we are
implementing the Lookup and Cache architecture in the OpenFlow framework
[46][47], which is a popular implementation of the SDN concept.

8 References

1. D. Cheriton, M. Gritter, “TRIAD: a scalable deployable NAT-based internet architecture”,
Technical Report (2000)

2. T. Koponen, M. Chawla, B.G. Chun, A. Ermolinskiy, Kye Hyun Kim, S. Shenker, I.
Stoica: “A data-oriented (and beyond) network architecture”, Proc. of ACM SIGCOMM
2007, August 27-31, Kyoto, Japan

3. V. Jacobson, et al., ”Networking named content”, in Proc. of ACM CoNEXT 2009,
December 1-4. Rome, Italy

4. D. Smetters, V. Jacobson: “Securing Network Content”, PARC technical report, October
2009

5. D. Trossen, M. Sarela, and K. Sollins: "Arguments for an information-centric
internetworking architecture" SIGCOMM Computer Communication Review, vol. 40, pp.
26-33, 2010

6. S. Oueslati, J. Roberts, N. Sbihi: “Ideas on Traffic Management in CCN”, Information-
Centric Networking, Dagstuhl Seminar

7. A. Detti, N. Blefari Melazzi, S. Salsano, M. Pomposini, “CONET: A Content Centric
Inter-Networking Architecture”, ACM SIGCOMM Workshop on Information-Centric
Networking (ICN 2011), August 19, 2011, Toronto, Canada

8. A. Detti, S. Salsano, N. Blefari Melazzi, “IPv4 and IPv6 Options to support Information
Centric Networking”, Internet Draft, draft-detti-conet-ip-option-02, Work in progress,
October 2011

9. S. Salsano, A. Detti, M. Cancellieri, M. Pomposini, N. Blefari Melazzi, “Transport-layer
issues in Information Centric Networks”, ACM SIGCOMM Workshop on Information-
Centric Networking (ICN 2012), August 17, 2012, Helsinki, Finland

10. N. Blefari Melazzi, A. Detti, M. Pomposini, S. Salsano: “Route discovery and caching: a
way to improve the scalability of Information-Centric Networking”, IEEE Global
Communications Conference 2012 (Globecom 2012), Dec., 3-7 2012, Anaheim,
California.

11. SAIL project website, http://www.sail-project.eu/
12. PURSUIT project website: www.fp7-pursuit.eu
13. COMET project website: www.comet-project.org/
14. Named-Data Networking (NDN) project website, http://named-data.org/
15. COAST project website: http://www.coast-fp7.eu/
16. CONVERGENCE project website: www.ict-convergence.eu
17. OFELIA project website: http://www.fp7-ofelia.eu/
18. OneLab website: http://www.onelab.eu/
19. ISO/IEC 21000-2 – Information technology – Multimedia framework (MPEG-21) – Part 2:

Digital Item Declaration.
20. L. Chiariglione, A. Difino, N. Blefari Melazzi, S. Salsano, A. Detti, G. Tropea, A. C. G.

Anadiotis, A. S. Mousas, I. S. Venieris, C. Z. Patrikakis: “Publish/Subscribe over
Information Centric Networks: a Standardized Approach in CONVERGENCE”, Future
Network & Mobile Summit 2012, 4 - 6 July 2012, Berlin, Germany

21. ISO/IEC 23006 – Information Technology – Multimedia Service Platform Technologies
(MPEG-M)

22. A. Detti, M. Pomposini, N. Blefari Melazzi, S. Salsano, “Supporting the Web with an
Information Centric Network that Routes by Name”, Elsevier Computer Networks, vol. 56,
issue 17, p. 3705–3722

23. A. Kuzmanovic, E.W. Knightly. “Receiver-Centric Congestion Control with a
Misbehaving Receiver: Vulnerabilities and End-point Solutions”, Elsevier Computer
Networks. 2007, 51, 2717–2737

24. A. Ghodsi, T. Koponen, B. Raghavan, S. Shenker, A. Singla, and J. Wilcox , "Information-
Centric Networking: Seeing the Forest for the Trees", in Proc. of the 10th ACM Workshop
on Hot Topics in Networks (HotNets-X), November 14-15, 2011, Cambridge, MA
Cambridge, Massachusetts.

