
Tracker-assisted rate adaptation for MPEG DASH
live streaming

Andrea Detti, Bruno Ricci, Nicola Blefari-Melazzi
CNIT, Electronic Engineering Dept., University of Rome “Tor Vergata”, Italy

andrea.detti@uniroma2.it, bruno.ricci@uniroma2.it, blefari@uniroma2.it

2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Abstract—MPEG DASH is a widely used standard for adaptive
video streaming over HTTP. The conceptual architecture for
DASH includes a web server and clients, which download media
segments from the server. Clients select the resolution of video
segments by using an Adaptive Bit-Rate (ABR) strategy; in
particular, a throughput-based ABR is used in the case of
live video applications. However, recent papers show that these
strategies may suffer from the presence of proxies/caches in
the network, which are instrumental in streaming video on a
large scale. To face this issue, we propose to extend the MPEG
DASH architecture with a Tracker functionality, enabling client-
to-client sharing of control information. This extension paves the
way to a novel family of Tracker-assisted strategies that allow a
greater design flexibility, while solving the specific issue caused
by proxies/caches; in addition, its utility goes beyond the problem
at hand, as it can be used by other applications as well, e.g. for
peer-to-peer streaming.

I. INTRODUCTION

Nowadays, video contents over the Internet are mainly
streamed using HTTP. Typically, a video content is segmented
in parts and the streaming session is a sequence of HTTP
GETs controlled by the client. Recent solutions are adaptive,
offering different representations of the same video in terms
of resolution, coding rate, etc. This variety allows the client
to dynamically select the representation more suitable to its
current context: e.g. device type, available bandwidth, energy
constraints. HTTP adaptive video streaming systems support
both video on-demand and live video applications. In the case
of video on-demand, the entire media is made available and
each user can choose the playback time (e.g. YouTube). In
case of live video, the media is made available at a given time
and possibly removed at another time, and the playback of all
users is synchronized (e.g. IPTV).

Since 2010 a growing consortium of companies is designing
an international standard for HTTP adaptive video streaming,
the MPEG Dynamic Adaptive Streaming over HTTP (DASH)
[1]. An important organization of the MPEG DASH ecosystem
is the MPEG DASH Industry Forum [2], which is developing
the so called dash.js reference client [3], an open-source
javascript DASH player working with HTML5 browsers.

An MPEG DASH system has very good scalability prop-
erties versus the number of clients, both in terms of server
bandwidth and processing loads. The bandwidth load can

This research was partly funded by the EU H2020 Bonvoyage project

be scaled down by using HTTP proxy/cache infrastructures,
such as those provided by Content Delivery Networks [4].
The processing load for the adaptive selection of the video
representation is completely distributed on clients.

A client uses an Adaptive Bit-Rate (ABR) strategy to
select a video representation. Literature papers and practical
implementations propose several ABR strategies, roughly clas-
sifiable as: throughput-based, buffer-based or a combination of
them [3] [5] [6]. A throughput-based ABR strategy estimates
the available network bandwidth from past observations and
selects the video representation with the highest coding rate
lower than the estimated bandwidth. A buffer-based strategy
modifies the current video coding rate depending on the
occupation of the playout buffer.

Throughput-based strategies are subject to throughput es-
timation errors and suffer from highly variable throughput
environments [6]; however, they are more reactive than buffer-
based ones and do not need large playout buffers. Buffer-
based strategies are more stable in presence of highly variable
throughput environments, but require larger buffer capacity.

In case of video on-demand, both throughput-based and
buffer-based ABR strategies can be adopted; the playout delay
is not a relevant performance parameter, and thus the playout
buffer capacity can be quite large (few minutes). In case of live
video applications, throughput-based ABR strategies are often
the only possible option, since these applications require short
playout delay and thus small playout buffer (few seconds).

In [7], C. Mueller, S. Lederer and C. Timmerer ob-
served, through video on-demand laboratory experiments, that
the presence of a cache may hamper the effectiveness of
throughput-based ABR strategies. Segments retrieved from
caches can alter the estimation of the actual client-server
available network capacity; wrong capacity estimations lead to
wide coding rate oscillations, segment losses and re-buffering
events. Thus, cache infrastructures, supposed to be a friend of
MPEG DASH, may actually be a foe [8].

We argue that such a caching issue [7] can also take place
in case of live video applications since, in a realistic Internet
scenario, the not perfect synchronization among video clients
may yield to cache-hit events. In this context, the problem
is even more critical with respect to on-demand scenarios,
since throughput-based ABR strategies are the only sensible
option. Fig. 1(a) provides an evidence of our argumentation.
It reports the video coding rate versus the video segment



(a) Basic throughput-based ABR (b) Optimized throughput-based
ABRs

Fig. 1. Video coding rate of a client in case of 10 clients, Web server and
Cache/Proxy on the real Internet. Server output bandwidth limited to 8 Mbit/s

number achieved by a client that uses the basic throughput-
based ABR strategy earlier described. Ten clients are behind
a proxy, which is connected to an HTTP server providing the
MPEG DASH media. All processes run on real Internet nodes.
We observe very unpleasant oscillations of the video coding
rate and segment losses (i.e., coding rate = 0), implying re-
buffering events.

