Distributed Tracing for Service Function Chaining
in Named Data Networking

Haruto Kobayashi*, Kenji Kanai®, Hidenori Nakazato*, Andrea Detti®
*Department of Computer Science and Communications Engineering, Waseda University, Tokyo, Japan,
kobayashi3chQ@asagi.waseda.jp
"Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
iFaculty of Science and Engineering, Waseda University, Tokyo, Japan, nakazato @waseda.jp
SCNIT, Department of Electronic Engineering, University of Rome “Tor Vergata”, Rome, Italy, andrea.detti @uniroma?2.it

Abstract—With the rapid expansion of IoT, there is a growing
demand for efficient data processing and network load opti-
mization. Service Function Chaining (SFC) has emerged as a
key technology for distributed processing, particularly in edge
computing environments. While SFC is traditionally implemented
over IP networks, recent research has explored Named Data
Networking (NDN) as a more flexible alternative, leveraging its
content caching and name-based forwarding. However, NDN’s in-
herent request aggregation and multicast mechanisms introduce
unique challenges in applying conventional distributed tracing
techniques, which are crucial for SFC applications to understand
potential root causes of problems.

This paper proposes a distributed tracing method for NDN-
based SFC (NDN SFC) that enables packet flow visualization and
network latency analysis. Our method introduces logging agents
on NDN routers to capture request flows and inter-node delays,
which are then formatted using OpenTelemetry for seamless
integration with visualization tools such as Grafana® and Jaeger.

Our tracing method helps to optimize service chains, to
enhance network performance evaluation, and to streamline
debugging, making NDN SFC deployment more practical. By
offering a more efficient alternative to traditional IP-based SFC,
our method supports the practical adoption of NDN SFC in IoT
and edge computing environments.

Index Terms—Service Function Chaining, Information-Centric
Networking, ICN, NDN, IoT, Distributed Tracing

I. INTRODUCTION

With the rapid proliferation of IoT devices, there is a
growing demand for technologies that efficiently process large
volumes of data while optimizing network load. In particular,
distributed processing techniques utilizing edge computing
have gained attention, with Service Function Chaining (SFC)
being one of the key approaches under consideration.

SFC is a technique for routing traffic through network
services such as load balancers in a specified order, enabling
optimal resource utilization. However, traditional SFC relies
on fixed host-to-host routing in IP networks, limiting flex-
ibility. Recently, Named Data Networking (NDN), a form
of Information-Centric Networking (ICN), has emerged as a
more adaptable approach. Unlike IP-based networking, NDN
transmits data based on content names, leveraging content
caching and name-based forwarding for improved efficiency.

This work was partly supported by the National Institute of Infor-
mation and Communications Technology (NICT), Japan, Grant Number
JPJ012368C05601.

By leveraging these properties, NDN SFC enables more
dynamic and flexible service chaining compared with tra-
ditional IP-based SFC. For instance, it allows for adaptive
service placement based on network load and efficient data
processing in edge environments. However, realizing these
benefits requires visibility into network activity and service
execution, necessitating distributed tracing. A challenge is
that no established tracing framework exists for NDN making
network observability, while distributed tracing is widely used
in IP-based networks.

In conventional IP-based SFC, distributed tracing embeds
trace identifiers into packets, allowing the reconstruction of
packet flows and service dependencies. However, NDN does
not follow a strict request-response model. Routers can ag-
gregate requests for the same content, and retrieved data is
multicast to multiple consumers. This characteristic disrupts
trace propagation, as a single identifier cannot accurately track
merged or split flows. Consequently, existing tracing methods
cannot be directly applied to NDN environments.

To address these challenges, we propose a distributed trac-
ing method for NDN SFC, assuming the NDN network is
implemented as an overlay on an IP network. Our method
introduces external logging agents that run as separate pro-
cesses on NDN routers and service nodes to capture network
latency and request propagation. The collected logs are format-
ted using OpenTelemetry, enabling seamless integration with
visualization tools such as Grafana® [1] and Jaeger [2].

