
ThingVisor Factory: Thing Virtualization Platform

for Things as a Service

Kenji Kanai
Waseda Research Institute for

Science and Engineering

Waseda University

 Tokyo, Japan

 k.kanai@aoni.waseda.jp

Hidenori Nakazato
 Dept. of Computer Science and

Comm. Engineering

Waseda University

Tokyo, Japan

nakazato@waseda.jp

Hidehiro Kanemitsu
Dept. of Computer Science

Tokyo University of Technology

 Tokyo, Japan

kanemitsuh@stf.teu.ac.jp

Andrea Detti
Electronic Engineering Dept.

University of Rome Tor Vergata, CNIT

 Rome, Italy

 andrea.detti@uniroma2.it

ABSTRACT

In order to provide interoperability of cross-domain IoT

applications involving different IoT platforms, the authors

previously proposed a virtual IoT system called VirIoT. The

proposed system is composed of two functionalities: ThingVisor

and vSilo, and it aims at decoupling IoT device providers and IoT

application developers. ThingVisor enables to produce virtual IoT

devices, or Virtual Things, from physical IoT devices for sharing

the physical devices among cross-domain IoT applications. In

addition, vSilo enables to bridge between such Virtual Things and

IoT applications for the interoperability of cross-domain IoT

devices. In this paper, in order to enhance the VirIoT system, we

propose ThingVisor Factory that helps to design ThingVisors in a

user-friendly way and deploy them on demand autonomously by

following container orchestration methodologies, such as

Kubernetes. ThingVisor Factory is based on two concepts:

dataflow programming-based Graphical User Interface (GUI) and

service function chaining-based ThingVisor development.

CCS CONCEPTS
Networks → Network services → In-network processing

KEYWORDS

IoT virtualization, Thing Hypervisor, Service function chaining,

IoT platform

ACM Reference format:

Kenji Kanai, Hidenori Nakazato, Hidehiro Kanemitsu, Andrea Detti. 2020.

ThingVisor Factory: Thing Virtualization Platform for Things as a Service.

In Cloud Continuum Services for Smart IoTSystems (CCIoT ’20), November

16–19, 2020, Virtual Event, Japan. ACM, New York, NY, USA, 6 pages.

https://doi.org/10.1145/3417310.3431399

1 Introduction

Thanks to evolution of wireless sensor networking and cloud

computing, Internet of Things (IoT) has been not only collecting

interest in academia but also applied in business areas [1, 2]. IoT

technologies are expected to contribute to accelerating

development of smart cities, while smart city application

developers and providers require to simplify IoT application

development and support large scale IoT deployment for reduction

of expenditure and longer sustainability.

To address this demand, currently, IoT cloud services and IoT

platform pay much attention to smart cities application developers.

The IoT cloud services, such as Google Cloud IoT, AWS IoT and

Microsoft Azure IoT, provide cloud computing platform and

network accessibility between IoT devices and cloud servers to the

developers. In addition, the IoT platforms, such as oneM2M [3] and

FIWARE [4], arrange IoT data sharing platforms. Such IoT

platforms can exchange IoT data between cross-domain smart cities

applications via specific IoT brokers, such as Mobius Broker [5]

and Orion Context Broker [6], by encapsulating semantic IoT data

model, such as oneM2M and Next Generation Service Interface v2

(NGSIv2). For the developers, preparing such environments from

scratch is a heavy burden and consumes large expenditure.

Therefore, Infrastructure as a Service (IaaS) solution is current

main streams for the developers.

However, such IoT platformers construct the IoT platforms as

isolated “silos” containing both the infrastructures and the IoT

software services. In addition, in the isolated silo environments, the

IoT platforms do not provide the interoperability of cross-domain

IoT applications among different IoT platforms. This situation

Permission to make digital or hard copies of all or part of this work for personal

orclassroom use is granted without fee provided that copies are not made or

distributedfor profit or commercial advantage and that copies bear this notice and

the full citationon the first page. Copyrights for components of this work owned by

others than ACMmust be honored. Abstracting with credit is permitted. To copy

otherwise, or republish,to post on servers or to redistribute to lists, requires prior

specific permission and/or afee. Request permissions from permissions@acm.org.