Motivated by such important practical consequences of the
caching issue, we aim to make HTTP caches an advantage
rather than a disadvantage also for MPEG DASH. To the best
of our knowledge, this is the first paper focused on the live
video use-case, when clients are (mildly) synchronized among
each other.

We propose to extend the MPEG DASH system architecture
with a Tracker functionality. The Tracker enables clients to
share control information about their status (e.g. selected video
coding rate, measured throughput), and then to make more
informed decisions. This extension does not affect the scal-
ability properties of MPEG DASH and can be implemented
on the server side only, by using a javascript for the player
implementation. The extension can be exploited to design
novel and more flexible Tracker-assisted ABR algorithms, but
can also be used by other applications (e.g. P2P streaming [9],
real-time user commenting, etc.).

As a proof of concept, we devise a simple Tracker-assisted
throughput-based ABR strategy for improving live video qual-
ity in presence of network caches. We use the AVC video
coding scheme [10] and assume the presence of a single cache
on the client-server path, leaving hierarchical cache scenarios
for future works.

II. RELATED WORK

MPEG DASH live video applications

An MPEG DASH system is composed of an HTTP server
and a number of DASH clients. The HTTP server provides
a Media Presentation Description (MPD) and segments. The
MPD describes the representations available for a media
content (coding rate, resolution, codec type, etc.), the list of
segment URLs, the segment duration, and so forth. Segments
contain chunks of actual multimedia bitstreams, whose dura-
tion is a design choice. For instance, a chunk can be 4 seconds
long, or even the whole content.

A client first fetches and parses the MPD file and then starts
the playback by downloading segments through HTTP GETs.

The representation of a segment is locally decided by an ABR
algorithm, and the time scheduling of HTTP GETs depends
on the streaming application: live or on-demand. In case of
live video, the publication of new segments by the server and
the related GETs from clients are almost concurrent events.
A client downloads only one segment at a time, and when a
download is completed the client waits for the next segment
to be made available by the server. Such a mild client-server
synchronization is achieved by preliminary aligning client and
server clocks, e.g. through NTP means. Before starting the
playback, a client stores a given amount of segments in a
playout buffer. In case of buffer depletion, the playback stops,
the client re-syncs the segment GET process to the current
published sequence number, refills the playout buffer (aka
rebuffering) and then restarts the playback.

The MPEG DASH standard defines formats for MPD and
segments in a very flexible way. It makes possible to restrict
the applied formats by means of the definition of Profiles;
external organization may further restrict a Profile by means
of the specification of Interoperability Points and Extensions.
Currently, the MPEG DASH Industry Forum has released the
DASH-AVC/264 Interoperability Guidelines [11] in which the
video codec is the H.264 AVC.

ABR strategies

Literature papers and implementations suggest several ABR
strategies (e.g. see [12] for an experimental comparison). How-
ever, very few papers face the issue of coding rate oscillation
in case of throughput-based ABR strategies due to caches; and
we experimentally observed that strategies used in the dash.js
(v1.3.0) reference player suffer from this problem too.

In [7] Authors propose to mistrust bandwidth estimations
made during segment downloads, and instead to estimate the
server-to-client bandwidth by means of non-cacheable HTTP
GETs, called probes. A probe may be an HTTP GET of
any segment with a byte-range option, since proxy imple-
mentations usually do not cache range requests. In our real
Internet experiments we found that this solution is actually
effective in reducing coding rate oscillation. It has a simple
deployment, since it only impacts the ABR logic, which can
be pushed by the server, e.g. by a javascript implementation.
However, the ABR logic uses only local knowledge, whereas
our Tracker-assisted solution allows client-to-client sharing of
control information achieving better performance.

In [8] Authors propose to solve the coding rate oscillation
by shaping the output bandwidth from the proxy/cache to
the client; indeed, rate oscillation shows up when the proxy-
client bandwidth is greater than the available server-proxy
bandwidth. This solution requires changing existing proxy
infrastructures. Conversely, as in the case of [7], our solution
only requires server side changes.

In [13] Authors propose the CF-DASH system, in which
clients and proxy share information about a profile limit, i.e.,
a limitation on the highest coding rate that a client can request
among the ones available on the server. In doing so, ABR
selections of high speed clients will saturate on the profile



limit, thus increasing cache-hit events. The paper shows the
benefit of having a profile limit, albeit the computation of this
value is not addressed. Our solution does not impose such a
global limit for all clients, but each client can select its own
best coding rate, according to dynamic network conditions.

Finally, we believe that it is useful to report the interesting
findings of [14], even though they are not related to a scenario
with caches. The Authors observe that the client-server traffic
pattern is mainly an ON-OFF process, in which the duration of
the ON and OFF periods depends on the selected coding rate.
Consequently, clients that make throughput measurements dur-
ing the OFF periods of other clients wrongly overestimate the
available bandwidth. This error leads the clients to temporarily
scale up the coding rate and then scale it down again, since
the higher rate is actually not sustainable. Authors propose
a server-based solution to reduce such phenomenon, in which
the server carries out a per-client traffic shaping. In case of live
video applications, clients’ requests are almost synchronized,
and we experimentally observed that such an ON-OFF issue,
although present, is less critical than in the case of video
on-demand applications, as throughput measurements are less
falsified. Moreover, our solution does not require the server to
make per-client operations, which may hamper the processing
scalability of an MPEG DASH system.

