
Application-aware H.264 Scalable Video Coding

delivery over Wireless LAN: experimental

assessment

Giuseppe Bianchi, Andrea Detti, Pierpaolo Loreti,

Claudio Pisa, Francesco Saverio Proto

University of Roma Tor Vergata, Italy

{name.lastname}@uniroma2.it

Wolfgang Kellerer, Srisakul Thakolsri, Joerg Widmer

DOCOMO Euro-Labs

Munich, Germany

{lastname}@docomolab-euro.com

Abstract—This paper is among the first works to document
experimental results for application-aware H.264 Scalable Video
Coding (SVC) support over Wireless LANs. Application-aware
support is achieved by introducing a bandwidth throttling device,
called Virtual BottleNeck (VBN), before the WLAN Access
Point. Throttling is set to a bandwidth slightly smaller than the
actual WLAN capacity (either known or estimated), so that all
packet/frame losses occur inside the VBN. Here, loss events are
controlled by a scheduling mechanism devised to operate with
information taken from the H.264 Network Abstraction Layer
Units (NALUs). Despite its relative simplicity, the implemented
scheduler exhibits effective video adaptation performance and
close to optimal bandwidth efficiency. Setting up the trial was
not trivial due to the lack of suitable publicly available tools. We
filled this gap by implementing and integrating several separate
software modules, e.g., streaming server, NALU dependency
filtering, video frame concealment, etc. As a final result, the
experimental trial supports the full delivery chain for an SVC
stream with the only limitation of an off-line stream conversion
for play-out and Peak Signal-to-Noise Ratio (PSNR) measurement
purposes, due to the unavailability of real time SVC players.

I. INTRODUCTION

Scalable Video Coding (SVC) is an effective solution for

video streaming over a channel with time-varying bandwidth

and it is a particularly promising candidate [1], [2], [3], [4]

for video delivery over 802.11 (Wi-Fi) [5] Wireless Local

Area Networks (WLANs). Similar to other wireless networks,

wireless channel impairments affect the WLAN physical trans-

mission rate assigned to the user through rate adaptation

mechanisms [6], [7]. The actual throughput achieved by a

specific user not only depends on the number of users sharing

the same wireless channel, but also on the dynamic changes of

the channel quality experienced by this user as well as those

experienced by all other users. This is caused by a subtle

side-effect emerging from the WLAN Medium Access Control

operation known as Performance Anomaly [8].

While SVC concepts have been known for about 20 years,

only recently (2007) an SVC standard was finalized in the

framework of the ITU H.264 advanced video coding standards

[9]. The standardization group provides the reference software,

JSVM [10], for encoding and decoding purposes. However,

despite the extensive research work carried out (e.g. in the

frame of the European project Astrals [11]), no public domain

software appears currently made available for the many other

phases emerging in the end-to-end video delivery chain, in-

cluding streaming of the video over IP packets through the

Real-time Transport Protocol (RTP) and the reconstruction of

H.264 SVC received videos in the presence of random frame

losses (the current version v9.15 of JSVM not being able to

cope with arbitrary losses).

Most of the experimental work reported in the literature

focuses on SVC adaptation through application layer end-to-

end signalling mechanisms. For instance, [12] develops an

RTP/RTCP proxy which uses RTCP feedback for SVC adap-

tation purposes. Another proxy prototype has been presented

in [13], where MPEG-21 Digital Item Adaptation is used.

An SVC server is developed in [14] as part of an optimized

MPEG-21 framework for an heterogeneous network scenario.

Rather, to the best of our knowledge, our is among the

first works which experimentally demonstrate the viability of

SVC in-network [15], [16] adaptation through an application-

aware traffic scheduler (as opposed to application layer proxy

operation) devised to adaptively drop H.264 SVC video

frames, (more precisely, Network Abstraction Layer Units).

