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Critical Limitations of the Least Outstanding
Request Load Balancing policy in Service Meshes

for Large-Scale Microservice Applications
Andrea Detti, Ludovico Funari

Abstract—Service meshes are becoming pivotal software
frameworks for managing communication among microservices
in distributed applications. Each microservice in a service mesh is
paired with an L7 sidecar proxy, which intercepts incoming and
outgoing requests to provide enhanced observability, traffic man-
agement, and security. These sidecar proxies use application-level
load balancing policies to route outgoing requests to available
replicas of destination microservices. A widely adopted policy is
the Least Outstanding Request (LOR), which directs requests to
the replica with the fewest outstanding requests.

While LOR effectively reduces latency in applications with
a small number of replicas, our comprehensive investiga-
tion—combining analytical, simulation, and experimental meth-
ods—uncovers a novel and critical issue for large-scale microser-
vice applications: the performance of LOR significantly degrades
as the number of microservice replicas increases, eventually
converging to the performance of a random load balancing policy.

To recover LOR performance at scale, we propose an open-
source solution named Proxy-Service, tailored for microservice
applications where load balancing incurs significantly lower
resource demands than microservice execution. The core idea
is to consolidate load balancing decisions per microservice into
one or a few reverse proxies, transparently injected into the
application.

Index Terms—Cloud Computing, Microservices Applications,
Service Meshes, Load Balancing

I. INTRODUCTION

Microservice architecture decomposes the server-side logic
of a web application into independent services, each responsi-
ble for a specific function and interacting through standardized
network APIs, typically HTTP or gRPC [1]–[3]. A running
copy of a microservice is referred to as an instance; multiple
instances can be deployed concurrently to handle varying
workload demands and ensure fault tolerance through repli-
cation.

Microservice applications are typically deployed on Ku-
bernetes clusters [4], where each microservice instance runs
within a Pod, which is a group of one or more Linux containers
that share the same network namespace. Each Pod main
container runs the microservice logic, while optional sidecar
containers provide logging, monitoring, security, etc.

Kubernetes orchestrates the lifecycle of these Pods by
rescheduling failed ones and autoscaling instances based on
system metrics. By default, it uses a Layer 4 (L4) random load
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Fig. 1: A three-tier microservice application enhanced with
service mesh functionality. The request path is S0 → S1 →
S2. Each service has a varying number of instances.

balancing policy to distribute service requests across available
microservice instances.

Service Mesh: Service meshes, such as Consul [5], Istio [6],
and Linkerd [7], extend Kubernetes by offering observability,
secure communication, and advanced traffic control without
altering application code [8], [9]. A Layer 7 (L7) proxy is
automatically injected as a sidecar into each Pod, intercepting
all ingress and egress gRPC/HTTP requests to enforce traffic
policies and perform application-layer load balancing. This
overrides the default Kubernetes L4 random policy.

Fig. 1 illustrates a three-tier microservice application en-
hanced with service mesh functionality. Requests enter the
system through an ingress proxy and traverse a chain of mi-
croservices (S0 → S1 → S2). Each microservice is replicated;
for example, S0 and S2 have three replicas, while S1 has two.
The sidecar proxies associated with S0 instances perform load
balancing for requests directed to S1, and those of S1 handle
load balancing for requests forwarded to S2.

Sidecar proxies apply advanced Layer 7 load balancing
policies, such as Least Outstanding Requests (d), denoted
as LOR(d). In this policy, each proxy monitors the number
of its own outstanding HTTP/gRPC requests to each server,
where each server corresponds to a downstream microservice
instance, and forwards new requests to the least loaded one
among d randomly selected candidates.1

1We define downstream as the direction in which a request flows and
upstream as the reverse direction. If microservice S0 sends a request to
S1, then S1 is a downstream microservice of S0, and conversely, S0 is
an upstream microservice of S1.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2025.3593870

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

The policy has a simple implementation and offers sig-
nificant latency improvements over random or round-robin
policies [10]. For this reason, it is widely adopted as the default
in service meshes2.

Load Balancer Literature: A related and well-studied policy
is the Join-the-Shortest-Queue, abbreviated as JSQ(d) [11],
where the load balancing function selects the server with the
smallest queue among d randomly chosen candidates. Mitzen-
macher’s seminal analysis [10] modeled JSQ(d) in a system
with a single load balancer distributing a Poisson stream of
jobs to N homogeneous servers, each with FIFO queues and
exponential service times. Known as the supermarket model,
this system revealed the “power of two choices”: the majority
of latency gains with respect to random policy occur already
at d = 2, with diminishing returns beyond.

In systems with a single load balancer, LOR(d) and JSQ(d)
are functionally equivalent, since the number of outstanding
requests effectively reflects the server queue length. However,
service meshes load balancing operation are made by multiple
and independent load balancers, i.e., the sidecar proxies of the
microservice instances, each making routing decisions with
only local information. This results in what we term a non-
collaborative distributed supermarket model, where each load
balancer sees only its own outstanding/queued requests to a
server, not the total queue length. Consequently, LOR(d) in
such contexts becomes a JSQ(d) with imperfect/local knowl-
edge of the server queue.

Motivations: Our experiments on real microservice appli-
cations [12] revealed that the limited visibility of queue states
in LOR(d) leads to a significant degradation in performance as
the level of microservice replication increases. This observa-
tion motivated the development of a continuous-time analytical
model that captures the key characteristics of service mesh
environments with multiple independent load balancers. Our
analysis shows that, as the number of load balancers grows,
the performance of LOR(d) asymptotically converges to that
of a random policy, thereby exposing a scalability limitation
in its application within service meshes.

Addressing this limitation requires rethinking the design of
load balancing mechanisms. While prior research has proposed
collaborative, feedback-based strategies for time-slotted sys-
tems [25], [26], these methods inevitably introduce synchro-
nization complexity and operational overhead. In contrast, we
propose a practical and non-collaborative solution specifically
tailored for service mesh applications, where load balancing
is not the performance bottleneck.