HTTP caching

An HTTP caching infrastructure is formed by HTTP proxy
servers, such as Squid, Apache Traffic Server, Varnish, NG-
iNX, etc. There are two kinds of proxy deployments, namely
forward and reverse proxy. A forward proxy forwards HTTP
requests directed to any server and is usually deployed close to
the end users, to speed up the service response time through
caching. Proxy and servers are connected through Internet,
thus they can suffer from bandwidth limitations, which trigger
the coding rate oscillation phenomenon [8].

A reverse HTTP proxy is deployed in front of a server
farm and handles requests only for HTTP servers of the server
farm. It can be used to provide content-based services such as
load balancing, caching, access control, etc. The connections
among the proxy and the servers are very fast (e.g. Gigabit
Lan), thus likely not able to trigger coding rate oscillation.

Proxy implementations can support both deployments, (e.g.
Squid, Apache Traffic Server), or only one of them, (e.g.
Varnish and NGiNX are reverse only proxies). Any recent re-
lease of these implementations support the “read-while-write”
(aka collapsed forwarding) feature, with which concurrent
multiple requests for the same URL are processed by only
one request to the HTTP server. The read-while-write feature
is fundamental for live video applications to reduce server-
proxy bandwidth demand, since requests arrive to the cache
concurrently. Without this feature, each request would be
forwarded to the server, thus eliminating any caching benefit.

Fig. 2. Reference Tracker Scenario

III. TRACKER-ASSISTED MPEG DASH ARCHITECTURE

Basic observation

In this section we present the proposed MPEG DASH
architectural extension. We observe that clients behind a same
proxy use common network resources, e.g. the server-proxy
Internet bandwidth. In this case, a shared knowledge about the
status of such clients would make possible a finer prediction
about the consequences of an ABR choice, with respect to a
prediction achieved using only local knowledge. For instance,
let us assume that a client A wishes to upscale to a video
representation that a client B is already playing back. If client
A is aware of B (shared knowledge), it knows that such an
upscale will not demand additional server-proxy bandwidth,
since the new stream towards A will be completely served by
the proxy. Conversely, if the client A is not aware of B (local
knowledge), it should safely, nevertheless wrongly, predict that
the upscaling will activate a new server-proxy stream, with a
consequent increase of server-proxy bandwidth demand.

Architectural proposal

Fascinated by the possibility to improve ABR performances
by means of client-to-client knowledge sharing, we propose
to deploy a Tracker functionality, which enables clients to ex-
change information about their status (selected video coding-
rate, measured throughput, etc.). Fig. 2 reports the related
architectural scenario.

Obviously, any extension of the MPEG DASH streaming
system should not hamper its scalability properties and our
Tracker complies with this requirement. The Tracker is merely
a relay of client-to-client information; the ABR processing
load completely remains on clients, and a proper design can
limit client-tracker communications, possibly also leveraging
on intermediate caches. Last but not least, the introduction of
a Tracker does not require any modification of existing in-
network proxies and can be implemented on the server side
only, by using a javascript for the player implementation, and
co-locating the Tracker with the HTTP server, e.g. using a
basic Apache2/Tomcat web server configuration.

The results of Fig. 1(b) give a preview of the achievable
improvements; we see that our Tracker-assisted ABR strategy
(described later on) achieves better performance than the one
proposed in [7]. This comparison, as the following ones,
should not be understood as functional to show shortcomings
of this or that ABR strategy. Instead, it should be considered as
a demonstration that it is possible to devise better strategies by
using a Tracker. The message that we want to convey with this
paper is the usefulness of our architectural extension, rather
than the performance of a specific ABR scheme.



Fig. 3. Initial condition

Tracker

The Tracker maintains the status of a list of clients behind
the same HTTP proxy. We call this group of clients swarm, the
whole set of status information as swarm-status and the status
information of a single client as client-status. A client-status is
the tuple <client-id, rep-id, bw>. The client-id
is a random number uniquely identifying the client. The
rep-id is the index of the current representation selected by
the client. The bw is a measurement of the average download
rate of the client.

A client gets swarm-status information by using HTTP
GETs and exploits caching to reduce the Tracker traffic load.
In addition, a client pushes updates about its status by using
HTTP POSTs. At the POST reception, the Tracker inserts the
client information in the swarm identified by the IP source
address of the received message. In case of plain proxies this
address is equal to the IP address of the proxy, thus all clients
behind the same proxy belong to the same swarm 1.

IV. TRACKER-ASSISTED ABR STRATEGY

In this section we describe a proof-of-concept, throughput-
based ABR strategy that exploits the Tracker.

To devise the strategy we first studied and understood the
impact of coding rate scaling on network bandwidth demands.
Then we derived analytic conditions for the sustainability of a
rate scaling, which take as input download rate measurements
made by clients. Finally, we used the analytic findings to
design a Tracker-assisted ABR algorithm.

Consequences of coding rate scaling

We describe the consequences of a rate scaling on net-
work bandwidth demands through an example concerning a
sequence of coding rate upscalings. The same reasoning can
be repeated for a sequence of downscalings.

