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Abstract—This paper explores methodologies, advantages and
challenges related to the use of Information Centric Networking
(ICN) for realizing distributed spatial databases. Our findings
show that the ICN functionality perfectly fits database require-
ments: routing-by-name can be used to dispatch queries and
insertions, in-network caching to accelerate queries, and data-
centric security to implement secure multi-tenancy. We present
an ICN-based distributed spatial database, named OpenGeoBase,
and describe its design choices. Thanks to ICN, OpenGeoBase
can quickly and efficiently provide information to database users;
easily operate in a distributed way, using many database engines
in parallel; secure every piece of content; slice resources, so that
several tenants and users can concurrently and independently
use the database. We also show how OpenGeoBase can support a
real world Intelligent Transport System application, by enabling
discovery of geo-referenced public transportation information.

I. INTRODUCTION

Spatial databases are storage systems specialized in manag-
ing data items related to space [1]. The space of interest may
be real or virtual geographical spaces and spatial data rep-
resent information about the location and shape of contained
geometric objects. These objects can be points, multi-points,
polygons, lines, etc.. Spatial databases provide spatial query
capabilities, e.g. proximity queries that return objects close to
a point, polygon queries that return objects within polygons,
etc. Spatial databases are used for many applications, including
Geographic Information System (GIS), navigation software,
journey planners, etc.

A database system can grow up by adding processing
and storing resources, such as memory, storage space or
number of CPUs. New resources can be deployed either in
existing database servers (vertical scaling), or in new servers
(horizontal scaling or sharding), thus realizing a distributed
system. The distributed system is made up by a cluster of
servers and by an interconnecting network, where a routing
function dispatches queries and insertions towards servers [2].

In this paper, we propose the use of an Information Centric
Network (ICN) [3], namely NDN [4], to realize a distributed
spatial database system, named OpenGeoBase (OGB). Open-
GeoBase stores geo-referenced information in GeoJSON for-
mat, supports range-queries and multi-tenancy. It exploits ICN
functionality as follows:
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• routing-by-name to dispatch queries and data insertions,
• in-network caching to speed up query responses, avoiding

the database engine processing,
• data-centric security and trust model [5] to support secure

multi-tenancy.

In the next sections we present specific procedures and
algorithms for querying and inserting geo-referenced infor-
mation in the distributed database, highlighting related issues
and describing how we exploit ICN’s assets, while limiting
possible related drawbacks. We also show how OpenGeoBase
can support a real application [6] in the field of Intelligent
Transport Systems, to collect, discovery and make available
transport information expressed in the format of GTFS transit
feed files [7]. Our open-source implementation [8] is based on
the NDN software [4], but CCN [9] could be used as well.

II. RELATED WORKS AND CONTRIBUTIONS

We assume the reader acquainted with the NDN/CCN ar-
chitectures [3] and we mainly discuss related works regarding
spatial databases and ICN application for spatial services.

Spatial databases are usually implemented as
extension/plug-in of a general purpose database management
system (DBMS). They may be based either on a relational or
on a NoSQL DBMS model. PostGIS is the spatial extension
of the popular open-source PostgreSQL relational DBMS,
which adds support for geographic objects, allowing spatial
SQL queries using several geometries. Being a SQL database
it is hard to distribute PostGIS on different servers and
performance problems show up when the database size
increases. Other (not open-source) SQL databases with spatial
extension are Oracle SQL and Microsoft SQL.

For large data-set (Big Data) NoSQL databases are more
and more replacing relational ones, since they can be easily
distributed over different servers. Distribution is carried out
by grouping the data by a ”sharding-key” and using such key
to partition the data set among the servers. MongoDB [10],
BigTable (by Google), Cassandra (by Facebook), CouchDB
(by Apache) are a popular NoSQL databases with spatial sup-
port. With respect to a relational DBMSs, a NoSQL database
has fewer instruments for managing query geometry. However,
for applications requiring many simple read/write operations
on huge data sets, NoSQL databases are deemed to perform
better than relational ones since can be easily distributed.