By enabling integrated visualization of both service exe-
cution and packet flow, our method supports service chain
optimization, performance evaluation, and debugging [3]. As
previously discussed, NDN-based SFC offers greater flexibility
and efficiency compared to traditional IP-based approaches.
Our proposed method enhances the practical deployment of
NDN SFC by visualizing both network and service behaviors,
thereby supporting more effective implementations. This con-
tributes to making NDN SFC a viable option for [oT and edge
computing environments.

II. BACKGROUND

A. Named Data Networking

Named Data Networking (NDN) [4] is a type of ICN that
adopts name-based routing as its core mechanism. Unlike

traditional host-based addressing, NDN places content at the
center of networking, improving the efficiency of data delivery.

In NDN, a node that requests content is called a Consumer,
while a node that provides content is called a Producer. A
Consumer sends an [Interest packet specifying the desired
content name. Upon receiving this Interest, routers forward
it toward the appropriate Producer based on the content name.
Once the Interest reaches the Producer, the requested content is
retrieved and encapsulated in a Data packet, which is then sent
back to the Consumer along the reverse path of the Interest.

Furthermore, in NDN, Interest packets and Data packets
do not always have a strict one-to-one correspondence. When
multiple Consumers send Interests for the same content,
routers can aggregate these requests and forward only a single
Interest upstream. Once the corresponding Data is retrieved
from the Producer, the router multicasts it to all requesting
Consumers, reducing redundant packet transmissions. This
mechanism enhances bandwidth efficiency and reduces net-
work congestion, making NDN particularly effective for scal-
able content distribution.

B. NDN Function Chaining Workflow+

Several NDN-based SFC approaches have been proposed,
including ICN-FC [5] and NFN [6]. NFN executes functions at
a centralized router, causing scalability issues due to process-
ing bottlenecks. ICN-FC uses ICN names to define function
chains but lacks support for nested and parallel compositions.

We adopt NDN Function Chaining Workflow+ (NDN-
FCW+) [7], which overcomes these limitations by describing
service function chains using hierarchical content names. Each
function autonomously retrieves and processes required data,
enabling recursive execution across distributed nodes.

1) Name Structure: In NDN-FCW+, each function applica-
tion is expressed as a routable NDN name, where the function
prefix is followed by arguments enclosed in parentheses.

For example, applying /A/func to /B/data and
/C/data yields:

JA/func/(/B/data, /C/data)

Note that while this syntax may appear unfamiliar, it con-
forms to the standard NDN name structure and can be directly
used in Interest packets. This structure enables flexible com-
position of nested and parallel service chains using standard
name-based forwarding, without additional metadata.

2) NDN-FCW+ Execution Flow: Fig. 1 illustrates the ex-
ecution flow of NDN-FCW+, where the Consumer requests
/A/func/ (/B/data, /C/data).

(D The Consumer sends an Interest packet specifying
/A/func/ (/B/data, /C/data).

(@ The NDN router uses longest prefix matching to forward
the Interest to /A/func.

(® Function A parses the arguments and sends separate
Interest packets for /B/data and /C/data.

(® Producer B and Producer C return Data packets contain-
ing the values of /B/data and /C/data, respectively.

/C/func
® To /A/func by
@ /A/func/(/B/data, /C/data) longest match Producer C
Consumer NDN Router
/B/func

Apply function
(® to /B/data, /C/data 3
and return to Consumer

@ /C/data, /B/data
returns data

/A/funcl))

Function A

(@ Parse and request data for /B/data, /C/data

Fig. 1. Execution flow of NDN-FCW+

192.168.0.1 192.168.0.2 192.168.0.3 192.168.0.4 192.168.0.5

{ Consumer Router 1 Router 2 Router 3 Producer

?ms ms ?ms

Fig. 2. Target network for tracing

(3 Function A receives both Data packets, applies the
function /A/func, and returns the processed result to
the Consumer.

C. OpenTelemetry

OpenTelemetry [8] is an open-source observability frame-
work for collecting, processing, and exporting telemetry data
such as logs, metrics, and traces. It supports structured, end-
to-end tracing using trace IDs and hierarchical spans, and
integrates seamlessly with visualization tools such as Grafana
and Jaeger.