In Fig. 3 we have four clients, all playing video repre-
sentation n. 2, whose coding rate is R2 = 1500 kbit/s. We
define kth clique the group of clients that is playing the video
representation n. k. In this case, clients 1,2,3 and 4 form the
clique n. 2. For each segment requested by the clients of
a clique, the proxy downloads from the server one copy of
the segment and relays the downloaded bits to each client.
Consequently, the number of video streams transferred on the

1It would be necessary to look for the presence of XFF (x-forwarder-for)
HTTP headers to discriminate Proxy from NAT. However, accurate techniques
to determine if a client is behind a proxy are out of the scope of this paper.

Fig. 4. Clique creation

Fig. 5. Clique join

server-proxy network path is equal to the number of cliques.
In this case, only one stream at 1500 kbit/s on the server-proxy
network path.

In Fig. 4 client 4 upscales the coding rate to 3500 kbit/s.
The client leaves the clique working at 1500 kbit/s and forms
a new clique at 3500 kbit/s. A new stream is activated on the
server-proxy path at 3500 kbit/s and an increase of the whole
consumed bandwidth from the proxy to clients, from 6000
kbit/s to 8000 kbit/s. We call this event clique-creation.

In Fig. 5 the client 3 upscales the coding rate to 3500 kbit/s.
The client leaves the clique at 1500 kbit/s and joins the clique
at 3500 kbit/s. The involved cliques remain those at 1500 kbit/s
and 3500 kbit/s, thus the server-proxy bandwidth demand is
not affected by this upscale. Conversely, the whole consumed
bandwidth from the proxy to the clients increases to 10 Mbit/s.
We call this type of event clique-join.

In Fig. 6 all clients of the clique at 1500 kbit/s scale the
coding rate to 2500 kbit/s. On the server-proxy path the old
stream at 1500 kbit/s is switched off and a new stream at 2500
kbit/s is switched on. We call this type of event as clique-
switching.

In Fig. 7 all clients of the clique at 2500 kbit/s scales the
coding rate to 3500 kbit/s. No new stream is activated on the
server-proxy path and the stream at 2500 kbit/s is switched
off. We call this event as clique-merging.

Understanding the download rate measurement

In any throughput-based strategy, the triggers of the rate
scaling are the measurements of the download rates (D) made
by clients. Accordingly, it is fundamental to understand the
relationship between the download rate and the bandwidth
available on the involved network paths (Fig. 3): from server
to proxy (Bsp) and from proxy to client (Bpc).

Let us assume that the ith client plays back the k rep-
resentation, whose coding rate is Rk. The client measures



Fig. 6. Clique switching

Fig. 7. Clique merging

an average download rate of Di, which is the average ratio
between segment length and segment download time.

In the case of a cache-hit, the rate Di is an estimation of
the average bandwidth Bpci that the client perceives on the
proxy-client path. In the case of a cache-miss, the rate Di is
an estimation of the minimum between the average bandwidth
Bpci, and the average bandwidth Bspk that the clique of the
client has available on the server-proxy path.

Since clients are almost synchronized, a client usually
experiences a partial cache-hit: finding only part of a segment
stored in the cache, since another client has started the segment
download before and the download is not completed yet.

In the case of a partial cache-hit, cached bits are down-
loaded at Bpci, while the download rate of the remaining
missing bits is, theoretically, min (Bpci, Bspk). However, we
experimentally observed that the latter rate depends on the
implementation of read-while-write proxy functionality and it
can be lower than the theoretical value. For instance, in the
case of Squid proxy (v3.5.4) we observed that the download
rate provided to clients concurrently downloading the same
set of bits is bound by the download rate of the slowest
client 2. Conversely, the Apache Traffic Server proxy follows
the expected theoretical behavior. To sum up, eq. (1) shows
the relationship between the download rate and the network
bandwidths.

min

((
min

j ∈ clique k
Bpcj

)
, Bspk

)
≤ Di ≤ Bpci (1)

Sustainability of rate scaling

A client i can carry out a rate scaling from coding rate Rk

to Rh if the consequent clique event (creation, join, switching,
merging) is “sustainable” by the bandwidths available on the

2We argue that this is due to the limited size of the single read-ahead-buffer
used by the proxy to relay downloaded data to all served clients

TABLE I
SUSTAINABILITY OF CLIENT i RATE SCALING FROM Rk TO Rh

Clique event Sustainable when
creation succesful attempt

join Di ≥ Rh

switching and merging min
j ∈ clique k

Dj ≥ Rh

involved network paths. Tab. I summarize scalability condi-
tions hereafter discussed.

Sustainability for clique-creation: a client i can create a
new clique h if the server-proxy bandwidth Bsph available
for the new clique and the proxy-client bandwidth Bpci are
both greater than the coding rate Rh. In formulas:

Bsph ≥ Rh (2)
Bpci ≥ Rh (3)

Let us discuss now how to practically verify these inequal-
ities. The download rate measurement Di can not be used for
this purpose, since it is related to the server-proxy bandwidth
available for the clique k rather than the bandwidth Bsph
that will be available to a new connection sustaining the new
clique h. Consequently, we resort to the following attempting
approach to verify the clique-creation sustainability.