Literature on the use of ICN for spatial services is very
limited, does not concern database applications, and is mainly
focused on vehicular services. In [11] authors propose to label
geographical areas with names and use a routing-by-name
schemes to carry out location based forwarding in VANET
environment. We label geographical areas too, but with the dif-
ferent goal of routing spatial queries. In [12] authors propose
to use ICN to dispatch queries (Interest messages) towards
nodes of a V2X network. The Interests contain conditions in
the name; many nodes (vehicles, road side units, etc.) may
receive an Interest message (flooding) but only nodes that have
data satisfying the conditions will send back an answer. We use
ICN for query dispatching too, but do not embed conditions
inside an Interest to increase cache hit probability and speedup
database server processing; we route Interest only towards the
database server that can actually serve the query (no flooding),
avoiding useless query processing on other databases, thus
limiting system load and latency.

In this framework the main contributions of this paper is
a first exploitation of ICN in the framework of distributed
spatial databases, while identifying specific issues and showing
practical, and implemented solutions. Specific contributions in
terms of functionality and performance are the following ones.

In terms of functionality, we classify OpenGeoBase as a
NoSQL database since it does not follow a relational model
but well support horizontal scaling. With respect to the other
NoSQL spatial databases previously mentioned, OGB data
distribution approach is based on a geographic partitioning
of the data set among different servers, while routing queries
only towards those that can actually contribute to the answer
[13], avoiding soliciting useless servers. And this is possible
exploiting the ICN routing-by-name. For instance, with a
proper configuration of the ICN routing plane OGB can be
used to realize an international federated database system,
in which different servers manage information of different
nations. Another benefit of OpenGeoBase with respect to the
other NoSQL databases regards multi-tenancy and data vali-
dation functionality, which are offered off-the-shelf, thanks to
ICN data-centric security and trust chain model. OpenGeoBase
workflow has two distinct actors: users and tenants. Every user
of a tenant can write its own data, read data of other users of
the same tenant, being sure of data provenance and integrity.

In terms of performance, even though OpenGeoBase has an
initial proof-of-concept implementation, we measured values
of range-query latency in the order of hundreds of milliseconds
that in some cases are lower than MongoDB ones, and this is a
promising starting point for further performance optimization.

III. OPENGEOBASE

In this section we present the services offered by Open-
GeoBase and how these services are realized exploiting NDN
functionality. Our design choice comes out from a real imple-
mentation available in [8].

A. Offered services

OpenGeoBase (OGB) is a multi-tenant spatial database. A
tenant is a principal that rents a slice of OGB storing space and
makes it available to its users. Users can stores geo-referenced
information, structured as GeoJSON Feature objects [14]. For
instance, a geo-referenced shopping application could use the
following GeoJSON format to represent the presence of a
Starbucks shop in GPS coordinate 12.51133E, 41.8919N.

{"type": "Feature", "geometry": {"type":
"Point","coordinates": [12.51133, 41.8919]},
"properties": {"oid" : 1234, "tid" : "Foo",

"uid": "Alice", "cid": "ShopApp", "shop-name":

"Starbucks", "shop-type" : "coffeehouse" }}}
The oid, tid, uid and cid properties are mandatory. The oid
is a unique identifier of the GeoJSON object (a random
nonce), tid and uid are the identifiers of the tenant and of the
user. Tenant data are grouped in collections and cid is the
collection identifier. The shop-name and the shop-type (and
other possible ones) are customizable application properties.

Users can carry out either inclusion or intersect range-
queries for obtaining all the GeoJSON objects which are
completely (inclusion) or partially (intersect) contained in the
range-query area, i.e. a 2D bounding box.

For scaling purposes, the system administrator(s) can deploy
a distributed set of database servers (or engines), each one
dedicated to store data related to a zone of the world.

Spatial Indexing

OpenGeoBase uses a three-levels spatial indexing grid,
aligned with world parallels and meridians (fig. 1). Grid
regions are called tiles and we motivate the choice of such
indexing schemes in appendix I of [15] . A level-0 tile of
the grid contains all world points having the same longitude
and latitude values up to the dot, e.g. the level-0 tile (12,41)
contains all points whose longitude and latitude start with
12 and 41, respectively. A level-n tile of the grid, where
n = 1, 2, contains all points having the same latitude and
longitude value up to the nth decimals, e.g. the level-2 tile
(12.51,41.89) contains all points whose latitude and longitude
start with 12.51 and 41.89, respectively. In doing so the level-
ratio of the grid is 100, i.e. each tile of level-n is formed by
100 tiles of level-(n+1). For latitudes close to the equator, the
area of a level-0 tile approximates a square of 100x100 km, a
level-1 tile a square of 10x10 km, and a level-2 tile a square
of 1x1 km. A level-n tile is identified by an ICN name-prefix,
called tile-prefix, whose structure is:

ndn:/OGB/lng(0)/lat(0)/lng(1)lat(1)/...

