

一般社団法人 電子情報通信学会 信学技報

THE INSTITUTE OF ELECTRONICS, IEICE Technical Report

INFORMATION AND COMMUNICATION ENGINEERS

This article is a technical report without peer review, and its polished and/or extended version may be published elsewhere.

Copyright ©20●● by IEICE

[Special Invited Talk] Introduction to Fed4IoT architecture

and its related technologies for Smart city

Andrea Detti

CNIT, Elect. Eng. Dept., University of Rome “Tor Vergata”, Italy

E-mail: andrea.detti@uniroma2.it

Abstract In this paper we present the Cloud of Things architecture conceived by the Fed4IoT EU-JP project. Although

there are many IoT cloud platforms, our Cloud of Things virtualizes and offers as-a-service what is still real, i.e. the IoT

infrastructure, while at the same time addressing interoperability and expenditure issues that small stakeholders encounter

when they decide to deploy large-scale services IoT applications such as Smart city one.

Keywords Cloud, Virtualization, IoT, interoperability

1. Introduction

Modern cities need to evolve and become structured and

interconnected ecosystems in which thousands of IoT

components belonging to systems of different sectors

(energy, health, mobility, buildings, water management,

lighting, waste management, environment, etc.) work

together. The resulting huge amount of heterogeneous

information, its correlation and intelligent processing is

the enabling factor for decision making, services and

cross-cutting applications that provide citizens with the

feeling of living in an intelligent environment. The

implementation of such pervasive and large-scale systems

of heterogeneous IoT devices and data poses problems of

interoperability and expense.

Interoperability problems arise because there is as yet

no consensus on what, if any, and what is the scope of the

final IoT standard for devices and/or data, allowing

interoperability between different providers. Expenditure

problems arise in large-scale IoT implementations, such as

smart cities, because a valuable amount of capital

(CAPEX) and operating costs (OPEX) is required to

implement the necessary IoT infrastructure.

In fact, IoT application developers usually need to

install their own infrastructure, or Silo, made of things,

agents and (possibly) information brokers, as shown in

Fig.1. Things are heterogeneous sensors or actuators that

send or receive information from applications. Agents are

adapters that manages the interoperability among things

and applications (or brokers) with respect to different

aspects including programming/network interfaces and

information models. The broker is an optional component

(or distributed system) that manages the lifecycle of the

information of the things of the Silo, so that applications

have a single point of access to the whole information set.

Fig. 1 Example of IoT Silo and applications

Many standardization efforts focus on the API and the

information model used by these brokers. OneM2M [4]

and NGSI [2] are two very popular standards, and the

latter is evolving towards NGSI-LD [3].

The applications can be built either from scratch or can

exploits upstream IoT cloud platforms offered by many

providers including Amazon, Microsoft and Google. These

cloud services provide the means to simply compose

processing pipelines made up of analytics modules,

functions, information hubs, etc. Fig. 1 shows an example

of this processing pipeline based on services provided by

Microsoft Azure.

Fed4IoT is a joint Europe-Japan project that addresses

the interoperability and expenditure issues mentioned

above in a single Cloud of Things platform, called VirIoT.

VirIoT extends the scope of cloud services to what is not

yet virtualized - the Silo (Fig.1). VirIoT provides users

with Virtual Silo (vSilos): isolated and secure

environments made of Virtual Things (vThings) whose

data is accessible through standard information brokers

offered as a service. IoT application developer can simply

rent a Virtual Silo with the necessary Virtual Things and

select the IoT standard they prefer to access the data.

VirIoT takes care of solving interoperability between

different standards and virtualizing the IoT infrastructure.

Fig. 2 VirIoT system architecture

2. VirIoT platform

Fig. 2 shows the architecture of the VirIoT platform [1].

ThingVisors are components that interact with real things

(sensors or actuators) of heterogeneous IoT systems and

produce data related to vThings, which are emulations of

real things. For example, a person counter based on the

processing of video streams from a real camera can be a

vThing. Virtual Things can also be actuators, like lamps or

door locks; in this case the supporting ThingVisor acts as

a proxy between the system user and the real actuator.

The vThings can produce or consume telemetry data

(e.g. sensor measurements or actuation commands) and

large HTTP contents (e.g. video streams). Internally,

telemetry data is compliant with the NGSI-LD information

model, deemed to behave as a neutral-format that can be

simply converted in other standard data formats. The

ThingVisor solves the interoperability issues between

external data format and the internal NGSI-LD one.

Telemetry data is shared with interested vSilos through an

internal service mesh consisting of a cluster of MQTT

servers. The HTTP data is instead shared through another

service mesh whose nodes are HTTP proxies. Both service

meshes provide data multicasting and cach ing to reduce

bandwidth consumption and latency.

Users can create vSilos in which vThings can be added

on-demand. The telemetry data of included vThings is

exposed to the user through an IoT broker server of user's

choice, e.g. a oneM2M, NGSI, or NGSI-LD server. Within

the vSilo, an IoT controller performs the translation of the

data from internal NGSI-LD format into the format of the

IoT broker, and manages the operations of the control

plane (e.g. add/remove vThings). Therefore , the IoT

controller solves the interoperability between the internal

format and the format of the vSilo IoT broker. The HTTP

data of the vThings of the vSilo is exposed to the user

through an internal HTTP server without any format

translation. A special vSilo, called System vSilo , is used to

federate the platform with external platforms based on

NGSI-LD technology, thus enabling the platform to be

part of a wider IoT ecosystem.

ThingVisors and vSilos are devised as autonomous

micro-services (Kubernetes PODs) whose deployment is

controlled by a Master Controller , which exploits an

underlying distributed Kubernetes system and supports

edge computing in the sense that the user can decide in

which zone to deploy a specific component e.g. to reduce

access latency. A System Database maintains the status of

the system components. The development of ThingVisors

can take advantage of additional tools, called ThingVisor

Factories. The basic security of the platform is based on

JSON Web Token (JWT) technology but can be improved

with specific plug-in.

Acknowledgments

This work is supported in part by H2020 EU-JP Fed4IoT

project (www.fed4iot.org, EU contract 814918). The

document reflects only the author's view, European

Commission and Japanese MIC are not responsible for any

use that may be made of the information it contains.

References

[1] VirIoT web site, https://github.com/fed4iot/VirIoT

[2] NGSI v2 tutorials,

https://fiware-tutorials.readthedocs.io/en/latest/

[3] NGSI-LD tutorials,

https://ngsi-ld-tutorials.readthedocs.io/en/latest/

[4] ETSI oneM2M,

https://www.etsi.org/committee/1419-onem2m