The client starts to download the segment at coding rate
Rh. In doing so, the client is temporarily activating the clique
h. Assuming that only client i is doing such an attempt,
a cache-miss occurs, and the measured download rate is
min (Bpci, Bsph). This rate is frequently monitored (e.g.
every 1s) during the segment download. If any measurement
goes below Rh, one of the two inequalities fail and the rate
Rh is not sustainable. Else, if the download of the segment at
rate Rh ends, the coding rate is sustainable.

Sustainability for clique-join: a clique-join does not request
additional bandwidth on the server-proxy path and a client
i can join an existing clique h, if the available proxy-client
bandwidth Bpci is greater than the coding rate Rh, i.e.
inequality (3). As a consequence of (1), the inequality (3)
is verified and clique-join is sustainable if the download rate
Di ≥ Rh

3.

Sustainability for clique-switching and merging: a client
i can perform a clique-switching from clique k to clique h,
if the server-proxy bandwidth Bspk available for the current
clique can also sustain the coding rate Rh, and if the available
proxy-client bandwidths of all clients of clique k are greater
than Rh. In formulas:

Bspk ≥ Rh (4)
Bpcj ≥ Rh ∀j ∈ clique k (5)

3We note that the download rate Di may be lower than Bpci (see 1).
Therefore, there could be cases for which a possible clique-join is not
recognized using Di ≥ Rh. However, for the sake of simplicity we used
such a sufficient condition in the ABR strategy



We observe that both conditions are verified and clique-
switching is sustainable if the minimum value among the
download rates observed by any jth client of the clique k
is greater or equal than the coding rate Rh, i.e.

min
j ∈ clique k

Dj ≥ Rh (6)

The demonstration is easy. Due to (1), the inequality (6)
verifies the condition (5). Regarding inequality (4), we split
the demonstration in two complementary cases.

If any proxy-client bandwidth Bpcj is greater than the
server-proxy bandwidth Bspk, the first client f that downloads
a segment experiences a cache-miss and measures a download
rate Df equal to the server-proxy available bandwidth Bspk.
All other next clients experience a partial cache-hit and
measure greater download rates. Therefore, min (Dj) = Df =
Bspk, and the condition (6) verifies inequality (4).

In the remaining cases of some/all proxy-client bandwidths
Bpcj lower than Bspk, these clients measure a download rate
Dj lower than Bspk. Consequently, min(Dj) < Bspk, and
condition (6) verifies inequality (4).

In the case of clique-merging, only inequality (5) is neces-
sary. Therefore, also in this case, if condition (6) is true then
clique-merging is sustainable.

The strategy

We designed and implemented an open-source live video
client using the Python language [15]. The client fetches and
consumes segments without actually reproducing them. For
space limitations, client operations are cursorily described,
while we discuss with more details the ABR strategy and
scalability aspects of our solution. The client works as follows.
At each publishing time, the client gets the swarm-status from
the Tracker. The client then computes the sequence number of
the next segment to download, and uses the ABR algorithm 1
to select the coding rate and fetch the segment. After that, the
client updates the statistic of the download rate (exponential
moving average); if necessary, posts client-status information
to the Tracker; and sleeps until the publishing time of the next
segment to download.

The ABR strategy reported in the algorithm 1 initially
checks the need of downscaling the coding rate. When client
i of clique k measures a download rate Di lower than Rk,
it must downscale to avoid playout buffer depletion. For the
sake of simplicity, we devised only procedures to handle single
node downscaling events, whose consequences are clique-join
or clique-creation. Starting from the coding rate immediately
lower than Di and going down, the strategy checks the
sustainability of the related clique event and, if verified, selects
that rate and fetches the segment. Obviously, this procedure
also handles the case in which more clients of a clique must
concurrently downscale towards the same rate, but in this case
the downscale might be too aggressive, albeit effective.

If downscaling is not necessary, the logic verifies the pos-
sibility of upscaling, giving preference to upscales that imply:
clique-merging/switching, clique-join, clique-creation. In the
latter case, the client attempts to upscale to the immediately

Algorithm 1 ABR with segment download
i = client index
lastSn = last downloaded segment number
serverSn = last segment number published by server
x = sequence number of the segment to download
k = coding rate index of previous segment
0..M = coding rate index range
Di = average download rate of client i
BO = upscaling attempt backoff value
BO = BO − 1
Downscaling
if Di < Rk then

g = (max coding rate index ≤ Di)
for j ∈ g..1 do

if clique j is not null then . join
Download and return segment at rate Rj

else if succ. attempt for rate Rj then . creation
Return attempted segment at rate Rj

end if
end for
Download and return segment at rate R0

end if
Upscaling
if k < M then

if min(Dj) ≥ Rk+1 then . switching/merging
g = (max coding rate index ≤ min(Dj))
Download and return segment at rate Rg

end if
if Di ≥ Rk+1 then . join

g = (max coding rate index ≤ Di)
for j ∈ g..(k + 1) do

if clique j is not null then
Download and return segment at rate Rj

end if
end for

end if
if BO == 0 then . creation

extract new random BO value
if successful attempt for rate Rk+1 then

Return attempted segment at rate Rk+1

end if
end if

end if
Maintain quality
Download and return segment at rate Rk

higher coding rate, when granted by a traditional backoff
procedure. The backoff limits the concurrence of attempting
procedures, that could falsify the measurement of the available
server-proxy bandwidth. If no upscale is sustainable, the client
maintains the current quality.