/lng(n)lat(n)/GPS-ID

where, lng(0) and lng(x) are the integer and the xth decimal
value of the GPS longitude of the tile. The same relation holds
for latitude values, e.g., the level-2 tile (12.51,41.89) has the
name prefix ndn:/OGB/12/41/58/19/GPS-ID.



Fig. 1. Tile hierarchy example for level-ratio 4

B. Internal data structures

OpenGeoBase uses three kinds of ICN data structures for
internal purposes, namely: OGB-Data, OGB-Tile and OGB-
IP-Res, reported in fig. 2.

An OGB-Data is used to index and link/store a GeoJSON
object as follows. A GeoJSON object intersects different tiles
of the grid, at any level. For each intersected tile, there exist
in the system an OGB-Data item, which contains either the
GeoJSON object or a reference to another ICN content con-
taining the actual GeoJSON object. In doing so, a GeoJSON
object is stored only one time in the system. An OGB-Data is
actually an ICN content, in case segmented in a sequence of
ContetObjects, and identified by a unique name whose scheme
is the following:
ndn:/tile-prefix/DATA/tid/cid/uid/oid

For instance, the GeoJSON of Starbucks afore-
mentioned intersects the level-2 tile (12.51, 41.89).
Thus, there exist in the system an OGB-Data
content whose name is ndn:/OGB/12/41/58/19/GPS-
ID/DATA/Foo/ShopApp/Alice/1234 and whose payload
is the GeoJSON object. We observe that the same
GeoJSON object also intersect the (12.5, 41.8) and
the (12, 41) level-1 and level-0 tiles, respectively.
Thus, other two OGB-Data contents exist whose
content is a reference to ndn:/OGB/12/41/58/19/GPS-
ID/DATA/Foo/ShopApp/Alice/1234.

An OGB-Tile is an OGB-Data container used to support a
tile-query, i.e. a query requesting all the GeoJSON objects
of a collection which intersects a given tile. OGB-Tile is
actually an ICN content, in case segmented, with a unique
name and whose payload is the set of OGB-Data items
related to the queried tile. A tile-query can be carried out
through a standard ICN GET primitive (e.g. ndngetfile) based
on Interest/ContentObjects message exchange. The OGB-Tile
naming scheme is:
ndn:/tile-prefix/TILE/tid/cid

OGB-Tile contents are cached by ICN nodes and popular
tile-queries can be quickly satisfied from caches, without
involving database processing. To avoid the presence of stale
data in the cache due to data updates, the FreshnessPeriod of
the OGB-Tile ContentObjects can be properly configured by
the tenant. Otherwise, if a more reactive cache update approach
is needed, other network mechanisms can be introduced, even

Fig. 2. OGB-Data , OGB-Tile and OGB-IP-Res structures (no segmentation)

Fig. 3. OpenGeoBase Architecture

though such important research issue, namely ICN caching for
database application, is left for future works.

The OGB-IP-Res is an ICN content used by the Data Insert
procedure to derive the IP address of the database engine
handling a given tile-prefix. The related naming scheme is:
ndn:/tile-prefix/IP-RES

C. System Architecture

Fig. 3 reports the OpenGeoBase distributed architecture
whose components are described in next subsections.

1) Database engines: a database engine is an ICN reposi-
tory that serves a subset of tiles, by storing the related OGB-
Data contents and processing queries of OGB-Tile. We imple-
mented the database engine as an extension of NDN repo-ng
software. The extension is mainly used for the on-demand
building of OGB-Tile contents, which requires to select and
package in the OGB-Tile payload all the stored OGB-Data
whose tile-prefix is equal to the one of the requested OGB-
Tile. To speed-up this search we inserted other specific tables
in the SQLite DBMS of repo-ng, as better described in the
appendix II of [15] .

2) Front-end library and BF server: the front-end library
handles range-queries and insertion of GeoJSON objects com-
ing from an application, by using the procedures described in
the next section. A Bloom Filter (BF) server can be used to
speed up queries. The application and the front-end library can
run in the same device (fat-client approach) or in different
devices connected by the Internet, e.g. the front-end can
run within an HTTP application-server. To avoid bottlenecks,
many application-servers can be deployed and handled by a
load balancing function, such as DNS or reverse-proxy.