The ability to selectively drop frames is accomplished through

the introduction of a bandwidth throttling device, called Virtual

BottleNeck (VBN), placed outside the WLAN Access Point

(AP). It reduces the link bandwidth to a value slightly smaller

than the actual WLAN capacity. Since all packet loss due to

traffic overload is transferred from the WLAN network to the

VBN, application-aware scheduling mechanisms can be easily

implemented, without requiring modification in the (legacy)

APs. As a practically important side result of our work, we

provide all the software components we had to develop for

running experimental campaigns in the form of free and open

source code1.

II. VIRTUAL BOTTLENECK

The approach proposed for application-aware support of

H.264 SVC delivery over WLANs is illustrated in Figure 1. In

this paper we restrict our investigation to the case of “downlink

video streaming”. This is representative of a video-on-demand

1The source code of the software as well as all the videos produced and
discussed throughout the remainder of this paper can be found at the URL
http://netgroup.uniroma2.it/iwcld09/ - for download purposes
note that videos are 300-400 MB each.

2

Fig. 1. Network scenario with video server, VBN, WLAN AP, etc.

scenario, where end users connected to a WLAN hot-spot

independently access one or more video servers placed in the

wired network.

The idea behind the Virtual BottleNeck (VBN) illustrated

in Figure 1 is very simple, but practical and effective. It

emerges from the observation that MAC-layer frame losses

only rarely occur in a Wireless LAN because of channel

quality impairments. In fact, starting from Auto Rate Fall-

back [6], several rate adaptation mechanisms [7] have been

proposed to improve frame delivery, by estimating the channel

quality and/or measuring the experienced frame loss ratio, and

then switching to a suitable modulation scheme. The 802.11

MAC function retransmits MAC frames corrupted because of

channel errors or channel access collisions. As a result, a MAC

frame is lost completely only if it reaches a maximum number

of retransmissions. In the 802.11 standard, this is a relatively

large value (the default settings being 4 – Short Retry Limit –

and 7 – Long Retry Limit – retransmissions, depending on the

length of the MAC frame [5]). Therefore, in normal conditions,

the MAC frame loss ratio seen by higher layers is typically

low. It only becomes significant if severe channel degradation

occurs, so harshly that even rate adaptation to the minimal

available transmission rate is not sufficient.

We can thus assume that the majority of all MAC frame

losses occur at the AP buffer. Loss events clearly occur when

the load offered to the AP is greater than the maximum

throughput available at the AP. In general, the time-varying

capacity CAP (t) depends on i) the number of stations com-

peting with the AP for channel access and ii) the individual

transmission rates of all competing stations [8].

The Virtual BottleNeck is a traffic control box placed in

the wired network before the AP. It intercepts all the traffic

offered to the AP itself. Its goal is to enforce a traffic throttling

function devised to prevent the traffic offered to the AP from

overflowing the available capacity CAP (t). Provided that the

throttling function is able to follow the variations in time of

the AP capacity, and provided that a sufficient AP buffering

capability is available and a sufficient bandwidth margin is

deployed between the traffic offered by the VBN and the actual

AP capacity, the ultimate result is that the AP buffer will never

saturate, and hence no frame loss will occur at the AP itself.

Rather, all the losses will occur inside the VBN box.

Several mechanisms exist for the run-time estimation of the

available AP capacity and the consequent dynamic control of

the throttling function, e.g., [17], [18], [19], [20]. However,

the details of this estimation are outside the scope of the

present paper. Here, we are interested in taking full advantage

of the VBN in exploiting application layer information for

scheduling traffic.

We remark that since the VBN is a separate control entity,

it can easily be deployed in any pre-existing WLAN infras-

tructure with legacy Access Points. If the WLAN supports

802.11e Quality of Service enhancements (as is the case in our

experimental set-up), these can be exploited by configuring the

VBN to set the IP Type Of Service (TOS) field to the value

160 (for WMM - Wireless Multimedia - compliant APs) so

that MAC frame transmission occurs with EDCA video access

category.