CCIoT’20, November 16-19, 2020, Virtual Event, Japan

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8131-4/20/11...$15.00

https://doi.org/10.1145/3417310.3431399

CCIoT’20, November 16-19, 2020, Virtual Event, Japan Kanai et al.

prevents entering brand new application developers to deploy their

smart IoT applications and includes a risk of opposing growth of

IoT business, such as development of smart cities.

To address this fact, the authors of this paper tackle the research

project named “Fed4IoT [7]” which is a Research and Innovation

Action jointly funded by the European Commission and Japan’s

Ministry of Internal Affairs and Communications (MIC). Fed4IoT

aims at realizing the federation of IoT and cloud infrastructures to

provide scalable and interoperable smart city applications. Fed4IoT

project will not standardize a brand new IoT platform itself but re-

use the concepts of IoT platforms and virtually integrate the cross-

domain IoT platforms by adapting the concepts of visualization

technologies, such as computer virtualization and network

virtualization.

In our previous work [8], we have proposed the key concepts of

Fed4IoT, such as IoT Virtualization (VirIoT), Thing Hypervisor

(ThingVisor) and Virtual Silo (vSilo). As presented in the same

paper, VirIoT enables to decouple the IoT platformers (e.g., IoT

infrastructure providers) from both IoT application developers and

providers. Thus, the IoT application developers can develop their

own IoT services by sharing the IoT data produced from the cross-

domain IoT platforms. In addition, the IoT application providers

(or tenants) can quickly deploy their IoT applications in cross-

domain sites (e.g., smart cities) without any adaptation of domain-

specific IoT infrastructures because VirIoT absorbs such

differences.

To enable such decoupling, Fed4IoT introduces two unique

concepts: ThingVisor and vSilo. ThingVisor stands for the IoT

application developers and enables to produce virtual IoT devices,

or Virtual Things, from physical IoT devices in order to share the

IoT devices among cross-domain IoT services, and vSilo stands for

the IoT application providers and enables to bridge between such

Virtual Things and IoT applications in order to achieve the

interoperability of cross-domain IoT devices.

In this paper, in order to enhance the concepts of VirIoT, in

particular ThingVisor, we propose ThingVisor Factory that helps

to design on-demand ThingVisors in a user-friendly way and

deploy them autonomously by considering their networking and

computing demands in a cloud/edge/fog computing manner. To

address this issue, ThingVisor Factory is based on two concepts:

dataflow programming-based Graphical User Interface (GUI) and

service function chaining-based ThingVisor development. It should

be noted that ThingVisor Factory does not require any

modifications to VirIoT (and other IoT platforms) and can be used

as middleware to develop and deploy ThingVisors. ThingVisor

Factory is closely related to one of the deliverables of our Fed4IoT

project, and the paper summarizes the content of Deliverable 3.2

[7].

2. Related Work

2.1 Virtualization Technologies

As reported in the survey [9], many researches have been

conducted on object (or “Thing”) virtualization which represents

the methodology of how to map physical devices into virtual spaces,

and this concept is quite similar to cyber-physical system.

According to the same survey, authors of [9] introduced four types

association between real and virtual objects: one-to-one, one-to-

many, many-to-one, and many-to-many association. The one-to-

one association indicates that a single physical object (or IoT

device) produces only one virtual object, and oneM2M and

FIWARE handle the IoT data in such association manner. The one-

to-many association indicates that a single physical object produces

multiples virtual objects, and, the IoT-A project [10] and the

COMPOSE project [11] attempted to develop such functionalities

in order to facilitate the service orchestration. Alternatively, the

many-to-one association denotes that multiple physical objects are

aggregated to a single virtual object, and the SENSEI project [12]

studied on such association where heterogenous sensors and

actuators are integrated into a homogenous (virtual) device for

efficient management and operation. Furthermore, the many-to-

many association represents a hybrid case between many-to-one

and one-to-many associations, and the iCore project [13] provided

such functionality of interoperable physical objects and/or virtual

objects in order to satisfy diverse application requirements. The

iCore architecture can reuse (or share) the physical objects among

virtual objects, and vice versa.