To realize a scalable system versus the number of clients,
we limit the number of HTTP GET and POST messages
exchanged between clients and Tracker as follows.

The URL used by clients to download the swarm-status



contains a Nonce equal to the number of the last segment
published by the source. In doing so, at each publishing time
all clients concurrently send out an HTTP GET for the same
URL, and the proxy processes these requests by using only
one request to the HTTP server.

A client reports to the Tracker a “quantized” measurement
(bw) of its average download rate. An HTTP POST occurs
only if the quantized value is different from the one already
present at the Tracker, or if a refresh timeout (e.g. 50 sec)
is elapsed. The greater the quantization step, the lower the
probability of needing an update and thus the number of HTTP
POSTs. However, a too big quantization step may prevent
the exploitation of all available coding rates. As a trade-off
we used a quantization step equal to the minimum difference
among available video coding rates: 1 Mbit/s in our case.

V. EXPERIMENTAL ASSESSMENT

We carried out an experimental campaign in a laboratory
environment and on the real Internet, reproducing the con-
figuration of Fig. 2. The laboratory environment is formed
by virtual machines hosting: video clients, a Squid proxy, an
Apache HTTP server, an Apache Tomcat running the Tracker
[15]. HTTP server and Tomcat are on the same node. In the
real Internet case we used the PlanetLab infrastructure.

We streamed in live mode the Big Buck Bunny movie,
encoded with six representations, whose coding rates are 0.55,
1.5, 2.5, 3.5, 4.5, 8.6 Mbit/s. Segment duration is 4s, the
number of segments is 160. We implemented five Python-
based clients with the following ABR strategies:

• Buffer-based (BB): a single step upscale occurs when the
playout buffer reaches 3/4 of its capacity and a single step
downscale occurs when the buffer goes below 1/3 of its
capacity.

• Throughput-based (TB): the coding rate is selected as the
highest one lower than the average download rate.

• DASHJS-based (DJ): we used the ABR rules of the
dash.js v1.3.0 [3] reference player, namely: Throughpu-
tRule (TR), BufferOccupancyRule (BR), InsufficentBuf-
ferRule (IBR). These rules are concurrently used. The
latter two have priority with respect to the former. TR is
like the previous TB one. As a consequence of BR, the
coding rate switches to the maximum one when the buffer
is greater than a RICH-threshold (3/4 of playout buffer).
Due to IBR, the coding rate switches to the lowest one
when the playout buffer is empty4.

• PROBE-based (PB): it is the ABR logic of [7]. It is a
TB strategy, but before performing an upscale to the TB
coding rate, the client probes the server-client bandwidth
to verify the actual availability of such a rate.

• Tracker-assisted (TKR): it is our proposed strategy, de-
scribed in sec. IV.

4DASHIF is now working on the new version v.1.4.0 where these strategies
will change. However, v1.4.0 was not stable at the time of writing

A. Laboratory evaluation
Basic throughput-based strategies (e.g. TB) yields quality

oscillation when the server-proxy path is the network bottle-
neck (Fig. 2), and when there is a non-perfect synchronization
among live video clients, as it may occur in a realistic Internet
environment. We prove this fact and show the behavior of ABR
strategies in these conditions.

We force the server-proxy bandwidth to be the network
bottleneck by using Linux Traffic Control tools, and we re-
produce a “desync” condition among clients by differentiating
their clocks within a desync range [0,MD] ms. In case of V
clients, the clock difference between client 1 and client v is
equal to (v−1)MD/(V −1), thus the last client gets the max
desync value MD ms.

We analyzed performance versus server-proxy bandwidth,
proxy-client bandwidth, number of clients and desync range.
We set the playout buffer time to 4 segments. For lack of space
we only report a subset of results.

Fig. 8 shows the coding rate oscillation phenomenon in
the case of TB strategy and how instead it is solved by our
TKR strategy and by the PB strategy [7]. The server-proxy
bandwidth is limited to 8 Mbit/s. Fig. 8(a) reports the coding
rate of (last) client n. 10 in the case of the TB strategy and
max desync = 500ms. Coding rate oscillation occurs and it is
rather wide in terms of bandwidth variation. Fig. 8(b) shows
the coding rate of the same client in absence of desync. After
an initial transitory phase, the coding rate reaches the stable
optimal value of 4.5 Mbit/s. Indeed, the highest coding rate of
8.6 Mbit/s is not sustainable by the server bandwidth. We point
out that the other clients, not reported in the figure, follow the
same behavior. Therefore, in absence of desync, oscillations
do not show up and even the simple TB strategy provides good
and fair performance.

Fig. 8(c) shows that our TKR strategy avoids oscillations
also in presence of desync. Albeit not reported, all other clients
have the same behavior; indeed, during the test, the clients
concurrently upscaled by performing clique-switchings. Fig.
8(d) shows that also the PB strategy solves the oscillation
issue. However, since clients do not share status information as
in our TKR, they are not always able to reach a fair behavior.
Indeed, client 1 and 10 have both unlimited access bandwidth
but stabilize their coding rate to rather different values.