III. APPLICATION-AWARE VBN SCHEDULING FOR H.264

SVC TRAFFIC

The proposed application-aware scheduling algorithm oper-

ates at the network layer. Its service policy is based on the

control information contained in the header of the H.264 SVC

Network Abstraction Layer Units (NALUs). We first give an

overview of this control information, and then discuss its usage

by the proposed scheduler.

A. H.264 SVC background

An H.264 SVC stream is a sequence of NALUs. A NALU is

formed by a header and a payload carrying the actual encoded

video frame. The NALU header contains information about the

NALU type and its relevance in the decoding process. From

the information reported in the NALU header (see full details

in [9], or [13]), we are specifically interested in the three

parameters called dependency id (DID), temporal id (TID),

and quality id (QID). Each parameter determines a specific

scalability facility. DID allows Coarse Grain Scalability, TID

allows Temporal Scalability and QID allows Medium Grain

Scalability.

Coarse Grain Scalability (CGS) provides the ability to

coarsely adapt a video performance; e.g., video’s spatial

resolution from CIF to 4CIF. The video should be en-

coded with a suitable set of coarse enhancement sub-streams,

called dependency-layers. DID is the identification of the

dependency-layer of the NALU. The decoding of a NALU

belonging to the dependency-layer did > 0 depends on

NALUs of dependency-layer did − 1, with the same value of

TID and QID. Following this dependency rule, we can coarsely

reduce video quality by removing NALUs with a DID greater

than a specific value. For simplicity, we do not consider Coarse

Grain Scalability in the rest of this paper. However, extending

our work to CGS is straightforward.

Temporal Scalability provides the ability to adapt the video

frame-rate. The TID specifies the temporal-layer of the NALU,

i.e., the “frame-rate sub-stream”. A NALU belonging to the

temporal-layer tid > 0 and with qid = 0 depends on

NALUs of temporal-layer tid − 1, with the same DID and

QID. Following this rule, a frame-rate scaling should be

accomplished by removing NALUs with a TID greater than a

specific value.

Medium Grain Scalability (also called progressive refine-

ment) allows the adaptation of video quality (i.e., PSNR). The

3

Fig. 2. NALU scheduler

video should be appropriately encoded with a set of quality en-

hancement sub-streams, called quality-layers. A quality-layer

reduces the encoding quantization error, and thus improves

the PSNR. The QID identifies the quality-layer of the NALU.

A NALU belonging to the quality-layer qid > 0 depends on

NALUs of quality-layer qid−1, with the same DID and TID.

Following this dependency rule, the quality scaling should be

accomplished by removing NALUs with a QID greater than a

specific value.

Overall, with reference to temporal and medium grain

scalability, the dependency rules can be summarized as follow,

where the arrow means “depends on”

(tid > 0, qid = 0) → (tid − 1, qid = 0)
(tid ≥ 0, qid > 0) → (tid, qid − 1)

B. H.264 SVC application-aware scheduler

The design target of our proposed application-aware sched-

uler is to exploit H.264 SVC NALU types and their depen-

dencies to

1) accomplish an efficient usage of the wireless resource

by avoiding to transfer NALUs that will not be decoded

by the receiver because of missing dependencies;

2) provide a smooth adaptation of the video quality versus

changes in the available capacity CAP (t) or the offered

load of the video traffic.

These two goals can be accomplished through a priority

queuing discipline, dedicating a separate queue to each possi-

ble TID-QID combination. Considering that the default range

for TID values is from 0 to 4, and considering two additional

enhancement quality-layers (i.e., QID values in the range from

0 to 2), we deploy 5×3 = 15 limited-size queues, with queue

#0 having the highest priority and queue #14 having the lowest

one, as shown in Figure 2. An incoming NALU is delivered

to a queue #n according to the following classification rule:

n = 5qid + tid

This ensures that a NALU x will have a lower service priority

than the NALUs it depends upon (first goal). Anyway, it may

exceptionally happen that at the receiver side, a delivered

NALU lacks other NALUs it depends on, since the dropping

decision is taken locally at each queue. For instance, a NALU

with a given tid and qid = x may be dropped from its queue

due to a peak load fluctuation, while the lower priority queue

associated to the same tid but qid = x+1 may not experience

the same fluctuation.