This study uses OpenTelemetry to trace packet flows and
service execution in an NDN SFC environment. Each span rep-
resents an event with timing and location metadata, enabling
unified analysis of both network-layer delays and application-
layer processing.

While ICN-native mechanisms like Reflexive Forwarding
and ICN Ping provide per-hop probing, they are limited to low-
level telemetry and synthetic traffic. In contrast, OpenTeleme-
try captures high-level dependencies across distributed nodes
using actual operational requests. This enables accurate tracing
of nested and parallel service chains—capabilities critical for
debugging and performance optimization in SFC.

Furthermore, the OpenTelemetry ecosystem offers extensi-
ble tooling and active community support, enhancing main-
tainability and flexibility. These properties make it particularly
suitable for observability in NDN-based SFC deployments.

1) Log Structure and Visualization: OpenTelemetry sup-
ports various log formats. In this study, we use trace logs
to track packet flows. A trace log consists of multiple spans,
each representing an event with a start time, an end time,
and the node at which it occurred. Spans are organized in a
hierarchical structure, allowing for parent-child relationships.

For instance, consider the network in Fig. 2 where a
Consumer retrieves data from a Producer.

To record the transmission delays between Routerl and
Router2 (red), the internal processing time at Router2 (blue),
and the transmission delay between Router2 and Router3

/C/data

TABLE 1 X Router
SPANS TO BE RECORDED =Logging Agent ﬁ
No. Node Span Name Start Time End Time Rout — /
T router] Forwarding to 12 2024-12-10 12:00:01 2024-12-10 12:00:02 [conumer | o unetion
2 router2 Processing at r2 2024-12-10 12:00:01 2024-12-10 12:00:02 & & tor [Bidata
3 router2 Forwarding to r3 2024-12-10 12:00:01 2024-12-10 12:00:02 H
4 router3 Processing at r3 2024-12-10 12:00:01 2024-12-10 12:00:02 \
TABLE II 2
SPAN RECORDING TIMINGS) ﬁej-:r o emetemetry - ° Reqqest Log
a0 S 04_ ~ « Service Log)
No. Node _ Start Time End Time Grafana .\, g * Request Chain
1 router] Interest Sent Data Received JAEGER Log aggregation Log Server
2 router2 Interest Received Data Sent
3 router2 Interest Sent ' Data Received Fig. 3. Overview of the proposed method
4 router3 Interest Received Data Sent

(green), the four spans shown in Table I are required to be
recorded.

The timing of each span’s recording is summarized in
Table II.

Using this log format, one can calculate communication
delays and processing times. For example, the delay between
Routerl and Router2 corresponds to the difference between
the start time of span No. 1 and the start time of span No. 2.

These spans can be exported to visualization tools such as
Grafana and Jaeger via OpenTelemetry, which allows users to
analyze packet traversal timing and routing structure. In our
implementation, the parent-child structure of spans further en-
ables reconstruction of the end-to-end topology of the service
function chain.

2) Challenges in Applying Conventional Tracing to NDN:
In OpenTelemetry, trace IDs are generally propagated by
embedding them in packets, such as via HTTP traceparent
headers or gRPC metadata. However, in NDN, request aggre-
gation causes multiple requests to merge into a single Interest,
complicating trace ID propagation.

When multiple Interests from different Consumers request-
ing the same content arrive at a router, the router aggregates
them and forwards just the first received Interest upstream.
Once the corresponding Data is received, it must be multicast
to the requesting Consumers. Embedding a single trace ID
in the Data packet cannot differentiate individual requests
and it renders standard tracing approaches ineffective. Hence,
an alternative mechanism is required to link requests and
responses in NDN SFC.

III. RELATED WORK

Detti et al. [9] proposed an architecture that integrates
Information-Centric Networking (ICN) with Software-Defined
Networking (SDN) to enable flexible management of ser-
vice function chains. In their design, function chains are
described using ICN names, and a centralized SDN controller
orchestrates the flow of data through a sequence of named
functions. While their approach successfully demonstrates
function chaining over ICN, it primarily focuses on control and
data delivery mechanisms. It does not address observability or

provide visibility into the runtime behavior of function chains,
such as per-node execution latency or service traversal paths.