The motivation behind this unfair deadlock of the PB
strategy is the following. During the PB test, we observed
two streams on the server-proxy path, whose coding rate were
1.5 and 4.5 Mbit/s, respectively. When a client performs a
probe, there are three connections (two for video streams
and one for probe) and TCP fair share bandwidth is close to
8/3=2.66 Mbit/s for each of them, including network headers.
But the application layer bandwidth measured by the probing
procedure of PB is lower than 2.5 Mbit/s and prevents any
upscale from 1.5 Mbit/s.

Fig. 9 reports performances by varying the server-proxy
bandwidth, in case of 10 clients with unlimited access band-
width and max desync = 500 ms. Fig. 9(a) reports the
percentage of quality switching, measured as the ratio between



(a) TB, max desync 500ms (b) TB, no de-sync (c) TKR, max desync 500ms (d) PB, max desync 500ms

Fig. 8. Coding rate vs segment number, server-proxy bandwidth 8 Mbit/s, proxy-client unlimited, 10 clients

(a) % quality switching (b) quality switch rate variation (c) % segment loss (d) coding rate

Fig. 9. Perf. vs server-proxy bandwidth, 10 clients, max desync = 500 ms, proxy-client bandwidth unlimited, 90% conf. int.

(a) % quality switching (b) coding rate (c) % quality switching (d) coding rate

Fig. 10. Perf. vs client id, 10 clients, max desync = 500 ms, server-proxy bandwidth = 8 Mbit/s (a,b) and 16 Mbit/s (c,d), proxy-client bandwidth heterogeneous:
clients 1,2 = 2 Mbit/s, clients 3,4 = 3 Mbit/s, clients 5,6 = 4 Mbit/s, clients 7,8 = 8 Mbit/s, clients 9,10 = 16 Mbit/s; 90% conf. int.

the average number of quality switching per-client and the total
number of segments. Fig. 9(b) shows the average coding rate
variation per quality-switch. Fig. 9(c) reports the average per-
centage of lost segments per client, and Fig. 9(d) the average
coding rate per client. As expected, in the case of unlimited
server-proxy bandwidth (Un), independently from the desync
value, all strategies get the same, optimal, result: no switching,
no loss, and maximum coding rate. Problems show up for
lower server bandwidths. The BB, TB and DJ strategies show
quality switching, with wide bandwidth oscillation per switch
and very high segment loss. These problems are practically
avoided by the PB and TKR strategies, but the TKR strategy
achieves a coding rate about equal to two times the one
achieved by PB.

We also consider more realistic cases of clients with limited
and heterogeneous proxy-client bandwidths. In each test we
deployed five set of clients, with the following per-set rates:
2,3,4,8,16 Mbit/s. The number of clients per set is uniform.

We repeated the measurements of Fig. 9 and achieved
similar performance, even though the coding rate gain that
TKR achieves over PB is lower, due to the constraints on
client bandwidths. For lack of space we do not report these
results, but prefer to show in Fig. 10 a per-client analysis in
the case of server-proxy bandwidth of 8 Mbit/s and 16 Mbit/s.

In terms of quality switching and segment loss (not re-
ported) our TKB strategy achieves fair values among clients,
close to zero. Regarding the coding rate, we observe that TKR
gets a max-min fairness condition. In the case of server-proxy
bandwidth equal to 8 Mbit/s (Fig. 10(b)), the first two clients
select a coding rate of 1.5 Mbit/s and the other clients a coding
rate of 2.5 Mbit/s. Higher rates (e.g. 3.5 Mbit/s) would be
possible for clients 5..10, but not sustainable on the server-
proxy bandwidth, considering protocol overheads. When the
server-proxy bandwidth increases to 16 Mbit/s (Fig. 10(d)),
clients 5,6 reach a coding rate of 3.5 Mbit/s, and the remaining
clients select 4.5 Mbit/s. The highest coding rate 8.6 Mbit/s
would be possible for clients 9,10, but not sustainable on the
server-proxy bandwidth.

With respect to TKR, some other strategies achieve higher
coding rates but, in these cases, with the drawbacks of an
higher number of quality switching and segment loss. In
addition, performance are unfair among clients.

Fig. 11 shows a scalability performance of the TKR strategy,
measured as the number of GET and POST messages received
and handled by the TRACKER. We vary the server access
bandwidth (Fig. 11(a)) and the number of clients (Fig. 11(b)),
with a heterogeneous proxy-client bandwidth configuration.
Segment-by-segment clients GET the swarm status and, if



(a) vs server-proxy bandwidth
and 10 clients

(b) vs n.clients and server-proxy
bandwidth = 8000 kbit/s

Fig. 11. Tracker messages for heterogeneous proxy-client bandwidth, 90%
conf. int.

necessary, POST their client status. Consequently, without any
optimization, the number of GET/POST procedures is equal
to the number of segments (160) multiplied by the number
of clients. This is the ’Lim’ curve in Fig. 11. We observe
that, thanks to the exploitation of proxy/cache also for Tracker
related interactions, the number of GET messages remains
unchanged and equal to 160 in both analysis. As regards
the number of POSTs, when increasing the server-proxy
bandwidth there is a light decrease of the number of POSTs,
due to the fact that more and more stable measurements of
download rate reduce the number of necessary updates. If we
vary the number of clients we have an increase of POSTs, but
the related value is rather below the Lim one.