Finally, we observe that in the presence of congestion, the

NALUs of the higher quality layers will be discarded first, and

only later the NALUs of the base layer (second goal).

IV. IMPLEMENTATION ISSUES AND EXPERIMENTAL SETUP

To cope with the unavailability of essential software com-

ponents, we developed an hybrid online/offline testbed. While

the NALUs are delivered in real-time, several pre-processing

and post-processing mechanisms can only be applied off-line.

The result is a testbed, which is functionally equivalent to a

purely online video delivery process. The H.264 delivery chain

deployed in our testbed can be summarized in the following

steps.

(1) We first encode a raw YUV video file into SVC using

the JSVM H264Encoder.

(2) From the resulting H.264 encoded video file we generate

a packet trace file with the JSVM BitStreamExtractor tool. This

file is used as an hint track by the video streamer (described

below) for timing and packetization purposes.

(3) We feed the H.264 video and the packet trace to a

custom video streamer module, which constructs a simplified

RTP header for each NALU. We map one NALU to each RTP

unit and send RTP packets according to the video frame-rate.

Large NALUs are thus split through IP layer fragmentation.2

(4) IP fragments received at the VBN are reassembled

using the standard IP conntrack Linux Kernel facility. Then

entire IP packets (i.e., NALUs) are sent to an internal virtual

interface (an Intermediate Queuing Module of Linux) where

we implement the application-aware scheduling using the

IPROUTE 2 tools. At the exit of this virtual-interface, IP

packets are again fragmented and transferred to the output

interface.

(5) IP fragments are received by the WLAN AP, which

transmits them to the end devices. At the receiver side, all the

received NALUs are collected in an H.264 JSVM compatible

trace file. We post-process the trace with a custom software

module (NALU-Filter) devised to i) discard NALUs received

after a pre-set maximum playout delay (5 seconds in our

experiments) and ii) check NALU dependencies and discard

the NALUs for which dependencies are missing.3 Besides

the filtered H.264 trace file, the NALU-Filter also returns

the number of received NALUs and the number of filtered

NALUs. These are two basic metrics to evaluate if wireless

resources are used efficiently. If no NALUs are filtered, no

resources are wasted.

2The alternative would have been to use RTP fragmentation. This allows
to deal with NALU sizes greater than 64 kbytes (the upper limit for UDP
datagrams), but would require to i) implement RTP fragmentation/reassembly
from scratch, and ii) to reassemble NALUs at the VBN before their scheduling.
Unlike AVC, the RTP header field does not contain SVC information and the
tuple (DID,TID,QID) is carried as RTP payload. Hence, it is available only
on the first RTP fragment. In our experiments, the 64 kbytes upper limit for
the NALU size was never reached with SVC, while for AVC we solved this
issue by dividing each video frame in two slices.

3This latter check is strictly necessary since the JSVM H264Decoder
(v9.15) hangs if a NALU dependency fails.

4

TABLE I
VIDEO TEST-SEQUENCE PARAMETERS

BL MG1 MG2 Full PSNR
(kbps) (kbps) (kbps) (kbps) (dB)

SVC(A) 648 907.3 1304.7 2860 36.64

SVC(B) 1295 815 637 2748 36.50

AVC 2693 - - 2693 36.49

(6) The filtered H.264 trace file is used to reconstruct

an H.264 video, which is in turn decoded with the JSVM

H264Decoder, thus obtaining an uncompressed YUV file.

(7) This YUV file may contain missing frames, since

relevant NALUs may have been lost. To maintain the original

temporal sequence and to simplify PSNR measurements, we

develop a simple Frame-Filler tool. It outputs a final YUV

video that has the same number of frames as the original

one. When a frame is missing, the Frame-Filler inserts the

last available received frame instead, which is a very basic

form of error concealment.

(8) Finally, the resulting YUV file and the original one

are compared with the JSVM PSNR evaluation tool to assess

overall video quality.