Our approach, called Proxy-Service, augments the mi-
croservice application with one or a few reverse proxies
per microservice. These proxies intercept all incoming re-
quests for the instances of a microservice and perform the
LOR(d) selection centrally, thereby consolidating the load
balancing decision into a single or few control points. This
architectural change restores the effectiveness of LOR(d) by

2In multi-cluster service-mesh environments, LOR(d) is typically applied
within each individual cluster. Cluster-level routing is handled separately,
often using locality-aware policies that prefer the local cluster if the target
microservice is available; otherwise, remote clusters are selected based on
configurable inter-cluster traffic criteria.

mitigating the performance degradation caused by distributed,
non-collaborative load balancing operations made by sidecar
proxies.

We implemented Proxy-Service as an open-source Kuber-
netes custom resource [19]. Experimental evaluations confirm
that it significantly improves LOR(d) performance at scale,
with negligible CPU and memory overhead, and without
requiring any modifications to application code or sidecar
proxy implementations.

Contributions: This paper makes the following contribu-
tions:

• New Analytical Model Reflecting Service Mesh Real-
ities. We introduce a novel analytical model—the non-
collaborative distributed supermarket model—that accu-
rately captures the behavior and limitations of LOR(d)
in service mesh environments with distributed load bal-
ancers.

• Discovery of Asymptotic Latency Degradation in
LOR(d). We theoretically and empirically demonstrate
that, as the number of microservice replicas increases,
LOR(d) loses its latency advantage and asymptotically
approaches the performance of random policy.

• Proxy-Service Mitigation Strategy for Microservice
Applications. We propose a novel architectural solution
that mitigates this degradation by consolidating load bal-
ancing decisions per microservice through the introduc-
tion of reverse proxies, thereby restoring the effectiveness
of LOR(d) in service mesh environments.

• Kubernetes/Istio Implementation. We implement this
strategy as a Kubernetes-native custom resource inte-
grated with Istio, demonstrating the feasibility of Proxy-
Service in real-world deployments and confirming its
performance benefits through experimental evaluation.

Paper Outline: Sec. II presents the analytical formulation
of the non-collaborative distributed supermarket model and
validates its predictions through simulation and real-world
experiments. Sec. III details the Proxy-Service concept and
Kubernetes implementation. Sec. IV evaluates the performance
of Proxy-Service under realistic workloads. Sec. V compares
Proxy-Service method with collaborative approaches. Sec. VI
surveys related literature, and Sec. VII concludes with key
insights and directions for future research.

II. ANALYSIS OF THE NON-COLLABORATIVE DISTRIBUTED
SUPERMARKET MODEL

A. Definition

Consider a system in which external requests are fairly
handled by M load balancers that route traffic to N servers.
Servers use a first-in, first-out (FIFO) queue strategy and the
service time for a request is exponentially distributed with
mean Ts = 1. Each load balancer receives a Poisson stream of
requests with a rate of Nλ req/s and uses the LOR(d) policy to
distribute requests to servers. When a request is received, the
load balancer chooses d servers at random with replacement
and, among them, routes the request to the server that currently
holds the minimum number of outstanding requests originating
from the load balancer, that is, the load balancer can only
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Fig. 2: Non-Collaborative Distributed Supermarket Model

observe its outstanding requests. In case of a tie among servers,
the choice among them is random. We named this system
“non-collaborative distributed supermarket model”.

Fig. 2 illustrates the non-collaborative distributed supermar-
ket model, emphasizing the imperfect knowledge that each
load balancer has about the actual queue occupancy of the
servers. In the figure, requests handled by different load
balancers are represented with different colors.

From the perspective of load balancer 1, server 1 has 2
outstanding requests, server 2 has zero, and server N has 1.
These outstanding request counts are used by the load balancer
to make dispatching decisions. However, as previously noted,
these values differ from the actual number of requests in
the server queues because each load balancer only tracks the
requests it has issued. As a result, load balancing decisions are
made based on partial and local information, which may lead
to suboptimal request distribution and performance degrada-
tion at scale.

B. Analytical model

In this subsection, we present an asymptotic analysis of the
non-collaborative distributed supermarket model whose results
get closer and closer to reality as the number of servers N and
load balancers M increases. The analysis extends that in [10].

Consider a generic load balancer B at time t, e.g., the first
load balancer in Fig. 2. We define mi, as the number of servers
with at least i queued requests coming from B. We define
si = mi/N as the fraction of servers with at least i queued
requests of B.

For large values of N , si can be regarded as the probability
that the number of requests of the load balancer B contained
in a server queue is greater than or equal to i.

In a time interval dt, the probability that a request arrives
at the load balancer B is equal to Nλdt. The probability that
the request is routed to a queue that contains i − 1 requests
from B is equal to sdi−1 − sdi , i.e., the probability that the d
servers chosen at random all have at least i− 1 requests of B
but not all have more than i requests of B. Consequently, the
increase in mi due to the arrival of requests in dt seconds is
equal to Nλ(sdi−1 − sdi )dt.

In a time interval dt, the probability that a request of the load
balancer B leaves a queue that contains i requests of B is equal

to Nµi(si − si+1)dt, where si − si+1 is the probability that a
queue contains i requests from B and, under this condition, µi

is the average departure rate of requests of the load balancer
B. Note that this rate only takes into account the requests of
B that leave the queue, rather than any request, so it may be
less than the inverse of the average service time, i.e., µi ≤ 1.