Yu et al. [10] proposed a general-purpose measurement
framework for NDN that supports both active and passive
measurements using standard NDN primitives. Their design
allows clients to request metrics such as latency and bandwidth
via a modular architecture of clients, agents, and probes.
While this provides a flexible mechanism for network-level
diagnostics, the framework focuses on per-packet or per-link
measurement operations. It does not support tracing high-level
service workflows across multiple function nodes, nor does it
offer integrated visualization of end-to-end Service Function
Chains.

In contrast to these existing works, our proposed system
enables distributed tracing and visualization of NDN-based
service function chains. By introducing external log agents
and employing the OpenTelemetry framework, our method
provides unified observability across both application-layer
function execution and network-layer routing. Furthermore,
our system does not require any modification to existing NDN
forwarders (e.g., NFD), ensuring non-intrusive deployment. To
the best of our knowledge, this is the first approach that enables
end-to-end visualization of SFC execution in NDN through
distributed, per-request tracing.

IV. PROPOSED METHOD

This study proposes a method for tracing and visualizing
the request-level packet flow and service function processing
time in an SFC implemented on NDN over IP. We introduce
logging agents deployed on NDN routers and service function
nodes to collect transmission and reception logs of Interest and
Data packets. These logs are then converted into OpenTeleme-
try format, enabling comprehensive network analysis using
visualization tools such as Grafana and Jaeger. The overall
architecture of our proposed method is illustrated in Fig. 3.

As shown in Fig. 3, logging agents deployed on routers and
service function nodes collect packet transmission and recep-
tion logs and send them to a log server. The log server stores
these logs in a database, aggregates the collected data, and
converts them into OpenTelemetry format for visualization.

IC/data

e 7
/A/func/(/C/data, /B/data) H
.................................. R

H
}‘:.{ Producer C } :
/A/func

Router

/B/data

H producrs |

.......... S T LLL L LI L TH

Fig. 4. Structure of a Service Function Chain in NDN-FCW+

A. Structure of Service Function Chain

In NDN-FCW+, a single SFC consists of multiple Interest
requests. Each service function within the SFC generates
new Interest packets to acquire necessary data, processes
the obtained data, and then returns the final result to the
requester. For example, in the same SFC example used in
Section II-B2, function /A/ func generates two Interest pack-
ets to request /B/data and /C/data upon the reception
of request /A/func/ (/B/data, /C/data) as shown in
Fig. 4.

In NDN-FCW+, a single SFC comprises multiple Inter-
est/Data exchanges. Therefore, to fully trace the SFC, it is
essential not only to track individual requests but also to
capture the relationships among them. Our proposed method
records the trace IDs of each request and maintains their
dependencies, enabling the reconstruction of the entire SFC
structure.

B. Request-Level Packet Flow Tracing

1) Basic Concept: To enable request-level tracing without
modifying NDN forwarders (e.g., NFD), our method intro-
duces external logging agents running as separate processes
on the same host as each router. These agents monitor the
transmission and reception of Interest and Data packets, log-
ging them to a central server for analysis.

Each agent maintains the following metadata:

o Content Name (e.g., /A/func/ (/B/data, /C/data))
o Trace ID (reused from the Interest packet’s Nonce)

¢ Source/Destination IP Addresses

« Reception and Transmission Timestamps

These logs are used to reconstruct packet flows and compute
inter-node delays, with all logic and data management handled
externally, ensuring non-intrusive deployment.

2) Mapping Interest and Data Packets: As discussed in
Section II-C2, NDN’s request aggregation makes it difficult to
trace Interest-Data relationships using embedded identifiers.
To address this, our logging agents maintain Incoming and
Outgoing Tables for each router, mapping Interest and Data
packets based on IP addresses, content names, and timing.

The Incoming Table records received Interest packets, while
the Outgoing Table stores forwarded ones. When a Data packet
is received or sent, the agent uses these tables to identify the
corresponding Interest and its Trace ID.