Inspired by the research projects and efforts, the Fed4IoT

project proposes virtual IoT platform (VirIoT) [8] enables to

interoperable among cross-domain IoT devices, IoT platforms and

IoT applications by adapting novel visualization technologies, such

as container-based virtualization and networking softwarization.

Although the concept of Thing virtualization is based on the related

research projects [10-13], VirIoT introduces the concept of Thing

virtualization, named “Thing Hypervisor (ThingVisor)”, by

referring a more cloud-native virtualization scheme in order to

interoperate other cloud-native platforms, including FIWARE-

native FogFlow [15], and other IoT platforms.

2.2 Service Function Chaining

As presented in [8], service function chaining is one of candidate

technologies to develop ThingVisors. Service function chaining is

one of network virtualization (or softwarization) technologies

regarding Software Defined Networking (SDN) and Network

Function Virtualization (NFV). Because the service function

chaining can be realized in-network processing, it is possible for

network operators to manage networking and computing resources

efficiently and flexibly. The service function chaining is also one

of promising solutions in order to realize Thing virtualization in the

Fed4IoT project, while operation and management of service

function chaining heavily depends on communication protocols. In

order to realize the service function chaining, there are three

candidates of communication protocols, such as P2P over IP,

Pub/Sub over IP and Information Centric Networking (ICN). One

of challenging issues for service function chaining is routing

resolution.

In P2P over IP model, the service function chaining is operated

by the SDN manner, such as OpenFlow. The service functions (or

virtualized network functions) are identified by using specific tags

ThingVisor Factory: Thing Virtualization Platform for Things as a

Service
CCIoT’20, November 16-19, 2020, Virtual Event, Japan

called Network Service Header (NSH) tags. The NSH tag is embed

in IP packet header, and IP routers forward the IP packets according

to the NSH tag. The architecture of this service function chaining

is standardized as IETF RFC7665 [16] and RFC 8300 [17].

In Pub/Sub model which is proposed in the previous work [14],

unlike the P2P over IP model, the routing for the service function

chaining is handled on the application layer. The service functions

are identified by topic names for Pub/Sub communications, such as

MQTT and Apache Kafka. The service function subscribes a

specific topic name to receive a required data and publishes an alter

topic name to produce a processed data. In this model, because the

routing can be managed on the application layer, it is easy to

implement, but, load balancing of Pub/Sub brokers is essential.

In ICN [18] model, this case, the communication model is

completely different from the previous two models. Because ICN

routing is ideally resolved by not IP address but content name, the

communication model indicates request-response-type

communication. ICN service function chaining [19, 20] is required

to the management of routing table called forwarding information

base (FIB) on ICN router level like P2P base and the management

of interest name on the application layer like a Pub/Sub base.

Although, ICN service function chaining is a challenging topic,

potential ICN capabilities, such as in-network caching and in-

network processing, provide more efficient and flexible operation

to the service function chaining.

3. Thing Virtualization

As presented in Introduction, Thing Virtualization is a unique and

important concept of VirIoT. For IoT application developers,

processed data (or knowledge) is important rather than the raw IoT

data produced by physical IoT devices (e.g., Real Things). In

VirIoT, such knowledge is defined as “Virtual Thing” and “Thing

Hypervisor (ThingVisor)” produces and manages diverse such

Virtual Things instead of IoT application developers. As Similar to

Hypervisor of computing virtualization, ThingVisor can conceal

different hardware configurations of Real Things, including

network configurations and provide appropriate IoT data

processing, like data copying, fundamental statistical analysis and

complex image processing, instead of IoT application (i.e.,

ThingVisor create Virtual Things from Real Things). Although

FogFlow is an attractive solution to realize ThingVisors, we adopt

service function chaining technology to realize ThingVisors. By

using ThingVisors, IoT application developers need not to pay

attention of conditions of Real Things and data processing of Real

Things, and just access to Virtual Things in order to retrieve require

IoT data or knowledge. Thus, ThingVisor the key concept in order

to decouple Thing providers and IoT application developers, and

“ThingVisor developers” may do their businesses such as “Things

as a Service”.