V. EXPERIMENTAL RESULTS

Results are provided for the following setup. We use a 10

second clip of a publicly available 4CIF YUV video (soccer

game) at 30 fps. A 50 second video sequence is generated by

concatenating 5 repetitions of the video. Through JSVM, we

encode the 50 seconds video with three different approaches

that are detailed in table I. The SVC (A) and SVC (B)

are encoded with Medium Grain Scalability and have three

quality-layers (base-layer BL and two enhancement layers

MG1 and MG2). SVC (B) has a larger base layer than (A), and

the enhancement layers reduce in bitrate as the QID increases.

The opposite behavior is chosen for (A). Finally, the AVC

(H.264 Advanced Video Coding) video only uses a base layer.

All the encoded videos have approximately the same average

bitrate, similar bitrate fluctuations (about ± 30%) and the same

client-side playout buffer of 5 seconds. For the experiments,

we assume that a first user starts retrieving the video stream

at time 0. A new user arrives every 8 seconds (240 frames)

and begins the downloading of the same video stream. Video

performances are measured for the first user.

The experiments are based on an indoor WLAN deployment

with 5 stations associated to an AP. All stations experience

good average channel conditions (the distance to the AP is less

than 2 meters in LOS conditions) and support the maximum

11 Mbps 802.11b physical layer rate with no losses. The

VBN has been throttled to 6.0 Mbps, a value just below the

measured MAC throughput at the AP of about 6.3 Mbps. This

guarantees, as we confirmed in subsequent measurements, that

no MAC frames are lost at the AP buffer. Moreover, we also

perform tests with the WLAN physical layer rate reduced to

2 Mbps; in this cases the VBN is throttled to 1.5 Mbps. For

the evaluation, results are reported in terms of a video quality

metric (PSNR) as well as a delivery efficiency metric.

A. Impact of the VBN

Figure 3 shows the Y-PSNR (luminance) over time, mea-

sured for the video stream SVC (A) delivered to the first

user with and without VBN scheduling, with respect to the

original, pre-encoding raw video. The PSNR is compared to

two reference curves: i) the ideal PSNR (top curve labeled

“all layers”) of the stream for the case of no NALU loss,

where the resulting PSNR depends only on the degradation

due to the encoding process, and ii) the PSNR provided by

the base layer only (labeled “base layer”), assuming that all

base layer NALUs are received and all NALUs of other layers

are dropped.

Figure 3 confirms that the delivery performance of H.264

SVC is poor without application-aware scheduling enforced

by the VBN, i.e., when MAC frames, and as a consequence

NALUs, are dropped randomly. A sudden severe PSNR degra-

dation occurs under overload conditions. The resulting video

frequently “freezes” (meaning that several video frames were

lost), and the overall video quality is unacceptable. With an

average total video rate of 2.86 Mbps, this happens when three

streams are delivered. The PSNR does not degrade further

when additional streams are admitted. This is due to the fact

that the PSNR given by the comparison of two random frames

from the same test sequence is around 15 dB, as confirmed by

further experiments (not shown here). Thus, this is the lowest

PSNR value we can expect.

Conversely, the application-aware scheduler allows for a

smooth degradation of the H.264 SVC stream. When all 5

users share the channel, they achieve an average rate of 700

kbps per user. The PSNR approaches that of the base layer

alone, which is the expected behavior, given that the base layer

uses on average 650 kbps.

B. H.264 SVC versus AVC

Figure 4 shows the performance advantages of SVC (A)

compared to AVC. In both cases, frame losses are controlled

through the VBN scheduling. Again, the results confirm that

SVC is a much more suitable coding mechanism in a scenario

where large variations in the available capacity occur. When

three or more stations compete and an overload emerges, SVC

reduces the quality of the video, which results in a significantly

smoother PSNR degradation compared to AVC’s temporal

scalability adaptation.