TABLE III
INCOMING TABLE (INTEREST PACKET RECEPTION)

Trace ID Content Name Src IP Reception Time
12345 /A/func/(/B/data,/C/data) 192.168.1.2 2024-12-10 12:00:01
67890 /B/data 192.168.1.3 2024-12-10 12:00:02
13579 /C/data 192.168.1.4 2024-12-10 12:00:03
14879 /A/func/(/B/data,/C/data) 192.168.1.5 2024-12-10 12:00:05

TABLE IV

OUTGOING TABLE (INTEREST PACKET TRANSMISSION)

Trace ID Content Name Dst IP Transmission Time
12345 /A/func/(/B/data,/c/data) 192.168.1.5 2024-12-10 12:00:01
67890 /B/data 192.168.1.6 2024-12-10 12:00:02
13579 /C/data 192.168.1.7 2024-12-10 12:00:03

Tables IIT and IV show examples of the stored entries. This
mechanism enables accurate tracing even in the presence of
Interest aggregation, all without modifying router internals.

Each router’s logging agent records the information into the
Incoming Table when receiving an Interest packet and into
the Outgoing Table when forwarding an Interest packet. The
Nonce field in the Interest packet is used as Trace ID. When a
Data packet arrives, the logging agent references the tables to
associate it with the correct Trace ID and Interest by matching
the IP addresses and Content Name of the Data packet with
the table entries. The logging agent performs the following
operations:

o Upon Interest Reception: Add an entry to Incoming Table
and send a log to express Interest reception with Trace
ID, Content Name, source and destination IP addresses
of the Interest, and the reception time of the Interest.

e Upon Interest Transmission: Add an entry to Outgoing
Table and send a log to express Interest transmission
with Trace ID, Content Name, source and destination IP
addresses of the Interest, and the transmission time of the
Interest.

o Upon Data Reception: Retrieve Trace ID by referring to
the Outgoing Table, where the source IP and Content
Name of the received Data match with Dst IP and Content
Name in the table, respectively. Send a log to express
Data reception with the retrieved Trace ID, Content
Name, source and destination IP addresses of the Data,
and the time of reception.

o Upon Data Transmission: Retrieve Trace ID and Recep-
tion Time by referring to the Incoming Table, where
the destination IP and Content Name of the transmitting
Data match with Src IP and Content Name in the table,
respectively. Send a log to express Data transmission
with the retrieved Trace ID, Content Name, source and
destination IP addresses of the Data, and the time of
transmission.

3) Operation Example in Request Aggregation: The pro-
posed mechanism effectively avoids Trace ID mismatches
caused by request aggregation in NDN and ensures that each
Interest and Data pair is correctly mapped.

ID: 2
ID: 1 /B/data parent_id | child_id
/A/func/(/B/data, /C/data) ID: 3 1 2
/C/data 1 3

Fig. 5. SFC tracing image (Left: Chain structure, Right: Dependency table
example)

In the Incoming Table shown in Table III, two Interest
packets with Trace IDs 12345 and 14879 request the same
content. However, due to aggregation, the router forwards only
a single Interest packet upstream as shown in the Outgoing
Table (Table IV).

When the Data packet with its Content Name
/A/func/ (/B/data, /C/data) arrives at the router, a
log is generated as described in Section IV-B2. The router
transmits two IP packets encapsulating the Data packet
with two different destination IP addresses, 192.168.1.2
and 192.168.1.5. Creating two packets out of one Data
packet is the function of NDN routers if two Interests are
aggregated at the routers. The two IP addresses correspond
to the source IP addresses of Interest packets with Content
Name /A/func/(/B/data, /C/data) received in
advance, and are stored as Src IPs in the Incoming Table.
Trace IDs, 12345 and 14879, for the two IP packets can be
found in the Incoming Table by matching the destination IP
addresses and Content Names of the IP packets with Src IP
and Content Name in the Incoming Table. Two logs for Data
transmission with found Trace IDs are generated as described
in Section IV-B2.

4) Handling of Segment Splitting: In NDN, large content
is divided into multiple segments, each transmitted separately
via Interest and Data packets. This study focuses on measuring
the overall delay from request initiation to final data retrieval,
rather than tracking each segment.