3) NFD, NLSR and Certificate Repo: each component of
the OGB backend (fig. 3) uses NDN Forwarding Daemon
(NFD) for routing-by-name tile-queries (OGB-Tile Interest),
caching tile-query responses (OGB-Tile ContetObjects), se-
cure tile-queries and data insertions (OGB-Data ContetOb-
jects). Moreover, each component uses NLSR routing protocol



Fig. 4. Constrained tessellation with k = 19

Fig. 5. Range-query

[16] to configure the NFD Forwarding Information Base (FIB).
Using NLSR each database engine announces on the routing
plane the tile-prefixes of its tiles, thus the ICN is able to route
tile-queries towards the proper engine. For security procedures
tenant and user NDN certificates are stored in an internal ICN
repository.

D. Procedures

1) Range-query: an intersect or include range-query is
handled by a query-handler function within the front-end
library (fig. 5). The query-handler resolves the range-query
in two phases: tile-querying and post-filtering.

In the tile-querying phase the query-handler covers the
range-query area A with set of tiles identified by a constrained
tessellation algorithm. Then for each tile it carries out a tile-
query, i.e. an ICN GET of an OGB-Tile. The set of tiles has
a constrained size k and covers an area B, which contains the
range-query area A, but also some extra border space, due the
fact that the range-query area A may be not aligned with the
grid. For instance, in fig. 4 a range-query area is tessellated
with k = 19 tiles of level 0 ,1 and 2. In appendix III of [15] we
developed an heuristic tessellation algorithm that uses as much
possible the largest tiles to cover the area A, while satisfying
the constraint k and limiting the extra border space. When
the area A is so large as it is not possible to cover it not
even with k level-0 tiles, the constraint can not be respected
and the algorithm merely covers the area with the minimum
number of level-0 tiles. Reducing the constraint k, on the one
hand, accelerates the range-query processing time, since less
tile-queries are required to satisfy a range-query; on the other
hand, it could result in an increase of the extra border area,
thus the query-handler is fetching more data than requested
one, and this increases the transmission and post-filtering time.
Clearly a trade-off is needed, which depends on the volume
of geo-referenced information.

When geo-referenced information are rather sparse, many
of the tessellated tiles are void. To avoid time consuming ICN
void tile-queries, the query-handler may use a Bloom Filter

Service. The Bloom Filter (BF) is loaded with tile-prefixes
of not-void tiles. After tessellation, the query-handler tests
the BF membership of tessellated tiles and obtains a reduced
tessellation set comprising only not-void tiles. OpenGeoBase
contains one or more BF servers that handle membership
requests, as show in fig. 5. The price to pay is an additional
RTT in the range-query time. Such a cost is worth paying
only when geo-referenced data are rather sparse and the use
of BF is left as an option. To update the BF, OGB uses a
ICN topic-based publish-subscribe approach similar to the one
presented in [17], but other solutions are feasible too [18].
Each database engine has a local Counting Bloom Filter (CBF)
with the same buckets of the global BF running on the BF
servers. At each data insert/removal the local CBF is updated.
When a CBF bucket becomes i) greater than zero or 2) equal
to zero, a publication is sent out on a system topic, since
the related global BF bucket value could need a 0-1 or 1-
0 switch, respectively. The BF servers are subscribers of the
system topic, and received publications are combined (OR) to
configure bucket values.

When all tile-query responses are received the second post-
filtering phase starts, during which the query-handler unpacks
the OGB-Data within the received OGB-Tile contents, verify
their validity, extracts the enclosed GeoJSON objects and
applies a post-filtering aimed to select those GeoJSON objects
that actually intersect with or are included in the range-query
area. Post-filtering is necessary since the tile-querying phase
may return more objects than requested ones, e.g. due to the
tessellation extra border space.

2) Data Insertion: an insertion of a GeoJSON object is
handled by an insert-handler within the front-end library (fig.
6). The insert-handler parses the GeoJSON object, creates the
related OGB-Data items for each intersecting tile, and push
them into the responsible database engines using a ”mixed”
TCP/IP-ICN procedure, motivated as follows.

