
Peer To Peer Context Data Sharing Through Tuple Spaces

Andrea Detti
University of Rome Tor Vergata,
Electric Engineering Department,
Via del Politecnico 1, Rome, Italy

andrea.detti@uniroma2.it

Pierpaolo Loreti
"Consorzio Nazionale Interuniversitario per le

Telecomunicazioni" - UdR University of Rome Tor Vergata,
Via del Politecnico 1, Rome, Italy

pierpaolo.loreti@uniroma2.it

Abstract: A requirement of pervasive computing systems is
context data sharing among software components that
collaborate in providing services to users. The solution to this
requirement becomes more challenging when the
communication scenario is peer-to-peer, i.e. the context data
are distributed among components, rather than be held by a
centralized server. This paper faces the context data sharing
issue proposing a software architecture that realizes a
distributed context space by a tuple space. Moreover, the
context data are represented using an ontology, described in
the Web Ontology Language, thus the system can be seamless
integrated with the Semantic Web technologies.

1. INTRODUCTION

In the pervasive computing vision the environment is
fulfilled of software components embedded in common
objects (e.g.) enabling them to provide mobile users with
context-aware services. As a consequence, the system
architecture has to support the seamless integration and
cooperation among devices and software components. The
integration is not only required from the communication
point of view, but it is also necessary in terms of
knowledge, i.e. the software components have to share their
information about what is going on in the environment [1].
The whole set of environmental information forms the so-
called “context”.

Context information sharing relies on a software
architecture able to distribute the context data. Moreover,
data need to be described in a uniform machine
understandable form and a candidate solution is the
definition of a common ontology [1, 2]. The ontology
unambiguously describes the context data as “concepts” on
which software components can reason.

This paper faces the context sharing issue, proposing a
peer-to-peer software architecture based on tuple spaces
managed by the LIME middleware [3], and a new defined
interface (named LIME/OWL Interface) that maps semantic
concepts formalized in Ontology Web Language (OWL),
[4], on LIME tuples. OWL is a W3C standard originally
designed to develop the Semantic Web vision in which the
published information has an explicit meaning by the
definition of ontologies, making easier for machines to
automatically process and integrate available information in
order to perform useful reasoning tasks.

We envisage that the peer-to-peer approach, supported
by underlying wireless technologies able to realize
spontaneous (or ad-hoc) networking, results as a key for fast
system deployment, avoiding the need of a provisional
infrastructure. In fact, each software component is directly
responsible for the management of its context data without
the intermediation of a central server. In such dynamic
mobile environment, LIME middleware appears as a
suitable candidate for data sharing. Finally, the selection of

OWL as description language enables the system to be
integrated with the Semantic Web technologies.

The rest of the paper is organized as follow: Section 2
describes the peer-to-peer context sharing architecture and
the LIME middleware philosophy; Section 4 describes the
LIME/OWL interface. Section 4 presents the related works
and finally conclusions are drown.

2. PEER TO PEER CONTEXT SHARING

We refer to the scenario reported in Figure 1, in which a
set of software components are running inside some hosting
devices that are connected each other via wireless and wired
network technologies. Software components write and read
(i.e., share) contextual information in terms of OWL
concepts forming a logical “Context Space”. The sharing is
supported by LIME facilities and the LIME/OWL Interface
provides the mapping rules between concept and tuples.

In the paragraph we briefly describe the LIME
middleware. Then, in the next Section, we discuss the
LIME/OWL Interface and common operation such as
putting out and retrieve context data.

Software
Components

LIME tuple space

Hosting
Devices

Context
Space

LIME/OWL
Interface

OWL concepts

LIME Tuples

Software
Components

LIME tuple space

Hosting
Devices

Context
Space

LIME/OWL
Interface

OWL concepts

LIME Tuples

Figure 1 – Reference scenario

2.1. Lime

LIME is a Java-based middleware specifically targeted
toward the complexities of the ad-hoc mobile environments,
[3]. LIME supports the application design in environments
where a physical or logical mobility cause constant changes
in the availability of resources (both data and computational
elements).

LIME adapts to a mobile environment the notion of
Linda where processes communicate by writing, reading,
and removing data from a tuple space that is assumed to be
persistent and globally shared among all processes. In LIME
the tuple space content is distributed across multiple mobile
components. When components are within range (i.e.,
mobile agents are on the same host or communication is
available between mobile hosts that contain agents), the
contents of the tuple spaces held by the individual mobile
components are transiently and transparently shared,

S6-5106-1509 © SoftCOM 2005

forming a federated tuple space. The content accessible
through such virtual tuple space, made up of the concrete
tuple spaces contributed by each component, changes from
time to time according to the current connectivity pattern.
Moreover, the fully decentralized architecture increases the
system scalability [5].