Combining the increase in mi due to arrivals and the
decrease due to departures, we can write the derivative of mi

as follows.

dmi

dt
= Nλ(sdi−1 − sdi )−Nµi(si − si+1) (1)

Dividing by N , we obtain the following set of differential
equations.

dsi
dt

= λ(sdi−1 − sdi )− µi(si − si+1) (2)

Each server receives an overall rate of requests equal to
Mλ and the whole system is stable if Mλ < 1 3. In this case,
the derivative dsi/dt in Eq. 2 must be zero in a steady state.
Consequently, we can compute the probabilities si, for i > 1,
solving the following set of recursive equations 4:

si+1 = si −
λ

µi
(sdi−1 − sdi ) , for i > 1 (3)

To start the recursion, we need s0 and s1. Obviously,

s0 = 1 (4)

Regarding s1, we note that since the system is stable, the
rate of requests from the load balancer B entering and leaving
a server queue must be equal, in formulas,

λ =

∞∑
i=1

(si − si+1)µi (5)

where λ is the input rate of request from a load balancer B,
si − si+1 is the probability that the server queue contains i
requests of B and µi is the departure rate of B requests in
this condition.

To compute µi, we use a mean-field approximation for
which the effect of other load balancers on any given server
queue is approximated by a single averaged effect [10] [13].
Consequently, we assume that when a request of B enters a
queue, it finds (M−1)Eq requests from other load balancers,
where Eq is the average number of requests of a load balancer
in a queue. Therefore, since we consider an average service
time Ts = 1, µi can be approximated as follows.

µi ≈
i

i+ (M − 1)Eq
(6)

3Our model shows that the performance of the non-collaborative distributed
supermarket model is always better than that of a system in which the load
balancers use a random policy. Such random systems are stable when Mλ <
1, so we conjecture that this condition also holds in our model. A similar
argument was used in [10] to justify the same stability condition for single
load balancer JSQ(d) systems.

4In [10], the Author solved this recursion in closed form for µi = 1.
However, in our non-collaborative distributed supermarket model µi is not
equal to one and varies with i. Therefore, his elegant solution is unfortunately
not applicable.
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Regarding Eq, it can be readly written as [10],

Eq =

∞∑
i=1

si (7)

To compute the expected time T a request spends in the
system, that is, the average request latency, we can reason as
follows. A request from the load balancer B enters a queue
with i − 1 queued requests of B with a probability equal to
sdi−1 − sdi . In this scenario, the request has ahead of it i −
1 requests of B and (M − 1)Eq requests of the other load
balancers, with unit service time. Subsequently, the average
request latency can be written as:

T =

∞∑
i=1

(i+ (M − 1)Eq) (sdi−1 − sdi )

= (M − 1)Eq +

∞∑
i=0

sdi

(8)

The Eq. 3, Eq. 4, and Eq. 5, combined with Eq. 6 and
Eq. 7 provide all the relations needed to compute si and in
turn request latency T . We were unable to solve them in closed
form, however numerical methods can be used 5.

We note that for an average service time Ts different from
1, the latency of the request in Eq. 8 must be simply multiplied
by Ts. The motivation is that we can carry out the analysis on
a different time scale equal to 1/Ts. Consequently, the average
service time turns out to be equal to 1, therefore, the proposed
formulas are valid. Finally, it is necessary to rescale the time
backward by multiplying the resulting latency by Ts.

C. Asymptotic behavior

Theorem 1. As the number of load balancers increases, the
average request latency T asymptotically tends to that of a
system where load balancers choose servers at random, i.e.,

T → 1

1− ρ
as M → ∞ (9)

where ρ = Mλ is the utilization factor of a server.

Proof. Since the stream of requests generated by users is dis-
tributed evenly across load balancers, as the number M of load
balancers increases, each load balancer will handle a smaller
and smaller portion of the request stream. Consequently, the
probability of finding more than one request from a specific
load balancer in a server queue tends to zero, i.e.,

si → 0 as M → ∞, for i > 1 (10)

Using Eq. 10 in Eq. 5, Eq. 6 and Eq. 7, and considering
that M − 1 tends to M as M increases, we can compute the
asymptotic value of s1 as follows.

s1 → λ

1− λM
as M → ∞ (11)

5For instance, we used Matlab numerical methods while assuming that for
large values of i (e.g., i = 10000) si ≈ 0.

Using Eq. 11 in Eq. 8 and considering that, for d > 1, sd1
tends to zero much faster than s1 as M increases, we have

T → 1 +Ms1 as M → ∞ (12)

Using Eq. 11 in Eq. 12, we get Eq. 9 that is the well-known
latency of a system with unit service time where load balancers
choose servers at random [14].

The asymptotic tendency of a system using the LOR(d)
policy to behave like a system that uses the random policy
results from the following observation. As the number M of
parallel load balancers increases, the probability s1 of finding
at least one request from a load balancer B in a queue becomes
smaller and smaller. Consequently, it is increasingly likely that
the d servers chosen at random by the LOR(d) algorithm do
not contain any outstanding requests from B. Consequently,
there is a tie and B chooses a server at random.

D. Validation of the Model Through Simulations

To validate the theoretical model, we developed a simulator
of the non-collaborative distributed supermarket system. The
setup uses a Poisson request stream with average service time
Ts = 20ms and target utilization ρ = 0.75, such that λ =
ρ/(MTs). The number of servers is fixed at N = 40.

Fig. 3a presents the latency results for the LOR(2) policy
as the number of load balancers varies, with 95% confidence
intervals computed from ten simulation runs. Model and
simulation results align closely and converge as M increases,
consistent with mean-field approximations6. The latency of
LOR(2) approaches that of the random policy, Ts/(1 − ρ) =
80ms, confirming the model’s predictive accuracy and Theo-
rem 1.

Fig. 3b explores the impact of increasing utilization ρ for
fixed values of M = 1 and M = 20. In line with prior
findings on JSQ(d) [15], latency reduction with LOR(d) is
most pronounced under high load. Note the considerably
greater effectiveness of LOR systems with a single load
balancer (M = 1) compared to the cases of multiple load
balancers (M = 20).

Fig. 3c examines the effect of varying d on LOR(d). Results
confirm the ”power of two choices”: most of the benefit
is gained at d = 2, with diminishing returns beyond. As
M increases, latency flattens and approaches that of random
routing, indicating reduced sensitivity to d.