4. VirIoT ThingVisor Factory

4.1 Concept of VirIoT ThingVisor Factory

VirIoT ThingVisor Factory is a platform that can provide

functionalities for designing, developing, and deploying

ThingVisors on-demand for IoT developers, or tenant. Through

VirIoT ThingVisor Factory, developers can interactively design

and develop their own ThingVisors, including “private”

ThingVisors that produce tenant-specific Virtual Things, such as a

face detection ThingVisor for a specific person. In addition,

developers need not pay attention to installation of IoT devices as

long as they exist in the VirIoT environment, and to deployment of

required data processing functionalities over the Internet.

One of the challenging issues in VirIoT ThingVisor Factory is

how to deal with diverse requirements from developers, by

satisfying their networking and computing demand in a user-

friendly way, (e.g., autonomous, instinctive, and interactive way.)

To address this issue, VirIoT ThingVisor Factory is equipped with

two functionalities: dataflow-programming-based graphical user

interface (GUI) and service function chaining-based ThingVisor

development.

Figure 1: Architecture of VirIoT ThingVisor Factory

4.2 Architecture of VirIoT ThingVisor Factory

The architecture of VirIoT ThingVisor Factory is shown in Figure

1, where red function blocks represent the components of VirIoT

ThingVisor Factory and blue function blocks represent components

of VirIoT system. As shown this figure, VirIoT ThingVisor Factory

provides modules that complement VirIoT functionality, and it

supports the implementation and deployment of a chain of

ThingVisors on demand. In order to provide a user-friendly

platform and autonomous management, VirIoT ThingVisor

Factory mainly composes three key functionalities: Service

Designer, Service Image Factory and Service Deploy Manager.

Through the VirIoT ThingVisor Factory, developers, or tenants,

can develop their own ThingVisors. This operation is done from the

GUI provided by Service Designer. In VirIoT ThingVisor Factory,

CCIoT’20, November 16-19, 2020, Virtual Event, Japan Kanai et al.

Virtual Things are defined as outputs from a chain of service

functions created by dataflow programming. After the developer

completes designing ThingVisors and their chains, Service

Designer outputs JSON serialized service function chaining

information corresponding to the designed chains of ThingVisors.

The service function chaining information indicates a specification

of a ThingVisor chain and is composed of the information of

required service functions, or ThingVisors, and connectivity among

the ThingVisors. Based on the service function chaining

information, Service Image Factory creates Docker Images for

required ThingVisors and pushes those images to a ThingVisor

repository, such as Docker Hub. Meanwhile, Service Deploy

Manager determines the deployment plan of dockerized service

functions, by considering networking and computing conditions of

network nodes (e.g., Kubernetes nodes).

These functionalities are operated with APIs provided by VirIoT

ThingVisor Factory Controller. After all preparation is done (i.e,

service functions are stored on Docker Hub, and deployment plan

of them are defined), VirIoT ThingVisor Factory Controller

invokes an “add ThingVisor” command on the VirIoT Master-

Controller in order to deploy the ThingVisor on the platform.

In the next three Sections, we present here the detailed

description of three key components of VirIoT ThingVisor Factory.

4.3 Service Designer

The first key component of our VirIoT ThingVisor Factory is the

Service Designer. Because VirIoT ThingVisor Factory is required

to develop on-demand ThingVisor instinctively and interactively,

Service Designer provides dataflow programming-based GUI as

shown in Figure 2. As shown in the figure, Service Designer

abstracts the common functionalities as “service function blocks”

and visualizes as colorful “blocks.” Service Designer is similar to

(and based on) Node-RED, but, unlike Node-RED, Service

Designer can specify the network connectivity between service

function blocks. More specifically, the developer can specify the

communication protocols for service function chaining, such as

P2P, Pub/Sub and ICN as mentioned in the related work. This is the

biggest different aspect against Node-RED, and VirIoT ThingVisor

Factory aims at network-wide deployment (and operation) of

service functions while Node-RED can only deploy (and operate)

on the local Node-RED environment.

In order to design ThingVisor instinctively and interactively,

Service Designer abstracts the typical service functions as blocks.