While somewhat obvious, this consideration has important

practical implications on how to encode H.264 SVC streams

when they are delivered over a WLAN. Recalling that the

H.264 SVC base layer is AVC encoded, we expect that under

severe overload conditions where it is impossible to transmit

the base layer without NALU losses, the quality degradation

will become significant. This can be seen from Figure 5. The

setup is the same as that of Figure 3, with the fundamental

difference that the WLAN is configured to provide only a 2

Mbps PHY rate and the VBN rate is set to 1.5 Mbps. The

key difference between Figure 5 and Figure 3 is that video

stream scaling occurs immediately. The available bandwidth is

lower than the total bandwidth requirement for all the layers

5

0 8 16 24 32 40 48

10

20

30

40

50

Time (sec.)

Y
−

P
S

N
R

 (
d
B

)

without VBN

with VBN @ 6 Mbps

base layer

all layers

 1 V 2V 3V 4V 5V 5V

Fig. 3. SVC (A) with/without scheduler and WLAN @ 11 Mbps

0 8 16 24 32 40 48

10

20

30

40

50

Time (sec.)

Y
−

P
S

N
R

SVC with VBN @6 Mbps

AVC with VBN @6 Mbps

 1 V 2V 3V 4V 5V 5V

Fig. 4. SVC (A) versus AVC with scheduler and WLAN @ 11 Mbps

0 8 16 24 32 40 48

10

20

30

40

50

Time (sec.)

Y
−

P
S

N
R

 (
d
B

)

with VBN @ 1.5 Mbps

without VBN

base layer

all layers

 1 V 2V 3V 4V 5V 5V

Fig. 5. SVC (A) with/without scheduler and WLAN @ 2 Mbps

0 8 16 24 32 40 48
15

20

25

30

35

40

Time (sec.)

Y
−

P
S

N
R

 (
d

B
)

SVC(A)

SVC (B)

 1 V 2V 3V 4V 5V 5V

Fig. 6. SVC (A) and SVC (B) with scheduler and WLAN @ 11 Mbps

and, much more importantly, when three or more streams

compete, adaptation is required also for the base layer. As a

consequence, performance drops as in the AVC case (although

not nearly as dramatically as in the case of no application-

aware scheduling).

This insight is especially significant for the following rea-

son. In Figure 6, we run the experiments for two differ-

ent encoding choices: SVC (A) and SVC (B). The figure

clearly highlights that it is preferable to reduce the size of

the base-layer, especially if this produces only a marginal

degradation of the overall video encoding efficiency (as in our

experiments). While for SVC (A), degradation affects only

the enhancement layer NALUs, SVC (B) experiences base-

layer NALU losses and the resulting AVC temporal scalability

reduces PSNR much more severely.

C. Scheduler impact and performance

In Table II, we provide some summarizing results on

delivery efficiency for the previous experiments. In addition,

the last row shows the performance experienced by an AVC

stream for the scenario of Figure 5 with the VBN throttled to

1.5 Mbps.

The table reports three performance metrics: transmission

efficiency, defined as the percentage of NALUs received by the

client which can be used for decoding (i.e., for which encoding

dependencies and playout delay conditions are satisfied), the

total number of video frames that could not be decoded (out

of the 1490 frames transmitted), and the average PSNR over

the whole 50 seconds of the experiments.

The most interesting result provided in the table is the

transmission efficiency of the considered scheduler. Though

the scheduler does not guarantee that all NALU dependencies

will ultimately be satisfied, the performance for both AVC and

SVC cases with VBN is close to 100% efficiency. Without the

scheduler, transfer efficiency is always very poor.

The column reporting the number of missing video

frames gives an impression of the perceived quality of

the final video stream (again, refer to the web site at

http://netgroup.uniroma2.it/iwcld09 for visual

comparison of the actual streams). In the 6 Mbps scenario,

SVC yields 0 missing frames, compared to the 845 misses of

the AVC. In the low rate 1.5 Mbps scenario, almost all frames

are missing for AVC and SVC without scheduler, while a

reasonable quality is achieved in the SVC case with scheduler.