We also tested under bursty traffic using Lognormal inter-
arrival times with varying coefficient of variation (CV). As
shown in Fig. 4, latency increases with burstiness, but the key
trend holds: LOR(2) performance deteriorates with more load
balancers, converging to the behavior of the random policy.

E. Validation of the Model Findings in Real-World Contexts

To assess the practical relevance of our theoretical insights,
we evaluated the model under real-world conditions, where
assumptions such as Poisson arrivals and idealized service
times may not strictly hold. While exact numerical agreement

6In all simulations, the mean-field approximation in Eq. 6 slightly overes-
timates Eq and latency, but this overestimation diminishes as M increases.
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Fig. 3: Simulation results validating the model and illustrating: (a) LOR(2) degradation with more load balancers, (b) stronger
degradation under high traffic, and (c) the effectiveness of two random choices.
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is not expected, the goal is to confirm whether the degradation
trend of LOR(d) persists in practice.

We deployed a two-tier microservice application using the
µBench tool [17] on a Kubernetes cluster with Istio. The
application comprises microservices S0 and S1 (as in Fig. 1,
omitting S2). We varied the number of S0 replicas (M ) and
fixed the number of S1 replicas at N = 20.

User requests (HTTP GET) were routed via an Istio ingress
gateway to randomly selected S0 instances. Each S0 instance
immediately forwarded the request to an S1 replica via its
sidecar proxy by using LOR(2) policy. The S1 service per-
formed CPU-bound processing and returned a response, which
was relayed back to the user.

This setup replicates the non-collaborative distributed super-
market model: S0 proxies act as independent load balancers,
and S1 replicas as servers.

Using JMeter [18], we generated a constant load of 100
req/s and compared LOR(2) with a random load balancing
policy. Fig. 5 reports average latency and 95% confidence
intervals. Results confirm that LOR(2) effectiveness declines
as M increases, with latency approaching that of random
policy.
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Fig. 5: Average request latency of the application in Fig. 1
excluding S2 vs. S0 replicas. LOR(2) performance degrades
with replication, consistent with theoretical predictions.

III. PROXY-SERVICE: CONSOLIDATING LOAD BALANCING
DECISIONS TO RESTORE LOR(d) AT SCALE

The theoretical analysis in the previous section showed
that the performance of LOR(d) degrades due to insufficient
visibility into queue states, resulting from the concurrent
presence of two key issues: (1) load balancing decisions are
fragmented across many parallel load balancers, and (2) these
load balancers operate independently, without feedback from
servers regarding their queue states.

Several literature approaches address the second issue by
introducing collaborative mechanisms that balance synchro-
nization overhead with queue visibility [25]–[27].

In contrast, this paper proposes a novel approach specifically
tailored to microservice applications, under the key assumption
that load balancing operations are substantially less resource-
intensive than microservice execution. The effectiveness of the
proposed solution relies on this assumption, which enables the
consolidation of load balancing decisions into a small number
of control points, called Proxy-Services, that are transparently
integrated into the application.

As shown in Fig. 6, each Proxy-Service functions as a
reverse proxy, forwarding requests to microservice instances
using the LOR(2) load balancing policy. Given that load bal-
ancing is less resource-intensive than microservice execution,
a single Proxy-Service instance (e.g., PS-S1) can efficiently

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2025.3593870

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Service mesh application with proxy-services

PS
-S

2

PS
-S

1

S01
sidecar proxy

S02
sidecar proxy

S03
sidecar proxy

S11
sidecar proxy

S12
sidecar proxy

S21
sidecar proxy

S22
sidecar proxy

S23
sidecar proxy

Istances of
S0

Istances of
S1

Istances of
S2 

Users

ingress proxy

service mesh functionality microservice instance

PS
-S

2

PS
-S

0

Proxy-Service
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serve traffic from many upstream microservice instances (e.g.,
S0), thereby restoring the performance of LOR(2) by elimi-
nating fragmentation in the load balancing process.7

If the incoming request volume exceeds the capacity of a
single Proxy-Service, horizontal scaling can be applied. While
this increases the number of load balancers, the number of
Proxy-Service instances MPS remains significantly smaller
than the number of upstream microservice replicas, substan-
tially reducing fragmentation and maintaining effective load
balancing.

A key innovation of Proxy-Service is that it maintains
the simplicity of non-collaborative LOR(d). It neither alters
the load balancing algorithm nor introduces state synchro-
nization among proxies. Instead, it transparently modifies the
microservice dependency graph by inserting a small number of
centralized decision points. This enables effective aggregation
of load balancing without requiring changes to application
code, sidecar behavior, or the service mesh control plane.

Proxy-Service introduces two potential sources of additional
latency: (i) a slight increase in end-to-end round-trip time
(RTT) due to the extra network hop, and (ii) a processing
delay associated with the load balancing operation. The RTT
increase is negligible in modern data center networks, and the
processing delay is effectively mitigated through autoscaling
of the Proxy-Service as needed. As reported in Sec. IV, both
overheads are minimal compared to the latency reduction
achieved through load balancing consolidation in case of
moderate or heavy traffic conditions.

Under low-traffic conditions, these small delays may slightly
increase overall latency without being offset by load balancing
gains. However, since baseline latencies are typically well
below service-level objectives in such cases, the trade-off re-
mains acceptable. Moreover, Proxy-Service can be selectively
enabled on a per-microservice basis, allowing fine-grained
control of latency-performance trade-offs.

7Performance measurements on our Kubernetes testbed show that a single
Proxy-Service instance can sustain approximately 14,000 requests per sec-
ond while consuming only 0.5 CPU cores, confirming that Proxy-Service
introduces minimal processing overhead and can support high-throughput
workloads.