To achieve this, only the first Interest and last Data packets
are recorded. The first Interest packet is identified as the
request containing the base content name without a segment
ID. The last Data packet is determined using the Final Block
ID, a metadata field that indicates the highest segment number
in a segmented transfer. A Data packet is recognized as the
last if its segment ID matches this value.

By recording only these two packets, the method eliminates
unnecessary segment-level logging while ensuring a complete
evaluation of the service function chain.

C. Capturing Dependencies in Service Function Chain

As shown on the left side of Fig. 5, a single SFC consists of
multiple requests. For example, a function node may send new
Interest packets to fetch data from separate Producers, process
the retrieved data, and then return the result to the Consumer.
To reconstruct these dependencies, the function node records
the Trace ID of the received Interest and the Trace ID of the
newly sent Interest on the log server. This information is stored
in a table, as shown on the right side of Fig. 5.

Consumer1

[Router2] [Roulter3][Rou:er3][Router5]
[[

I
Producer2] Functionz] [Producer3]

/ N\
[Producer1][Consumerz]

Fig. 6. Network topology used in the evaluation

D. Reconstructing the Service Function Chain

The log server stores the received packet logs in a database
and reconstructs the complete SFC trace using the following
steps:

1) Tracing Related Trace IDs: Starting from the Trace ID
of the top-level request (the Consumer’s request), the
system recursively follows the dependency table created
in Section IV-C to retrieve all related Trace IDs.

2) Retrieving Log Data: The system retrieves all Interest
and Data packet logs corresponding to the extracted
Trace IDs.

3) Reconstructing the Packet Flow: Using timestamp infor-
mation, the system reconstructs the sequence of trans-
missions, clarifying network delays and packet routes.

E. Visualizing Using Openlelemetry

Reconstructed trace data is converted into OpenTelemetry
spans and transmitted to visualization tools like Grafana and
Jaeger, enabling integrated analysis of Interest/Data transac-
tions and service execution in an SFC.

These capabilities facilitate efficient optimization and de-
bugging of NDN SFC deployments in edge computing and
IoT environments.

V. PRELIMINARY EVALUATION

We conducted a preliminary evaluation by implementing the
proposed distributed tracing mechanism in a Docker-based em-
ulated environment, where each NDN node (including routers,
function nodes, and the logging server) was deployed as an
independent container. Fig. 6 shows the network topology
used.

We issued the following two requests:

1) /functionl/service/
(/producerl/data, /producer2/data)

2) /functionl/service/
(/function2/service/ (/producer4/data),
/producer3/data)

This evaluation aims to verify the correctness of tracing and
the feasibility of visualizing service execution paths and timing
information. Although precise performance metrics such as
delay or overhead were not measured, the system successfully

J Router2]-[Producer1]

[Consumer1]-[Router1]-[Functiom

L[Router3]-[ProducerZ]

Fig. 7. Request 1) node traversal path

(l)ms 600msI

Consumer! EEFEEI—

Router]
LFunction1 581.51ms

Router2 B 22.59ms

LProducer1 22.13ms

Router2 I 22.28ms

LProducer2 21.9ms

Fig. 8. Request 1) execution timeline and per-node latency

produced meaningful outputs including traversed paths and
execution timeline.

Figures 7 and 8 show the reconstructed packet flow and
execution timeline for request 1). Due to space constraints,
we illustrate only the results of request 1), but the same
tracing and visualization procedures were successfully applied
to request 2) as well, confirming that the system supports
nested and parallel function chaining scenarios.

Furthermore, from the logs of both request 1) and request 2),
we successfully reconstructed the full SFC network topology.
This included not only the paths between nodes, but also inter-
node communication delays and per-node processing times,
enabling comprehensive visualization of the entire execution
structure.

VI. SUMMARY

In this paper, we proposed a distributed tracing method
for SFC in NDN, addressing its unique challenges and en-
hancing observability. Our approach enables comprehensive
performance analysis and debugging by integrating service
execution and packet flow tracing. The key contributions are:

1) NDN-aware tracing mechanism
We handle request aggregation, multicast data delivery,
and segmentation, overcoming limitations of conven-
tional tracing techniques.