LIME also introduces the notions of tuple location, for
querying a partition of the federated tuple space, and of
reactive programming, for allowing actions to be performed
with varying degrees of atomicity upon insertion of a tuple.

3. LIME/OWL INTERFACE

The LIME/OWL Interface defines rules for mapping the
OWL concepts on tuples. Actually, the OWL concepts are
represented in RDF document written in XML; as a
consequence the LIME/OWL Interface defines the way to
publish in a distributed way XML statements consistent
with the OWL semantics.

Let us use an example to explain this approach. Figure 2
reports a simplified XML statement representing two OWL
individuals belongs to the Person and Location OWL
classes defined in our ontology. These classes are used to
describe some user characteristics as profile and location.
Each class is uniquely identified by an URI in the form of a
URN; URNP identifies the specific Person class while
URNL identifies the Location one. Person class is
composed by two DataType Properties (DTP): LastName
and FirstName; and by one Object Property (OP):
Location, which acts as a pointer to the relevant
Location class. Location class is formed by three
DTPs: Latitude, Longitude and Altitude.

Referring to Figure 2, the profile information
(LastName and FirstName) is produced by the user
device, while the location information is produced by an
external location provider. So, the “black” XML TAGs are
output by the user device, while the “red” XML TAGs by an
external location provider device.

<vicom:Person rdf:about = "URNP">

<vicom:LastName>Detti
</vicom:LastName>
<vicom:FirstName>Andrea
</vicom:FirstName>
<vicom:Location>URNL
</vicom:Location>

</vicom:Person>

<vicom:Location rdf:about="URNL">
<vicom:Latitude>12
</vicom:Latitude>
<vicom:Longitude>43
</vicom:Longitude>
<vicom:Altitude>180
</vicom:Altitude>

</vicom:Location>

User
Device

Location
Provider

Local

Moved to User Device

Local

Figure 2 – Example of XML statement

3.1. Dynamic XML Statements over tuples

We define three tuple formats that maps the XML TAGs
associated with the Class, DTP and OP OWL concepts.
Moreover, these tuple formats contain information that
enables to recreate the XML hierarchy. The benchmark
philosophy that we adopt in our approach is the following:
“the XML over tuples mapping rules must enable the
reconstruction of the entire XML statement through a
succession of Lime queries on the tuple space”. So doing,
unlike centralized approach, we “crumble” the XML

statement representing the context space on distributed Lime
tuples.

The generic tuple format contains two parts: header and
context data. The tuple header is a common control part
mainly holding the XML hierarchy; while the context data
part is specific for each type of tuple and is directly related
to OWL concept (Class, DTP or OP) that it represents.

The following sections go into detail about the header
and context data parts. However, a preliminary discussion
on the concept naming approach is need.

3.2. Concept naming

As it will be clearer in the following, in order to manage
the XML hierarchy and to aid the use of unicast queries
instead of broadcast one, we need to uniquely identify a
concept (e.g., an XML TAG) that is contained in a tuple
within the context space. With this aim, we have chosen the
URN approach. The concept URN maintains all the
information needed to refer the concept in a network
environment. The URN contains three parts: i) host_id;
ii) agent_id; iii) concept_id.

host_id is the network reference, i.e. the IP address
and the port number of the Lime server, which host the
Lime agent generating the concept. The agent and the
concept are respectively identified by agent_id and
concept_id; as the former is unique within the same
Lime server, as the latter is for the concepts published by an
agent.

It is worth to mention that Lime already provides a
unique tuple numbering scheme and recalling that concepts
are published on tuples, the straightforward solution will
lead to utilize tuple numbering scheme for the concept
naming. In dynamic environment the context can rapidly
change and consequently it is necessary to modify the
values contained in the tuples. This is accomplished by
Lime through tuples publication and elimination. However,
the concept can remain unchanged and thus a different
naming scheme is really mandatory. For example, if the user
is moving in the environment, the actual position changes
(i.e. the tuple) but the location concept is unchanged.

3.3. Tuple Header

The tuple header structure is reported in Table 2. The
first field is the Source that contains the concept URN.
The second field, Relationship, accounts for the XML
hierarchy. It contains the URN of the concept associated
with the hierarchically upper XML TAG. For example, if a
property is referred to a specific instance of a class then its
Relationship field will contain the URN of the tuple
associated with that class. For the case in which the XML
TAG represented by the tuple does not have an upper
parent, the ‘thing’ OWL class with URN=0 are considered
as root parent.