A. Proxy-Service Implementation

We implemented Proxy-Service for Kubernetes clusters with
Istio service mesh support [4], [6]. The implementation defines
a custom Kubernetes resource named Proxy-Service (PS) [19],
composed of a Kubernetes Deployment, Service, Horizontal
Pod Autoscaler (HPA), and Istio Gateway, Virtual Service,
and Destination Rule. These are managed by a dedicated
Kubernetes Proxy-Service Operator.

Consider a microservice S1 with multiple replicas managed
by a Kubernetes Service named SN1. When Proxy-Service is
enabled for S1, the Operator performs the following:

• Deploys a new PS-S1 Deployment with a Pod running
an Istio Gateway proxy performing as reverse proxy for
S1 instances.

• Creates an HPA for PS-S1 to autoscale based on CPU
usage (e.g., targeting 70%).

• Renames the original service SN1 to SN1-target,
pointing directly to S1 instances.

• Defines a new SN1 service pointing to the PS-S1 Pods,
so that requests to S1 are transparently routed through
the Proxy-Service.

• Installs an Istio Virtual Service and Destination
Rule ensuring that PS-S1 forwards requests to
SN1-target using the LOR(2) policy (configured as
LEAST_REQUEST in Istio).

These resources are fully integrated with the Istio and Ku-
bernetes control planes, allowing Proxy-Service to seamlessly
adapt to microservice dynamics.

IV. EXPERIMENTAL RESULTS

This section presents the results of an experimental study
conducted on a Kubernetes cluster with 6 worker nodes,
each equipped with 8 CPUs. The cluster implements the Istio
service mesh, where load balancing operations are performed
by the sidecar proxies injected into the Pods. The Proxy-
Service has been implemented as an Istio-Ingress, i.e., a Pod
that contain only the sidecar (Envoy) proxy connected with
the Istio control plane.

The objectives of the campaign are twofold:
• Assess experimentally whether the latency performance

degradation of the LOR(d) policy, suggested by the an-
alytical model for a single microservice-to-microservice
interaction, is also valid for the overall latency of a com-
plete microservice application as replication increases.

• Evaluate the performance of Proxy-Service while also
considering other state-of-the-art load balancing strate-
gies.

The reported plots present average values along with their
corresponding 95% confidence intervals.

Benchmark Applications: The first experimental campaign
uses benchmark applications generated by µBench [17]. We
consider two example applications. The first, shown in Fig. 7a
represents an application with a “hub-and-spoke” dependency
graph. Users send requests to S0 and the sequence of HTTP
interactions to serve a user request is as follows: S0→S1,
S0→S2, S0→S3. The second application, shown in Fig. 7b,
represents an application with a “chain“ dependency graph.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2025.3593870

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

TABLE I: Throughput (req/s) used for the tests of µBench
applications versus number of replicas (R)

R 1 2 5 10 15 20
hub-and-spoke 10 18.5 41 75 100 120
chain 9.3 17.7 38 72.5 99 122

The sequence of HTTP interactions to serve a user request is
as follows: S0→S1, S1→S2, S2→S3.

Microservices run a CPU-intensive task whose complex-
ity has been configured so that their CPU utilization is
almost equal. Microservices have the same number of in-
stances/replicas equal to R. The CPU allocation for each
microservice is the same and equal to 300 milliseconds per
second, as know as “millis“. Specifically, 300 millis is the
value of Kubernetes CPU Request and Limit of each
microservice Pod.

User requests for S0 are generated by JMeter [18]. In each
test, we vary R and use a request throughput so that the request
latency is about 240ms when the service mesh uses the random
load balancing policy. The resulting throughput is reported in
Tab. I and increases with R, since the application has more
resources and therefore can handle more requests with the
same latency.

The same values of throughput are used to measure the
latency in the case of LOR(2) (Istio default) and LOR(2) with
Proxy-Service. For all tests, we use a single instance of each
Proxy-Service because the resulting CPU utilization is very
low and replication is not necessary.

Fig. 7c and Fig. 7d show the latency for the hub-and-spoke
and chain µBench applications, respectively. At the increases
in the number of replicas, the LOR(2) policy results in a
latency that tends to the random one. Therefore, the conclusion
we draw for the non-collaborative distributed supermarket
model still holds for a whole microservice application 8.

The introduction of Proxy-Service remarkably reduces the
latency and makes it independent of the application scale.
This independence from R is motivated as follows. With
Proxy-Services, each microservice-to-microservice interaction
turns out to be mediated by a single load balancer system
(MPS = 1). Consequently, each iteration can be modeled with
the supermarket system analyzed in [10] whose performance
depends only on the load ρ, in the case of Poissonian interar-
rivals. In the different tests, we noticed that R replicas/servers
have approximately the same CPU load (ρ). Therefore, as R
increases, the performance remains approximately constant, as
predicted by the supermarket model, despite the fact that in
our case we do not have Poissonian interarrivals.

Sock-Shop: A final performance assessment was conducted
using the Sock-Shop e-commerce application [12]. The config-
uration required to reproduce the test is available in the GitHub
repository [19]. This application comprises a heterogeneous
set of microservices implemented in different programming

8The comparison with the simpler two-service chain application in Fig. 5
shows that as the number of microservices traversed per request increases,
the performance gap between LOR(2) and random load balancing slightly
widens. This is because, in more complex service architectures, the extended
request path amplifies the impact of uninformed load-balancing decisions.

languages and utilizing various databases. All microservices
communicate via REST over HTTP.

The dependency graph is shown in Fig. 8a, which also in-
dicates the number of replicas per microservice. For example,
the front-end microservice has 30 replicas, while other mi-
croservices have a single instance unless otherwise specified.
For the tests with Proxy-Services, we deployed a single Proxy-
Service Pod per microservice, each requesting 100 milliCPU.

The benchmark load was generated using JMeter, simulating
200 concurrent users accessing the application. During each
interaction, a user generates a structured sequence of HTTP
requests, as outlined in Tab. II. The request rate is controlled
to ensure a specific throughput in requests per second (req/s).