Looking at the actual video stream, we see that frames are

missing periodically and the SVC has scaled to operate at

about the half of the frame rate.

VI. CONCLUSIONS AND FURTHER RESEARCH DIRECTIONS

In this paper we have presented experimental results dealing

with application-aware H.264 Scalable Video Coding (SVC)

delivery over Wireless LANs. To the best of our knowledge,

6

TABLE II
SUMMARY PERFORMANCE

Video Scenario TX # Missing Average
Type (VBN, WLAN rate) Efficiency Frames PSNR

SVC (A) 6Mbps, 11Mbps 100.00 % 0 34.67

SVC (A) no VBN, 11Mbps 54.64 % 941 22.52

AVC 6Mbps, 11Mbps 99.92 % 845 25.25

SVC (B) 6Mbps, 11Mbps 98.39 % 121 32.75

SVC (A) 1.5Mbps, 2Mbps 100.00 % 799 24.02

SVC (A) no VBN, 2Mbps 21.33 % 1424 13.51

AVC 1.5Mbps, 2Mbps 99.39 % 1391 16.37
(not shown in the fig.)

these results are among the first that are based on experi-

mentation involving H.264 SVC in a real wireless testbed.

To accomplish this goal, we had to develop several software

components to provide functions such as streaming, NALU

dependency filtering, concealment of missing frames, etc.,

which are not readily supported by off-the-shelf publicly

available H.264 SVC-related software.

Our results prove the viability of the Virtual BottleNeck

(VBN) mechanism and the application-aware scheduling. The

VBN performs bandwidth throttling before the traffic is de-

livered to the WLAN Access Point, so that all packet loss

occurs inside the VBN. The scheduler prioritizes the packets

according to their importance for the video quality and also

takes the dependency of the packets into account. This allows

to discard packets at the VBN in a manner that has the least

negative impact on the overall video quality. The scheduler

maintains separate queues for the different priority levels.

Two major conclusions can be drawn from our preliminary

results. First, significant performance improvements can be

achieved even with very simple scheduling approaches (we

developed an approach “just” based on priority queuing).

Second, results show that SVC should be encoded with a base

layer that is as small as it can be without significantly affecting

overall encoding efficiency. This allows to cope well with the

specific bandwidth characteristics and fluctuations expected in

a WLAN. We believe that such a WLAN-aware SVC encoding

should be further explored to better understand to what extent

a base layer reduction is possible without impairing SVC

encoding efficiency, and to understand the impact of different

encoding choices for the remaining enhancement layers.

The experimental testbed highlighted in this paper can be

improved in several ways, which are currently ongoing work.

This includes i) extending the approach from application-

aware to full cross-layer, by further exploiting wireless channel

per-ssession rate adaptation and queueing status information;

this may require to abandon the VBN approach and directly

integrate the scheduler inside the WLAN AP, ii) identification

of more efficient (quality-aware) scheduling mechanisms, and

iii) extending the proposed approach to cope with more

complex hybrid scenarios where both uplink streaming and

downlink streaming may coexist.

VII. ACKNOWLEDGEMENTS

The authors wish to acknowledge Andrea Magurano for the

support in producing video coded traces and running experi-

mental campaigns. Claudio Pisa has been partially supported

by the Italian project PRIN-SESAME.

REFERENCES

[1] M. van der Schaar, S. Krishnamachari, S. Choi, X. Xu, “Adaptive cross-
layer protection strategies for robust scalable video transmission over
802.11 WLANs”, IEEE J. on Selected Areas in Communications, Vol.
21, No. 10, Dec. 2003, pp. 1752-1763

[2] H. Liqiao, D. Raychaudhuri, Liu Hang, K. Ramaswamy, “Cross layer
optimization for scalable video multicast over 802.11 WLANs”, 3rd IEEE
Consumer Communications and Networking Conference, Jan. 2006

[3] Y. P. Fallah, P. Nasiopoulos, H. Alnuweiri, “Efficient Transmission of
H.264 Video over Multirate IEEE 802.11e WLANs”, EURASIP Journal
on Wireless Communications and Networking, 2008