ICN natively provides pull services and literature mainly
proposes two approaches for pushing data. The first one is used
by the NDN Repo Insertion Protocol [4], however its adoption
in our database application would imply to set up on-demand
an ICN route towards the end user applications requiring data
insertion, giving to these applications the power to modify the
ICN routing plane, possibly creating or facilitating security
and scalability issues of the back-end. For this reason, we do
not adopt this approach. The second kinds of push approaches
[19][20] require changing of NDN (CCN) forwarding and the
introduction of a new ”Push” message routed-by-name as an
Interest messages. In this version of OGB we preferred to
avoid these ICN architectural changes and do not adopt these
approaches. Consequently, while looking forward to having
an ”official” ICN/NDN/CCN push service implementation not
requiring routes towards producers, we temporary resorted to
a mixed TCP/IP-ICN push approach, which exploits the TCP-
bulk-insert procedure of current NDN repo-ng implementation
and our ICN Address-Resolution procedure. By using TCP-
bulk-insert, the insert-handler sets up a TCP connection with
a database engine and push OGB-Data through it. However,



Fig. 6. Data Insertion

the insert-handler needs to know the IP address of the database
engine that should store the OGB-Data. For such an IP address
resolution purpose, we developed an ICN procedure for which
the interest-handler sends out an Interest message for a OGB-
IP-Res content, whose name contains the tile-prefix of the
OGB-Data to be pushed. The ICN network routes-by-name
such an Interest towards the responsible database engine,
which answers with a content containing its IP address.

3) Secure multi-tenancy: The NDN security library makes
it possible to sign Interests and ContentObjects. Signed Inter-
ests and ContentObjects contain the name of the certificate to
be used to verify the signature (aka Keylocator), so that any
device can fetch the certificate, if unavailable locally. An NDN
certificate includes the identity name of the owner, its public
key, the signature of the certification authority and the related
KeyLocator, so realizing a trust chain. When an Interest or
a ContentObject is received, it can be validated by using a
Validator tool, whose trust schema can be flexibly configured
by using rules and trust-anchors [5].

To support multi-tenancy in OpenGeoBase, exploit the NDN
security library as is, thus we do not give many details here,
also for lack of space. The trust chain assures that the users
of a tenant have a unique identity, released by the tenant;
the tenant signs and releases user certificates. The identity of
the tenant is provided by the OpenGeoBase administrator that
also releases and signs tenant certificates. The public key of
the system administrator is the trust-anchor. The system has a
dedicated repository of certificates.

An OGB-Tile Interest message related to a tile of a tenant is
signed by the message issuer. By using a proper configuration
of the Validator and KeyLocator names, edge NDN nodes (or
directly database engines, if no other kind of NDN nodes exist
in the back-end, as in our case), accept only OGB-Tile Interest
messages whose certificate of the issuer has been released by
the tenant of the tile. Consequently, a tile-query regarding data
of a tenant is processed only if submitted by a tenant user.

An OGB-Data ContentObject is signed by the data owner.
By properly configuring the Validator, the query-handler veri-
fies that a received OGB-Data, related to the owner indicated
in the OGB-Data name, is actually properly signed by the
owner. Thus, both data integrity and data owner (prove-
nance) are validated. Dually, we configure the Validator of
the database engine to insert only OGB-Data ContentObjects
whose identity (contained in the OGB-Data name) is the same
of the owner of the signing certificate.

IV. MODELING AND PERFORMANCE EVALUATION

We evaluated some key performance parameters of Open-
GeoBase in two environments: a laboratory one, to show
general OpenGeoBase performance; an application one, to
measure the performance of a real world Intelligent Transport
Systems (ITS) application based on OpenGeoBase.

A. Laboratory tests

The laboratory environment is formed by: i) a virtual ma-
chine (VM) executing the front-end library and a benchmark
application producing queries; ii) five VMs running 4 database
engines and the Certificate repo. VMs are connected by a
Linux bridge with a measured throughput of about 200 Mbit/s
at the application layer. The database covers an area of
400x400 km, aligned with 100x100 km (level-0) tiles. The data
set contain a GeoJSON Point object of 55 bytes for each 1x1
km (level-2) tile. We did not use the Bloom Filter (BF) Server,
as spatial data are not sparse. We considered two scenarios: i)
one database engine; ii) four database engines, each of them
responsible for a different 100x100 km tile. Then we studied
the performance of tile-queries and intersect range-queries.
We also compare performance of intersect range-queries when
using MongoDB system whose configuration is formed by
4 database engines (Shards), a query router (Mongos) and a
Config Server, running on different VMs.