Step HTTP Req. Step HTTP Req. Step HTTP Req.

1 Home 8 Catalogue 15 Orders
2 Login 9 Detail 16 Cart-del
3 Category 10 Basket 17 Cart-post
4 Catalogue 11 Cart-post 18 Cart-del
5 Detail 12 Orders 19 Orders
6 Catalogue 13 Cart-del 20 Cart-del
7 Detail 14 Cart-post 21 Cart-post

22 Orders

TABLE II: HTTP request sequence during user interaction
with the Sock-Shop microservice application.

Fig. 8b presents the request latency as a function of through-
put, varied between 100 and 600 req/s in increments of 50
req/s. The evaluation considers different Istio load balancing
policies, namely random, LOR(2), LOR(2) with Proxy-Service
(PS), round-robin, and ring-hash 9.

As expected, latency increases with traffic load across all
balancing strategies. However, the experimental results reveal
significant performance differences under heavy traffic. The
application became unstable beyond 400 req/s when using the
ring-hash policy, as it failed to sustain higher throughput with
the available processing resources. Both random, round-robin
and LOR(2) supported up to 450 req/s, with LOR(2) achieving
lower latency due to its ability to make a more informed load
balancing decisions. LOR(2) with Proxy-Service provided the
lowest latency and the highest supported throughput of 600
req/s, demonstrating superior efficiency in utilizing available
processing resources 10.

To explain the superior performance of Proxy-Service,
Fig. 8c and Fig. 8d show the CPU utilization ratio of three
selected Pods from the orders microservice under LOR(2)
without and with Proxy-Service, respectively. The CPU uti-
lization ratio is defined as the fraction of CPU usage relative

9The ring-hash policy implements a consistent hashing mechanism, where
microservice Pods are mapped onto a virtual ring of 1024 points based on their
IP addresses. Requests are assigned by hashing the source IP and selecting
the nearest clockwise Pod.

10We also repeated the test with two Proxy-Service instances per microser-
vice (MPS = 2). Compared to the case with a single Proxy-Service, the
additional instance introduced a small delay increase, whose maximum value
is 8 ms at 550 req/s, due to the loss of perfect knowledge of microservice
occupancy.
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Fig. 7: Dependency graphs and experimental results of µBench applications, showing Proxy-Service maintains latency
performance with increasing replicas per microservice.

to the CPU requested by the Pod11.
Without Proxy-Service, LOR(2) relies solely on local in-

formation, leading to load imbalances that increase latency.
For instance, at 500 req/s, one of the orders Pods (Pod #1)
becomes over-utilized, resulting in application instability. This
issue arises because upstream microservices lack an accurate
view of orders Pod occupancy and inadvertently overload a
Pod #1. Similar behavior is observed with random and round-
robin policies at 500 req/s, and with ring-hash at 450 req/s.

In contrast, Proxy-Service improves load balancing by en-
suring full awareness of Pod occupancy. The results in Fig. 8d
demonstrate that CPU usage is more evenly distributed across
orders Pods when Proxy-Service is enabled. By preventing
load imbalances, Proxy-Service reduces latency and enhances
the system’s ability to handle higher traffic loads efficiently.
This balanced distribution mitigates the risk of overloading
individual Pods, thereby increasing system stability even under
high request rates.

Fig. 8e reports the CPU consumption per request by Proxy-
Service across different microservices. The observed com-
putational overhead is minimal, averaging only 0.033 CPU
milliseconds per request. This indicates that a single Proxy-
Service instance (an Envoy Proxy), configured to reserve
with 100 CPU millis, can efficiently handle thousands of
requests per second with negligible resource consumption. Ad-
ditional measurement confirmed that Proxy-Service introduces
a minimal overhead to the application resource consumption,
accounting for less than 5% of total CPU and memory
consumption in any considered load conditions12.

The introduction of Proxy-Service improves load balancing
efficiency but also introduces an additional proxy in the request
path. To quantify the associated latency penalty, a controlled
experiment was conducted. The number of catalogue
microservice replicas was reduced from five to one, and a
workload was generated in which users exclusively accessed

11CPU Request is the amount of CPU reserved by Kubernetes for a Pod.
The CPU Limit defines the maximum CPU a Pod can use. For Sock-Shop,
Requests and Limits are identical. The exact configuration is available in the
example folder of the GitHub repository [19].

12We observe that to further reduce the Proxy-Service footprint, a single
instance can be shared among a group of microservices with low request rates.

the catalogue page. This setup ensured that each request tra-
versed a single Proxy-Service instance without benefiting from
load balancing, allowing the direct measurement of additional
traversal delay. The results, shown in Fig. 8f, compare the
latency of LOR(2) with and without Proxy-Service under
varying request rates. The analysis reveals that Proxy-Service
introduces an average latency penalty of only 1.08 ms.

This minor additional delay is negligible in low-load con-
ditions and is entirely offset under high traffic scenarios,
where Proxy-Service significantly enhances load balancing
efficiency. As horizontal scaling increases the number of
replicas, the advantages of Proxy-Service outweigh the small
traversal delay, further confirming its effectiveness in large-
scale deployments.

V. COMPARISON WITH COLLABORATIVE SOLUTIONS

Proxy-Service represents a “first attempt” to mitigate the
performance degradation of the LOR(2) load balancing strat-
egy in microservice applications by consolidating load balanc-
ing operations, while maintaining the non-collaborative design
between servers and load balancers.

Several prior works, though not specifically targeting ser-
vice mesh environments, propose collaborative load balancing
solutions in which servers and load balancers share precise
or approximate information about queue occupancy [25]–
[27]. Adapting these theoretical approaches to real-world
service mesh environments would require sidecar proxies to
implement collaborative strategies in order to preserve the
application transparency property of service mesh frameworks.