[4] Chuan Heng Foh, Yu Zhang, Zefeng Ni, Jianfei Cai, King Ngi Ngan,
“Optimized Cross-Layer Design for Scalable Video Transmission Over
the IEEE 802.11e Networks”, IEEE Trans. on Circuits and Systems for
Video Technology, Vol. 17, No. 12, Dec. 2007

[5] IEEE Standard 802.11-2007, IEEE Standard for Information technology
- Telecommunications and information exchange between systems -
Local and metropolitan area networks-Specific requirements - Part 11:
Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications; June 2007.

[6] A. Kamerman, L. Monteban, “WaveLAN-II: A high performance wireless
LAN for the unlicensed band”, Bell Labs Technical Journal, 1997, volume
2, issue 3, pp. 118-133.

[7] K. Ramachandran, H. Kremo, M. Gruteser, P. Spasojevic, I. Seskar, “Scal-
ability Analysis of Rate Adaptation Techniques in Congested IEEE 802.11
Networks: An ORBIT Testbed Comparative Study”, IEEE WoWMoM
2007.

[8] M. Heusse, F. Rousseau, G. Berger-Sabbatel, A. Duda, “Performance
anomaly of 802.11b”, IEEE Infocom, 2003.

[9] Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VQEG, Joint
Scalable Video Model. Doc. JVT-X202, July 2007.

[10] Joint Scalable Video Model - reference software:
http://ip.hhi.de/imagecom G1/savce/downloads/SVC-Reference-
Software.htm

[11] T. Zahariadis, “ASTRALS Project presentation”, IBC 2007, Amsterdam,
September 2007

[12] I. Kofler,M. Prangl, R. Kuschnig, H. Hellwagner, “An H.264/SVC-
based adaptation proxy on a WiFi router”, 18th ACM Int. Workshop
on Network and Operating Systems Support for Digital Audio and Video
(NOSSDAV), Braunschweig, Germany, May 2008, pp. 63-68.

[13] R. Kuschnig, I. Kofler, M. Ransburg, H. Hellwagner, “Design options
and comparison of in-network H.264/SVC adaptation”, J. of Visual
Commun. and Image Representation, Vol. 19, No. 8, Dec. 2008, pp. 529-
542.

[14] M. Eberhard, L. Celetto, C. Timmerer, E. Quacchio, H. Hellwagner,
F.S. Rovati, “An interoperable streaming framework for Scalable Video
Coding based on MPEG-21”, 5th Int. Conf. on Visual Information
Engineering, Aug. 2008. VIE 2008, pp.723-728

[15] D. Wu, Y. T. Hou, Y. Q. Zhang, “Scalable video coding and transport
over broadband wireless networks”, Proc. IEEE, vol. 89, no. 1, pp. 6-20,
2001.

[16] G. Bianchi, A. T. Campbell, R. Liao, “On utility-fair adaptive services in
wireless networks”, 6th Int. Workshop Quality of Service (IWQOS’98),
Napa Valley, CA, May 1998

[17] H. K. Lee, V. Hall, K. H. Yum, K. Kim, E. Kim, “Bandwidth estimation
in wireless LANs for multimedia streaming services”, IEEE Int. Conf. on
Multimedia and Expo (ICME), 2006.

[18] C. Sarr, C. Chaudet, G. Chelius, I. Lassous, “A node-based available
bandwidth evaluation in IEEE 802.11 ad hoc networks”, 11th Int. Conf.
on Parallel and Distributed Systems (ICPADS), 2005.

[19] S. Shah, K. Chen, K. Nahrstedt, “Available bandwidth estimation in ieee
802.11-based wireless networks”, ISMA CAIDA Workshop on Bandwidth
Estimation (BEst), 2003.

[20] M. Neilsen, K. Ovsthus, L. Landmark, “Field trials of two 802.11
residual bandwidth estimation methods”, IEEE Int. Conf. on Mobile
Adhoc and Sensor Systems (MASS), 2006.