25. Xiaoliang Zhao, Dante J. Pacella, and Jason Schiller, “Routing Scalability: An Operator’s
View”, IEEE Journal on Selected Areas in communications, vol. 28, no. 8, October 2010

26. G. Trotter, “Terminology for Forwarding Information Base (FIB) based Router
Performance”, IETF RFC 3222

27. D. Meyer , L. Zhang , K. Fall , “Report from the IAB Workshop on Routing and
Addressing”, IETF RFC 4984

28. D. Perino, M. Varvello, “A Reality Check for Content Centric Networking”, ACM
SIGCOMM Workshop on Information-Centric Networking (ICN 2011), August 19, 2011,
Toronto, Canada

29. “BGP Routing Table Analysis Report”, available at http://bgp.potaroo.net
30. “Cisco Carrier Routing System”, available at

http://www.cisco.com/en/US/prod/collateral/routers/ps5763/prod_brochure0900aecd800f8
118.pdf

31. “Juniper T Series Core Routers” available at
http://www.juniper.net/elqNow/elqRedir.htm?ref=http://www.juniper.net/us/en/local/pdf/d
atasheets/1000051-en.pdf

32. L. Breslau et al., “Web Caching and zipf-like Distribution: Evidence and Implications”, in
Proc. IEEE INFOCOM, 1999, 21-25 March 1999, New York, NY, USA

33. Alexa Web Information Company, “Top 1,000,000 Sites” available at
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip

34. J. Jung, E. Sit, H. Balakrishnan, R. Morris “DNS Performance and the Effectiveness of
Caching”, IEEE/ACM Transactions on Networking, Vol. 10, No. 5, October 2002

35. CAIDA Internet Trace Storage, https://data.caida.org/datasets/passive-2010/
36. MAWI Working Group Traffic Archive, http://mawi.wide.ad.jp/mawi/samplepoint-

F/2011/
37. http://netgroup.uniroma2.it/Andrea_Detti/Lookup-and-Cache/Feasibility-check/traces/
38. CCNx project web site: http://www.ccnx.org
39. http://netgroup.uniroma2.it/Andrea_Detti/Lookup-and-Cache-OneLab/lc_onelab.tar.gz
40. GEANT Pan-European research network, http://www.geant.net/
41. A. Narayanan, S. Previdi, B. Field “BGP advertisements for content URIs”, INTERNET-

DRAFT draft-narayanan-icnrg-bgp-uri-00, July 2012
42. Lan Wang, A K M Mahmudul Hoque, Cheng Yi, Adam Alyyan, Beichuan Zhang

“OSPFN: An OSPF Based Routing Protocol for Named Data Networking”, NDN
Technical Report NDN-0003, July 2012

43. A. Dan and D. Towsley “An approximate analysis of the LRU and FIFO buffer
replacement schemes”, SIGMETRICS Perform. Eval. Rev., 18:143-152, April 1990

44. A. Detti, M. Pomposini, N. Blefari Melazzi, S. Salsano, A. Bragagnini, “Offloading
cellular networks with Information-Centric Networking: the case of video streaming”,
IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks
2012 (WoWMoM 2012)

45. A. Elmokashfi, A. Kvalbein, and C. Dovrolis. “On the scalability of BGP: the roles of
topology growth and update rate-limiting”, in Proc. of ACM CoNEXT 2008, Dec 9-12,
2008, Madrid, Spain

46. N. Blefari Melazzi, A. Detti, G. Morabito, S. Salsano, L. Veltri, ” Supporting Information-
Centric Functionality in Software Defined Networks”, IEEE International Conference on
Communications (ICC 2012), June 10-15, Ottawa, Canada

47. N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S.
Shenker, and J. Turner, “OpenFlow: Enabling Innovation in Campus Networks”. White
paper. March 2008 (available at: http://www.openflow.org).