Inspired by the Local Shortest Queue (LSQ) family of
collaborative load balancing strategies proposed for time-
slotted systems [25], [26], we implemented an Asynchronous
LSQ(2) strategy, referred to as A-LSQ(2), in our simulator and
adapted it to the continuous-time dynamics of service mesh
environments. The policy operates as follows:

• When a request arrives, a load balancer applies the
LOR(2) policy using its local queue state.

• When a server finishes processing a request, for each 1 ≤
b ≤ M , it sends its updated queue status to load balancer
b with probability p = min(ω/M, 1). The parameter ω
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Fig. 8: Dependency graph and experimental results for the Sock-Shop application, showing: (b) Proxy-Service achieves higher
throughput than other load-balancing strategies; (c,d) it balances CPU usage across microservice replicas; (e) it incurs minimal
resource consumption per request; and (f) it introduces limited latency overhead when used without replication.

denotes the maximum update overhead, expressed as the
average number of update messages per service request.

• Each load balancer updates its local queue state as
follows: (1) it decrements the queue size by one when
a response is received, mimicking the implicit update
behavior of LOR at the reception of a gRPC/HTTP
response; (2) it applies the new value provided by an
update message if one is received.

Fig. 9 shows the average request latency versus the number
of load balancers for different strategies, including LOR(2),
LOR(2) with Proxy-Service, and A-LSQ(2) with varying up-
date overheads ω. For Proxy-Service, we model the perfor-
mance as that of LOR(2) with a single load balancer, adding
a constant latency penalty of 2 ms, based on our worst-case
experimental observations from Fig. 8f. We neglect additional
processing overhead for A-LSQ(2) updates, due to the lack of
concrete experimental data.

The results demonstrate that collaborative policies such
as A-LSQ(2) can reduce request latency compared to non-
collaborative LOR(2). The improvement increases with greater
update overhead ω. However, we observed that the update
effort required to achieve meaningful improvements is not neg-
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Fig. 9: Average request latency versus the number of load
balancers M , for N = 40, ρ = 0.75, and Ts = 20ms, showing
latency reduction from both non-collaborative Proxy-Service
and collaborative A-LSQ(2) policy.

ligible. For example, with M = 100, an overhead of ω = 10
update messages per served request yields a latency reduction
of approximately 15 ms, compared to the 40 ms improvement
achieved in case of a single Proxy-Service instance and no-
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collaboration.
It is also important to note that A-LSQ(2), like LOR(2),

tends toward random performance at large scale. This occurs
because, as M increases, the probability p of a load balancer
receiving recent updates diminishes, causing the system to
asymptotically approach LOR(2) behavior, and eventually,
random load balancing. We further observed (though not
reported here) that A-LSQ(2) can achieve a lower asymptotic
latency than random if the per-load balancer update probability
p is kept constant (i.e., ω = M · p). However, this approach
would result in a very poorly scalable system, as the required
update overhead would grow with the system size.

These observations suggest that while collaborative strate-
gies such as A-LSQ(2) can improve performance, they may
introduce substantial complexity and operational overhead.
In contrast, Proxy-Service offers a lightweight and practical
alternative that achieves effective load balancing at scale
without requiring architectural changes. However, in systems
where load balancing consumes significant resources, Proxy-
Service may become a performance bottleneck and collabora-
tive approaches are recommended to reduce LOR(2) latency.

VI. RELATED WORKS

Load balancing: Load balancing plays a crucial role in opti-
mizing the performance and resource utilization of distributed
systems. A seminal work that has significantly influenced the
field is by M. Mitzenmacher [10] for which each request
is routed by a single load balancer whose strategy is as
follows: the balancer randomly selects d servers and chooses
among them the one that has the least number of queued
requests. When the number of choices d is equal to the
number of servers, this strategy is also known as join-the-
shortest-queue (JSQ) [11], while for values of d less than
the number of servers, it is known as JSQ(d). As the number
of servers increases, performance modeling becomes quickly
intractable, which motivates the use of an asymptotic mean-
field approximation [10].

Compared to random request routing, JSQ provides valuable
delay reduction and, surprisingly, asymptotic results show that,
for a large number of servers, using only two random choices
(d=2) instead of considering the entire set of servers produces
exponential delay improvement, while increasing d yields only
marginal improvements. This concept is usually referred to as
the power of two random choices.

Several subsequent studies have built upon the foundational
concepts presented in the aforementioned paper. Some papers
explore variations, such as the case of heterogeneous servers
[13] [20], or different scheduling, such as processor sharing
[21]. Other works analyzed different properties of the JSQ.
Other papers focus on a deeper performance evaluation. For
example, in [22] [23], it is shown that JSQ minimizes the
total time needed to finish processing all jobs that arrive by a
fixed period of time and that JSQ minimizes the delay in the
heavy-traffic regime, that is, when the arrival rate approaches
the maximum capacity of the system. Notable follow-up works
have delved into refining the theoretical underpinnings [24].

Recently, the literature has also considered use cases of
JSQ policy with multiple independent load balancers, also

called dispatchers. Such scenarios are of particular interest for
high-load cloud applications for which a single load balancer
can become a performance bottleneck. In [25], the authors
introduced a time-slotted multi-dispatcher system model in
which a number of jobs arrive from external clients to each
dispatcher at the beginning of a time slot and the dispatcher
immediately routes them all to a back-end server that is chosen
according to a load balancing policy. The load balancing
decisions of the different dispatchers are then made at the same
time, that is, at the beginning of a time slot. At the end of a
time slot, each server has drained a certain number of jobs
from its queue, and for each job served, the corresponding
client is notified, but not the dispatcher, which therefore is
unaware of the job completion, i.e., it operates in a “fire-
and-forget” basis. The number of arriving jobs to different
dispatchers per slot and the number of departing jobs per slot
from different servers are both i.i.d. integer random variables.