Finally, the Time field represent the absolute generation
time of the tuple that can be used as an index of context data
“freshness”.

Table 1 – Tuple Header

Field Value
Source URN
Relationship URN
Time TimeStamp

S6-5106-1509 © SoftCOM 2005

3.4. Tuple Context Data

The Context Data part can be of three types according to
the referenced OWL concept: Class, Object Properties and
DataType Properties.

Table 2 describes the context data for the Class OWL
concept. It contains just the ‘Class Type’ field
reporting the rdf:ID of the class, i.e. the type of class that
has been instantiated.

Table 2 - Class Context Data

Field Value
Class Type rdf:ID

Table 3 - DTP Context Data

Field Value
DTP Type rdf:ID
Value rdfs:range

Table 4 - OP Context Data

Field Value
OP Type rdf:ID
Value Reference URN

As example, referring to Figure 3, the tuple associated

with the instance of the Person class is:
<Person,URNP,0,TP>
The first tuple field contains the value Person that

represents the ‘Class Type’ field. The “red” fields
constitute the tuple header. URNP is the Source, i.e. the
concept URN. The next field, equals to 0, is the value of
Relationship meaning that the XML TAG does not get
an upper parent. Finally, ‘TP’ is used to indicate the
Time.

The DataType Properties tuple format is reported in
Table 4. The ‘DTP type’ field contains the type of the
DTP; i.e., its rdf:ID. The Value field contains the specific
value of the DTP that must be in the rdfs:range defined by
the ontology. As example, referring to Figure 3, the tuple
for the DTP FirstName is:

<FirstName,Andrea,URNFN,URNP,TFN>
where the first two fields represent the DTP part and the
other fields represent the tuple header. Regarding the
header, URNFN represents the concept URN and let us
notice that the Relationship field contains URNP,
indicating that the XML TAG mapped by the current tuple
is hierarchically below the Person class identified by
URNP.

Finally, Table 5 reports the OP tuple format. The
‘OP type’ field contains the type of the OP; hence, its
rdf:ID. The Value field contains the URN of the class
instance to which the OP is referring (i.e., it is a pointer to a
concept).

As example, referring to Figure 3, the tuple associated
with Location OP is:

<Location,URNL,URNLOP,URNP,TLOP>
where the first two fields are the OP part and the latter fields
are the header (URNLOP is the concept URN).

3.5. Tuple positioning

Lime allows moving the tuple from an agent to another
(e.g., from the Location Provider device to User Device).
This facility can be used to reduce the network traffic
exploited during the context data search. As a matter of fact,
taking as symbolic example the case in Figure 3, if all the
tuples related to a person are moved on its user device (e.g.
the Location OP and the entire Location class), an
application knows a-priori that all the tuples associated with
that person will be found on its device; hence, the
application can perform unicast Lime queries, instead of
broadcast ones, needed when the application does not know
where the tuples are.

Anyway, this approach gets a drawback: if we move an
entire class containing highly dynamic data (e.g., the DTPs
of the Location class continuously changes it value) from
the source agent to another one, the former has to frequently
update the moved tuples, so increasing the network load.
Summing up the previous reasoning, we chose to move only
the OP tuples.

3.6. Context Data Retrieval

This section deals about the operations needed to find a
context data. The general approach is a sequence of
broadcast or unicast Lime queries (driven by the ontology
schema), which, step-by-step, conduct us toward the target
data.

As example, we consider the case of an application that
has to monitor the location of the person named “Andrea”.
First of all, the application broadcasts a query for the DTP
tuple containing the person name. The performed Lime
query is:

<FirstName,Andrea,*,*,*>
 where ‘*’ means ‘any value’. The Lime agent on the user
device will answer with the following tuple:

<FirstName,Andrea,URNFN,URNP,TFN>.
At this point, through the URNP, the application knows

the network IP address of the user device holding the
Person class. Thus the application can perform a unicast
query toward the user device requiring the Location OP
tuple. The query is:

<Location,*,*,URNP,*>
indicating the request of the Location OP hierarchically
below the Person class identified by URNP. Lime agent
on the user device will answer with

<Location,URNL,URNLOP,URNP,TLOP>.
Now, the application knows URNL that allows it to perform
unicast queries to the Location Provider agent requesting the
Latitude, Longitude and Altitude DTP tuples.

As proof of the effectiveness of the tuple positioning and
naming strategies presented in the previous sections, during
the data searching, we performed only the first query in
broadcast due to a complete lack of knowledge. After the
first query we can exclusively use unicast one.