As shown in Figure 2, Service function blocks compose “sensor,”

“service function,” “connector,” and “program”. First, a sensor

block provides a functionality of retrieving Real Things and Virtual

Things such as temperature values, surveillance camera images or

video. The sensor block contains the information of how to access

Thing (e.g., API, broker information, and protocol), Thing ID and

meta data of Thing (e.g., geolocation). Second, a service function

block provides a functionality of IoT data processing, such as

statistical analysis and image processing. This block contains the

information regarding data processing engine, such as input and

output data formats (or types) and docker image name. It also

includes meta data of service function (e.g., description of service

function and author’s name). Next, a connector block, which is one

of important blocks, provides a definition of network connectivity

among blocks. This block contains the information of

communication protocols, such as Pub/Sub or ICN, and it also

contains the information of input and output functions in order to

describe the chaining operation of service functions. At this

moment, the developer can specify topic name or interest name to

publish Virtual Thing when the developer selects Pub/Sub or ICN

as a communication protocol. Finally, a program block provides a

functionality where the developer can write his/her own

functionality in specific programming languages, such as Python,

similar to Node-RED (e.g., Node-RED allows programmers to

write programs in JavaScript).

Figure 2: GUI of Service Designer

By drag and drop operations, the developers can select the

service functions, and by connecting the blocks with lines, the

developers can define the service functions as service function

chainings. Thus, Service Designer can provide simple, instinctive

and interactive platform to design on-demand ThingVisors. After

the developer designs ThingVisor, Service Designer generates and

outputs JSON serialized service function chaining information

based on the required blocks. By using the service function

chaining information, VirIoT ThingVisor Factory prepares docker

images regarding the required service functions and determines the

deployment plan, including routing resolution, in case of ICN

protocol.

4.4 Service Image Factory

The second key component of the VirIoT ThingVisor Factory is the

Service Image Factory. Service Image Factory mainly provides a

functionality of automatic dockerization of service functions if

necessary. First, Service Image Factory parses the service function

chaining information produced by Service Designer and figures out

whether the service functions need to be dockertized or not. The

simplest case is that the developer only selects pre-defined (or pre-

developed) service functions. In such case, service functions,

including communication protocol, have already dockerized, and

ThingVisor Factory: Thing Virtualization Platform for Things as a

Service
CCIoT’20, November 16-19, 2020, Virtual Event, Japan

Service Image Factory just modifies operations of service functions

by only changing a configuration level, such as changing the names

of topics, transmission interval or other parameters regarding data

processing. When developers request to compose their own service

functions which specified by “program block” in Service Designer,

Service Image Factory parses their requests and generates docker

images, including network functionality (i.e., communication

protocol), according to their source codes. In order to simplify

docker image creation, Service Image Factory provides a template

of service function. The template guides the developers to program

service functions which are certainly dockerized and executed. The

template also contains the functions of communication protocols.

After Service Image Factory prepares docker images regarding

service functions, Service Image Factory pushes the docker images

to ThingVisor repository (e.g., Docker Hub) in order to be able to

be pulled from VirIoT master controller.

Figure 3: FIB construction in VirIoT ThingVisor Factory

4.5 Service Deploy Manager

The third key component of the VirIoT ThingVisor Factory is the

Service Deploy Manager. In order to deploy dockerized

ThingVisor autonomously and construct service function chaining,

Service Deploy Manager mainly provides two functionalities:

determination of optimal deployment plan and route resolution for

ICN. In the determination of optimal deployment plan, Service

Deploy Manager derives optimized network nodes (e.g.,

Kubernetes nodes) where the dockerized ThingVisors are deployed.

In the operation, Service Deploy Manager considers not only

networking and computing resource usages of the network nodes,

but also physical locations of the network nodes (i.e., Japan or

European and edge or cloud). This optimization is modeled as a

workflow scheduling problem and implemented as a workflow

engine proposed in the previous work [21].

In the routing resolution for ICN, this functionality is required

only for ICN usage case. As described in the related work, ICN is

one of good candidates of communication protocols for realizing

service function chaining. Unlike TCP/IP, including Pub/Sub

model over IP protocol, ICN requires to solve networking routes by

using not IP table but forwarding information base (FIB). in ICN-

based service function chaining, (autonomous) FIB management is

one of challenging issue. To simplify the FIB management, VirIoT

ThingVisor Factory adopts a centralized management approach by

referring to OpenFlow controller.