2) Unified application and network layer visualization
Our method captures both service execution and packet
flow, enabling detailed performance analysis.

3) OpenTelemetry integration
Standardizing tracing data in OpenTelemetry format
allows seamless use with tools like Grafana and Jaeger.

4) Non-intrusive deployment
Logging agents can be deployed on existing NDN
routers and service nodes without modifying packet
structures.

Our approach improves NDN SFC’s practicality by facil-
itating debugging, optimization, and performance evaluation.
This strengthens its viability as a scalable alternative to IP-

based SFC, supporting adoption in IoT and edge computing
environments where flexibility and efficiency are critical.
The full source code used in this study, including
the implementation of logging agents and the tracing vi-
sualization pipeline, is publicly available at the follow-
ing GitHub repository: https://github.com/kobayashiharuto/
NDN-FC-WorkflowPlus-Tracing

VII. FUTURE PROSPECTS

This study demonstrated the feasibility of visualizing both
network- and application-layer behaviors in NDN SFC, pro-
viding a foundation for further development and deployment.

To enhance robustness, future research could explore in-
corporating error handling and Interest retransmission mecha-
nisms, leveraging OpenTelemetry’s error logging for failure
analysis and recovery. For scalability in large-scale envi-
ronments, selective logging techniques such as prefix-based
request tagging may also be necessary to reduce overhead.

Furthermore, evaluating the resource impact of logging
infrastructure—such as CPU, memory, and storage usage at
logging agents and servers—would be valuable for understand-
ing its applicability under high-throughput conditions. This
could inform the design of scalable architectures based on
distributed log aggregation or load balancing.

Such advancements are expected to support the practical
and efficient deployment of NDN SFC in edge and cloud
environments.

REFERENCES

[1] Grafana Labs, “Grafana Documentation”,
https://grafana.com/docs/grafana/latest/, Accessed: Feb. 26, 2025.

[2] Jaeger Project, “Jaeger Documentation”,
https://www.jaegertracing.io/docs/latest/, Accessed: Feb. 26, 2025.

[3] M. Usman, S. Ferlin, A. Brunstrom, and J. Taheri, “A Survey on
Observability of Distributed Edge & Container-Based Microservices,”
IEEE Access, vol. 10, pp. 86904-86919, Jul. 2022.

[4] V.Jacobson, D.K. Smetters, J.D. Thornton, M.F. Plass, N. Briggs, and R.
Braynard, “Networking named content”, Commun. ACM, vol. 55, no. 1,
pp. 117-124, 2012.

[5] Lei Liu; Yang Peng; Bahrami, Mehdi; Liguang Xie; Ito, Akira; Mnat-
sakanyan, Sevak; Gang Qu; Zilong Ye; Huiping Guo, “ICN-FC: An
Information-Centric Networking based framework for efficient func-
tional chaining” 2017 IEEE International Conference on Communica-
tions (ICC), pp. 1-7, 2017.

[6] Tschudin, Christian; Sifalakis, Manolis, “Named functions and cached
computations” 2014 IEEE 11th Consumer Communications and Net-
working Conference (CCNC), pp. 851-857, 2014.

[71 H. Kobayashi and H. Nakazato, “Service Function Chain Description
Scheme in Named Data Networking”, in Proc. IEEE CQR, Sep. 2024,
pp. 1-6.

[8] OpenTelemetry, “Documentation”, https://opentelemetry.io/docs/, Ac-
cessed: Feb. 10, 2025.

[9]1 A. Detti, C. Pisa, N. Blefari-Melazzi, and M. Pomposini, “Exploiting
ICN for flexible management of software-defined networks”, Proc. of
the Ist ACM Conference on Information-Centric Networking (ICN),
pp. 107-116, 2014.

[10] Y. Yu, D. Pesavento, T. Song, C. Huang, J. Burke, and L. Zhang, “A
network measurement framework for named data networks”, Proc. of
the 4th ACM Conference on Information-Centric Networking (ICN),
pp. 130-140, 2017.