4. RELATED WORK

Various software architectures have been proposed for
the context sharing in pervasive environment. The different
solutions have to be compared mainly on the
communication infrastructure characteristics and on the
context data description formalism. In the follow we

S6-5106-1509 © SoftCOM 2005

consider the only solutions that use Semantic Web
technologies for context data formalization.

Early ontology based context management approaches
relay on a central node; i.e. a server component holds all the
context information and reasons on them, like in COBRA
[6] or in GAIA [1]. A different approach has been pursued
in the "Semantic Space" system, [7], to account the mobility
issue. They propose an architecture that uses UPnP general
events notification architecture to disseminate the row
context data that are collected locally and represented by
OWL. These approaches are unfeasible if peer-to-peer agent
interactions take place. Moreover, each application has to
relay on the central node for reasoning tasks possibly
causing a scalability problem.

An interesting work on tuple spaces but not suitable for
spontaneous networks, is reported in [8]. The "sTuples" are
an extended version of Java Spaces in which semantic tuple
matching is introduced by tuples that contain semantically
described query.

Other significant works on context management in
infrastrucured networks and not directly related to pervasive
computing are presented in the follow. A context
management architecture targeted for extending the
Semantic Web is presented in [9]; "Semantic Web Spaces"
system uses a persistent tuple space to share the OWL
concepts that are represented by RDF triple. Each agent can
collect the context data reading in the tuple space and
coping them locally. The architecture is based on
XMLSpaces [10] middleware that supports distributed XML
statements publication in a tuple space using tuple nesting
technique. In the implementation of the Triple Computing
vision, a similar approach is used, but the context is
exchanged with a new costumed protocol built on top of
HTTP [11]).

5. CONCLUSION

The paper presented an architecture for context sharing
based on a peer-to-peer service model. The architecture
relies on the LIME middleware for data sharing and uses
OWL for context formalization. A LIME/OWL Interface
allows the ontology concepts to be dynamically shared by
the agents that publish, in a distributed fashion, parts of the
XML statement representing the context. The XML TAGs
representing the OWL concepts are mapped on tuples,
shared transparently among agents via the LIME/OWL
Interface using the LIME middeware.

The proposed architecture should result as a key for fast
system deployment, avoiding the need of a provisional
infrastructure. In fact, each software component is directly
responsible for the management of its context data without
the intermediation of a central server. Moreover, the usage
of OWL for context formalization can provide a
straightforward integration with Semantic Web technologies

REFERENCES

[1] S. Helal “Programming Pervasive Spaces”, IEEE Pervasive
Computing, Vol. 4, Issue 1, Jan.-March 2005

[2] A. Ranganathan et al., “Ontologies in a pervasive computing
environment”, Workshop on Ontologies in Distributed Systems,
Acapulco, Mexico, 2003.

[3] G.P. Picco, A.L. Murphy, and G. C. Roman, “Lime: Linda
Meets Mobility”, Proceedings of ICSE, May 1999.

[4] M. K. Smith, C. Welty, and D. L. McGuinness, Editors, “Web
Ontology Language Guide”, W3C Rec., 10 Feb. 2004.

[5] Z. Li and M. Parashar, “Comet.. A Scalable Coordination
Space for Decentralized Distributed Environments”, Proceedings
of HOTP2P’05, 21 July 2005, La Jolla, CA, USA.

[6] H. Chen et al. "Semantic Web in in the Context Broker
Architecture", In Proceedings of PerCom 2004, March 2004.

[7] X. Wang et al. “Semantic Space: an infrastructure for
smart spaces”, Pervasive Computing, IEEE, Vol 3, Issue 3,
July-Sept. 2004, pp. 32 - 39

[8] D. Khushraj et al. “sTuples: semantic tuple spaces”,
Mobile and Ubiquitous Systems: Networking and Services,
2004, Aug. 2004, pp. 268 - 277

[9] R. Tolksdorf et al, Semantic Web Spaces “Technical
Report TR-B-04-11”, Freie Universität Berlin, Germany,
July 2004

[10] R. Tolksdorf et al “XMLSpaces.NET: An Extensible
Tuplespace as XML Middleware” Technical Report B 03-
08, Freie Universität Berlin, Germany, 2003.

[11] D. Fensel, "Triple-based Computing", Technical Report
DERI-TR-2004-05-31, Digital Enterprise Research Institute,
Ireland, May 2004

ACKNOWLEDGE

This work is part of the Virtual Immersive
COMmunication (VICOM) project founded by the Italian
Ministry of University and Scientific Research (MIUR-
FIRB projects).

S6-5106-1509 © SoftCOM 2005