Fig 7(a) reports the duration of an OGB batch of tile-
queries versus the number of queried tiles, without ICN
caching, for 1x1 and 10x10 tiles, in case of 1 and 4 database
engines. Resulting tile-queries are uniformly distributed on the
databases.

To better analyze and understand these results we developed
a very simple model. The duration of a single tile-query is
the sum of processing time (TQp) and transmission time. We
experimentally observed that the processing time has a small
dependence on the number of returned items (Ni) and can be
modeled as follows:

TQp = C1 + C2Ni (1)

where C1 is a constant time equal to 3 ms, independent from
the number of returned items, and C2 is a constant time equal
to 0.008 ms, which multiplies the number of items. Clearly,
these numerical values are related to our devices and our data,
albeit the formula may hold in general.

The processing of a tile-query takes place in two devices:
in the database engine, to extract data from the DBMS and
build/sign the OGB-Tile; in the query-handler, to decode and
verify the OGB-Tile and the inner OGB-Data items. Conse-
quently, we can approximately decompose the processing time
in a fraction Pdb due to the remote database and a fraction Pqh

due to the query-handler, where Pdb + Pqh = 1.
If we assume to carry out a batch of Nq tile-queries equally

split on Ndb database, the total batch duration TB is equal to:

TB = C3+Nq

(
(1−H)

Pdb

Ndb
+ Pqh

)
TQp+Nq

NiDs

Bw
(2)



(a) Batch tile-query duration vs. number of tile-
queries for 1x1 and 10x10 tiles, in case of 1 and 4
database engines, no caching, no BF

(b) Duration of a batch of 500 tile-queries time vs.
cache hit probability, for 10x10 tiles, in case of 1
and 4 database engines, no BF

(c) Range-query time vs. range query area, 4
database engines, no BF, constrained tessellation
with k max-tiles, with and without ICN cache of
5000 items

(d) Red dots indicate not-void tiles for
the GTFS application

(e) Average duration of range-query, query-tiles
batch, tessellation and BF request vs. range-query
area for the GTFS application

(f) Average number of tiles vs. range-query area for
the GTFS application

Fig. 7. Performance evaluation results

where C3 is a constant value of 20 ms in our configuration,
needed by the query-handler for opening and closing the NDN
face and for other NDN constant processing; Ds is the size
of a single OGB-Data (we are not considering the OGB-
Tile overhead); Bw is the throughput at the application layer.
The term Pdb/Ndb takes into account that we are using Ndb

databases in parallel: indeed, horizontally scaling reduces the
overall database processing time, but not the query-handler
processing. The term (1 − H) is the cache miss probability:
database processing occurs in case of cache miss.

The dotted lines reported in fig. 7(a) come from eq. 2
for: Bw = 200Mbit/s;Pqh = 0.15; Pdb = 0.85; Ds = 55
bytes; H = 0, no cache; Ni = 1 in case of 1x1 tiles and
Ni = 100 in case of 10x10 tiles. The solid lines come from
measurements. For the same kind of tile-queries, e.g. 1x1,
increasing the number of databases from 1 to 4 leads to a
significant reduction of the duration of the tile-query batch,
since we are concurrently using 4 databases. This result is
proof that ICN routing-by-name is indeed effective to allow
the database to horizontally scale. For the same number of
databases, the request of 10x10 tiles leads to a greater batch
duration, since more data have to be processed and sent back.
However, since C1 >> C2, it is much more convenient to use
one 10x10 tile rather than ten 1x1 tiles, to query an area of a
10x10 tile. Thus, the choice made for our tessellation approach
of using the largest possible tiles is the right one.

Fig. 7(b) shows the impact of ICN in-network caching on
the duration of an OGB batch of 500 tile-queries of 10x10 km.
Dotted lines come from eq. 2. Caching has been enabled only
on the database engines. By increasing the cache hit proba-
bility (H), the batch duration decreases to the lowest limit,
represented by the sum of the query-handler processing time
plus the transmission time. This plot confirms the effectiveness
of ICN in-network caching in reducing database query times,
since a cache lookup has a negligible duration, with respect
to the time needed to access the database engine.