(a) % quality switching (b) quality switch rate variation

(c) % segment loss (d) coding rate

Fig. 12. Perf. vs PlanetLab Web Server, 10 clients, proxy-client bandwidth
heterogeneously limited, server output bandwidth limited to 8 Mbit/s

B. Performance evaluation in the Internet

Fig. 12 reports measurements done by using by 15 Plan-
etLab nodes. Ten nodes are used as clients, while five other
nodes are alternatively used as Web servers (X axis indicates
node country). The Proxy is located in our University. To
reproduce bandwidth limitations that Internet users may have
on the access section (e.g. ADSL, mobile, etc.) we limit
the proxy-client bandwidth as in the previous heterogeneous
configuration. To reproduce lack of Web Server bandwidth
(e.g. server serving several proxies, different videos, etc.) we
limit the Web Server output bandwidth to 8 Mbit/s. Clearly,

both bounds are effective when the actual Internet bandwidth
is greater than them. We do not force any desync, since it is
naturally produced by the Internet environment.

Also in these tests the PB and TKR strategies achieve better
performances than other strategies. The number of switching
is very limited. When a switch occurs, it is almost always
between nearby representations (i.e., rate variation of about 1
Mbit/s), segment loss never shows up and, as in the laboratory
tests, TKR provides a better coding rate than PB.

VI. CONCLUSIONS

In this paper we proposed to add a Tracker functionality in
the MPEG DASH architecture, and showed how it is possible
to exploit this functionality to improve live video streaming
performance in presence of proxy/cache. This is only one
of the possible applications of the Tracker, other examples
including a P2P functionality to scale down server load in
absence of proxy/cache [9].

The integration of a Tracker in the MPEG DASH archi-
tecture can be done without modifying the MPEG DASH
standard. Tracker information (e.g. IP address:port) and pro-
tocol used by clients to interact with it can be embedded in
the player, which in turn can be pushed by the server as a
javascript. Thus, our proposal only needs server-side software.
However, to support heterogeneity of players, new standard
MPD metadata should include tracker information and dedi-
cated specifications should describe Tracker protocols.

REFERENCES

[1] I. Sodagar, “The MPEG-DASH standard for Multimedia Streaming over
the Internet,” IEEE MultiMedia, no. 4, pp. 62–67, 2011.

[2] DASH Industry Forum. [Online]. Available: http://dashif.org/
[3] dash.js reference client implementation. [Online]. Available: http:

//dashif.org/reference/players/javascript
[4] E. Nygren, R. K. Sitaraman, and J. Sun, “The Akamai network: a

platform for high-performance Internet applications,” ACM SIGOPS
Operating Systems Review, vol. 44, no. 3, pp. 2–19, 2010.

[5] K. Miller, E. Quacchio, G. Gennari, and A. Wolisz, “Adaptation algo-
rithm for adaptive streaming over http,” in Packet Video Workshop (PV),
2012 19th International. IEEE, 2012, pp. 173–178.

[6] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson,
“A buffer-based approach to rate adaptation: Evidence from a large
video streaming service,” in Proceedings of the 2014 ACM conference
on SIGCOMM. ACM, 2014, pp. 187–198.

[7] C. Mueller, S. Lederer, and C. Timmerer, “A proxy effect analyis and fair
adatpation algorithm for multiple competing dynamic adaptive streaming
over http clients,” in Visual Communications and Image Processing
(VCIP), 2012 IEEE. IEEE, 2012, pp. 1–6.

[8] D. H. Lee, C. Dovrolis, and A. C. Begen, “Caching in http adaptive
streaming: Friend or foe?” in Proceedings of Network and Operating
System Support on Digital Audio and Video Workshop. ACM, 2014,
p. 31.

[9] Y. Zhang and N. Zong, “Problem statement and requirements of the
peer-to-peer streaming protocol (ppsp),” 2013.

[10] T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luthra, “Overview
of the h. 264/avc video coding standard,” Circuits and Systems for Video
Technology, IEEE Transactions on, vol. 13, no. 7, pp. 560–576, 2003.

[11] DASH-IF INTEROPERABILITY POINTS AND EXTENSIONS.
[Online]. Available: http://dashif.org/guidelines

[12] S. Akhshabi, A. C. Begen, and C. Dovrolis, “An experimental evaluation
of rate-adaptation algorithms in adaptive streaming over http,” in Pro-
ceedings of the second annual ACM conference on Multimedia systems.
ACM, 2011, pp. 157–168.



[13] Z. Aouini, M. T. Diallo, A. Gouta, A.-M. Kermarrec, and Y. Lelouedec,
“Improving caching efficiency and quality of experience with cf-dash,”
in Proceedings of Network and Operating System Support on Digital
Audio and Video Workshop. ACM, 2014, p. 61.

[14] S. Akhshabi, L. Anantakrishnan, C. Dovrolis, and A. C. Begen, “Server-
based traffic shaping for stabilizing oscillating adaptive streaming
players,” in Proceeding of the 23rd ACM Workshop on Network and
Operating Systems Support for Digital Audio and Video. ACM, 2013,
pp. 19–24.

[15] Source code of players and trackers. [Online]. Available: http:
//netgroup.uniroma2.it/Andrea Detti/DASHTracker/infocom2016.tar.gz