Before introducing FIB management, a determination method

of FIB is presented. FIB mainly composes (content) name prefix

and upstream faces. To determine (or build) FIB in advance,

(ideally) ICN routers need to know correct upstream faces

corresponding to name prefixes. In general, it is quite difficult to

know such information in advance, however, VirIoT ThingVisor

Factory can determine the correct upstream faces and name

prefixes regarding service function chaining as shown in Figure 3.

As shown in the figure, this is because, at first, through Service

Designer, the developer designs the service function chaining and

specifies the content names corresponding to the service functions.

In other words, VirIoT ThingVisor Factory can know the exact

interest names transmitted by the service functions in order to

retrieve contents. In addition, after the service function chaining is

designed, Service Deploy Manager determines the deployment

nodes, and this means that VirIoT ThingVisor Factory can know

the exact faces corresponding to the content names produced by the

service functions. Thus, VirIoT ThingVisor Factory can determine

FIB from the specification of service function chaining in advance.

After VirIoT ThingVisor Factory figures out the determination

of FIB, it is necessary to populate such FIB information to ICN

routers. As mentioned before, by referring architecture of

OpenFlow, VirIoT ThingVisor Factory adopts centralized

management approach, and its controller distributes FIB

information to ICN routers. A preliminary architecture of FIB

distribution is shown in Figure 4. As shown in the figure, there are

two strategies: ICN/IP Hybrid case and pure ICN case. In the

ICN/Hybrid case, data plane is operated over ICN protocol, and

control plane is operated over IP protocol. More specifically, FIB

distribution can be handled on the control plane, and FIB

information multicasts with a topic name specified by Pub/Sub

communication. This approach is easy to implement, but control

traffic may become large. On the other hand, in the pure ICN case,

both data and control planes are operated over ICN protocol, and

FIB information is distributed by the ICN manner (e.g., exchange

Interest and Data packets). This approach requires more complex

implementation such as FIB management for FIB distribution. In

addition, realization of push delivery over ICN may be required.

After FIB information are successfully distributed, ICN routing for

service function chaining is resolved.

Finally, once all preparations are done, VirIoT ThingVisor

Factory Controller invokes an “add ThingVisor” command on the

VirIoT Master-Controller in order to deploy the ThingVisor on the

platform, and ThingVisor processes the IoT data by employing the

service function chaining and publishes the proceeded data as

Virtual Things to IoT applications.

CCIoT’20, November 16-19, 2020, Virtual Event, Japan Kanai et al.

Figure 4: Architectures of FIB information distribution

5. Conclusion and Future Work

In order to provide interoperability of cross-domain IoT

applications involving different IoT platforms, we proposed a

virtual IoT system (VirIoT) in the previous work [8]. VirIoT

introduced two unique concepts: ThingVisor and vSilo. ThingVisor

enables to produce virtual IoT devices, or Virtual Things, from

physical IoT devices in order to share the physical IoT devices

among cross-domain IoT applications. In addition, vSilo enables to

bridge between such Virtual Things and IoT applications in order

to achieve the interoperability of cross-domain IoT devices. In this

paper, in order to enhance the VirIoT systems, we proposed VirIoT

ThingVisor Factory that helps to design on-demand ThingVisors in

a user-friendly way and deploy them autonomously by following

the container orchestration methodology, such as Kubernetes. To

address this issue, VirIoT ThingVisor Factory is composed three

key functionalities: Service Designer, Service Image Factory, and

Service Deploy Manager.

In future, we will implement VirIoT ThingVisor Factory, prove

the concept by deploying actual ThingVisors created by

ThingVisor Factory at EU and JP’s smart cities and demonstrate

the interoperability of our VirIoT systems.

ACKNOWLEDGMENTS

The research leading to these results has been supported by the EU-

JAPAN initiative by Horizon the EC Horizon 2020 Work

Programme (2018-2020) Grant Agreement Horizon814918 and

MIC Ministry of Internal Affairs and Communications “Strategic

Information and Communications R&D Promotion Programme

(SCOPE)” Grant no. MICJPJ000595 “Federating IoT and cloud

infrastructures to provide scalable and interoperable Smart Cities

applications, by introducing novel IoT virtualization technologies

(Fed4IoT).”