Fig. 7(c) shows the (intersect) range-query time versus
the range query area, in absence and in presence of ICN
caching and for different values of the tessellation constraint k.
Increasing the area, OGB latency tends to an asymptotic value
since the involved number of tile-queries is however limited to
k. As discussed in section III-D1, reducing the max-number
of tiles k reduces the range-query time since less tile-queries
are necessary. Nevertheless, a greater number of spatial data
are filtered out by post-filtering, increasing such a processing
time that however remains negligible in our tests. Caching
accelerates range-queries, and acceleration improves with the
range-query area, since the constrained tessellation tends to use
greater tiles. As a result, a smaller universe of ICN contents is
circulating in the network, increasing the cache hit probability.

Fig. 7(c) also reports MongoDB performance with the same
GeoJSON data set. Considering a reference OGB configuration



of k = 50 with caching, OpenGeoBase latency is greater
than MongoDB one for areas lower than 1600 km2. This is
mainly due to the different data distribution and query routing
approaches. Practically, MongoDB randomly spread spatial
objects over the different DB engines. OpenGeoBase partition
spatial data over the different DB engines on a geographic
base. Consequently, range-queries with small area are likely
served by a subset of DBs in case of OpenGeoBase, while
are served by all the DBs in case of MongoDB, resulting in a
lower latency. The increase in the range-query area increases
the number of involved OGB engines, and OpenGeoBase
latency gets lower than MongoDB one. The OGB inefficiency
related to not (always) using all DB engines can be merely
avoided randomly assigning tiles to different database engines,
but in doing so the administrator would lose the control of
where spatial data are stored, which is a unique feature of
OGB system. Anyway, the analysis of different tile assignment
schemes are left for further studies.

B. Application tests

We exploited OpenGeoBase as a back-end for an Intelligent
Transport System (ITS) application, which is designed to dis-
cover information (bus stops, schedules, train time-table, etc.)
available for a given geographical area [6]. Such information
is expressed in the GTFS format [7], usually used by ITS
applications such as OpenTripPlanner.

We downloaded from the web about 1000 public GTFS
files made available by transport agencies. Each file contains
the GPS coordinates of the stops of an agency transport
service (bus, metro, train, etc.). For each GTFS file we created
a GeoJSON Multipoint object, where each point has the
coordinates of a stop. Each GeoJSON object has a ”URL”
properties whose value is the Internet URL of the GTFS file.
The resulting distribution of not-void tiles is rather spread out,
as show in fig 7(d), and we use Bloom Filter (BF) service.

We have 4 database engines serving 4 different zones of
the world, running in different servers. Each database engine
has an ICN cache of 130k ContentObjects. The front-end
library (fig. 3) is a Java code running in a Spring STS Server.
The Application is a JavaScript code running in the end-user
browser [6], which submits the range-query to the front-end
library that executes constrained tessellation with k = 50,
bloom pre-filtering and tile-queries. Then, it collects, post-
filters and sends back results. Front-end, databases and BF
server are different devices located on the same LAN. The
tests have been carried out by generating square intersect
range-queries with different areas, randomly centered over
Europe. Performance are measured on the front-end device,
not including JavaScript processing.

Fig. 7(e) reports the average range-query time versus area.
The plot also reports the average delays that compose the
range-query delay, namely: tessellation time, the time to
interact with the BF Server and the duration of the batch
of ICN tile-queries composing the range-query. Post-filtering
processing has a negligible time. For extremely large range-
queries, e.g. 1,000,000 km2, the queries last about 230 ms.

Fig. 7(f) reports the average number of tessellated tiles versus
the range-query area. For areas greater than 35,000 km2, the
constraint k = 50 can not be respected and the tessellation
resorts to cover the area with a linearly increasing number of
100x100 tiles. Figure also reports the number of tile-queries
actually carried out after the interaction with the BF server.
The tessellation processing time increases with the range-
query area but for large areas it tends to decrease since the
constraint k can not be satisfied and in these cases tessellation
processing is very simple.

V. CONCLUSIONS

We exploited ICN to realize distributed spatial databases,
which can horizontally scale by deploying new servers. We
showed in a real use case the benefits of ICN’s routing-by-
name, in-network caching and data-centric security. Clearly,
convincing users of current products (such as PostGIS, Mon-
goDB, etc.) to adopt ICN-based solutions requires more re-
search work, performance analysis and dissemination effort,
which in our opinion is worth undertaking.
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