REFERENCES
[1] J. Gubbi, R. Buyya, S. Marusic and M. Palaniswami, “Internet

of Things (IoT): A vision, architectural elements, and future

directions,” Future Generation Computer Systems, vol. 29(7),
pp. 1645–1660, Sept. 2013.

[2] L. Shancang, L. D. Xu, and S. Zhao. “The internet of things: a
survey,” Information Systems Frontiers, vol. 17(2), pp. 243-
259, Apr. 2015.

[3] oneM2M [online]. Available: http://www.onem2m.org/

[4] FIWARE [online]. Available: https://www.fiware.org/

[5] Mobius, oneM2M IoT Server Platform [online]. Available:

https://github.com/IoTKETI/Mobius

[6] FIWARE-Orion, Orion Context Broker [online]. Available:

https://github.com/telefonicaid/fiware-orion

[7] Fed4IoT project [online]. Available: https://fed4iot.org/

[8] A. Detti, G. Tropea, G. Ro, J. A. Martinez, A. F. Skarmeta,
and H. Nakazato, “Virtual IoT Systems: Boosting IoT
Innovation by Decoupling Things Providers and Applications
Developers”, Proc IEEE Global IoT Summit 2019, Jun. 2020.

[9] M. Nitti, V. Pilloni, G. Colistra, L. Atzori, “The Virtual Object
as a Major Element of the Internet of Things: A Survey,” IEEE
Communications Surveys & Tutorials, vol.18, issue: 2,
Nov.2015.

[10] Internet of Things Architecture (IoT-A) project (2010 - 2013)
[online].

Available: https://cordis.europa.eu/project/id/257521

[11] Collaborative Open Market to Place Objects at your SErvice
(COMPOSE) project (2012 - 2015) [online]. Available:

https://cordis.europa.eu/project/id/317862

[12] M. Presser, P. M. Barnaghi, M. Eurich, C. Villalonga, “The
SENSEI project: integrating the physical world with the
digital world of the network of the future,” IEEE
Communication Magazine, vol.47, Issue: 4, Apr.2009.

[13] iCore, empowering IoT through cognitive technologies (2011
- 2014), [online]. Available:

https://ics-iot.weebly.com/icore.html

[14] K. Ogawa, K. Kanai, K. Nakamura, H. Kanemitsu, J. Katto
and H. Nakazato, “IoT Device Virtualization for Efficient
Resource Utilization in Smart City IoT Platform,” IEEE
PerCom 2019, Mar.2019.

[15] B. Cheng, G. Solmaz, F. Cirillo, E. Kovacs, K. Terasawa, and
A. Kitazawa, “FogFlow: Easy Programming of IoT Services
Over Cloud and Edges for Smart Cities,” IEEE Internet of
Things Jounal, vol. 5, Issue 2, pp. 696–707, Apr. 2018.

[16] IETF RFC 7665 “Service Function Chaining (SFC)
architecture,” Oct. 2015

[17] IETF RFC 8300 “Network Service Header (NSH),” Jan. 2018.

[18] V. Jacobson, D. K. Smetters, J. D. Thornton, M. Plass, N.
Briggs, and R. Braynard, “Networking named content”,
Commun. ACM, 55, 1, pp. 117–124, 2012.

[19] L. Liu, Y. Peng, M. Bahrami, S. Mnatsakanyan, G. Qu, Z. Ye,
H. Guo, “ICN-FC: An Information-Centric Networking Based
Framework for Efficient Functional Chaining,” IEEE ICC
2017, May 2017.

[20] Y. Kumamoto, H, Yoshii, and H. Nakazato, “Real-world
implementation of function chaining in Named Data
Networking for IoT environment,” IEEE CQR, May 2020.

[21] H. Kanemitsu, K. Kanai, J. Katto and H. Nakazato, “A
Function Clustering Algorithm for Resource Utilization in
Service Function Chaining,” IEEE CLOUD 2019, July 2019.