This time-slotted multi-dispatcher model has had several
follow-ups in the literature as it poses two challenging prob-
lems:

• (problem 1) When dispatchers have accurate informa-
tion about the status of server queues, the performance
worsens because all dispatchers turn to have the same
view of the system and therefore synchronously make
the same routing decision, overloading the same server.
This problem has driven research toward stochastic load
balancing strategies that avoid it.

• (problem 2) The fire-and-forget approach leads load
balancers to know how much they send to servers, but
do not know how much goes out from servers. This
has led research to introduce low-overhead feedback
systems from servers to load balancers to update the load
balancers’ view of server queue length.

In the same paper, the Authors proposed a policy called
Local Shortest Queue (LSQ), in which each dispatcher has a
local estimate of the queue length of the servers and routes the
bulks of arrived jobs to the server with the shortest estimated
queue length. The estimate is updated immediately after the
routing decision as follows: i) the queue of the selected server
is increased by the number of routed jobs; a stochastic set
of dispatcher-server pairs is chosen. For each pair, the server
informs the dispatcher of its actual queue length, and the
dispatcher sets the queue length estimate to this value. These
infrequent control communications allow the queue estimate
to not drift too far from reality. The Authors modeled this
system and demonstrated its stability and the effectiveness of
their LSQ policy through simulations.

In [26], the Authors extended the theoretical analysis to
a wider family of tilted load balancing policies and also
discussed how to design optimal load balancing schemes using
delayed information. Moreover, it has been observed that
for these systems, inaccurate information, i.e., queue length
estimates, can lead to better performance simply because they
are synchronous, so having complete real-time knowledge of
the queue state leads all dispatchers to make the same routing
decision at the beginning of each slot, thus overloading the
same selected server [25] [26]. To solve this problem, in [27],
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the Authors propose a stochastic load balancing algorithm
based on the intuition that the goal of load balancing resembles
that of a water-filling algorithm, but with discrete distributions
considering that the jobs are not divisible. Simulations show
that their algorithm outperforms those previously proposed.

Unlike these time-slotted systems, our work focuses on
service meshes that are continuous-time systems in which
load balancing decisions are made asynchronously, that is,
as requests arrive. This native asynchronicity avoids problem
1 and makes time-slotted models unsuitable, as non-existent
problems would show up. In part, our system does not even
present problem 2, because the dispatchers are L7 proxies
and at least know that their jobs have been completed by
receiving responses from the servers. Furthermore, our model,
as much as current service mesh software, does not consider
the presence of queue status feedback from servers to load bal-
ancers to reduce complexity, considering the high dynamicity
of microservice applications in Kubernetes clusters.

In general, with respect to the time-slotted model considered
in the literature so far, the non-collaborative distributed super-
market model is more closely aligned with the use cases of
microservice applications using service meshes with LOR(d).
In addition, to the best of our knowledge, our work is the first
showing that the latency performance of a continuous-time
multi load balancer system twith LOR(d) policy approaches
asymptotically that of a system using a random policy.

Microservice optimization: In recent years, the application
of load balancers has extended beyond traditional access to
back-end replica servers to modern service mesh frameworks
supporting microservice applications, although it has received
only limited attention in the literature so far.

In [28], the Authors observe that microservice applications
serve user requests by involving chains (sequences) of mi-
croservices. Many chains may exist for different types of
requests, and chains may share microservices. As a result, they
propose a chain-oriented load balancing algorithm (COLBA)
that takes into account the possible chains in the application
and aims to reduce response latency.

In [29], the Authors studied basic load balancing and QoS-
aware among interdependent IoT microservices. Similarly to
[28], the paper combines load balancing policy with applica-
tion logic, which in this case is represented by the dependency
graph of microservices. From the graph of dependencies
among microservices, it is possible to create a graph of
dependencies among instances, called infrastructure graph, in
which nodes are instances of microservices, and a link between
instances exists if the related microservices have a dependency.
Each node has a capacity, that is, a maximum rate of requests
it can handle, and introduces a constant processing delay.
The load balancing problem is to identify the request rate to
be allocated on each link of the infrastructure graph to not
overload nodes (basic policy) or to guarantee a specific delay
(QoS-aware policy).

In this paper, we focus on a more “traditional” scenario, for
which the service mesh software and related load balancers are
application-agnostic. While coupling load balancing policies
with the application logic, i.e., knowledge of the possible
chains in this case, can help optimization, it can also reduce

the DevOps capability of the microservices architecture, since,
for example, any upgrade or extension of the application not
only impacts the microservices involved, but also requires a
revision of the load balancing strategy of the entire application.

In [30], the Authors consider a different application sce-
nario from ours, in which they assume that any microservice
instance can perform any task. The user requires the execu-
tion of a sequence of tasks and the load balancing problem
consists of choosing one instance for each task. It resembles
a task scheduling problem where tasks must be executed by
computing workers. The proposed algorithm aims to minimize
a cost function composed of two weighted factors: the first is a
measure of the imbalance between the average CPU utilization
of different instances and the second factor is network traffic.

VII. CONCLUSIONS

This study identifies a fundamental limitation of the Least
Outstanding Request (LOR) load balancing policy in service
mesh environments: as the degree of microservice replication
increases, LOR’s effectiveness degrades and eventually con-
verges to that of random policy. We supported this finding
through a novel theoretical model and validated it with simula-
tions and experiments on real-world microservice applications.

The root cause of this degradation lies in LOR’s reliance
on partial and local information: each sidecar proxy performs
load balancing by observing only the number of outstanding
requests it has issued, rather than the total number of requests
queued at each destination microservice instance. As the
number of load balancers increases — due to microservice
replication — this knowledge gap widens, leading to in-
creasingly suboptimal decisions that eventually approximate
random selection.

To address this issue, we proposed and implemented Proxy-
Service, a practical mechanism tailored for microservice ap-
plications where load balancing imposes significantly lower
resource demands than microservice execution. Proxy-Service
consolidates load balancing decisions into one or a few reverse
proxies per microservice, which transparently forward requests
to backend instances using the LOR(2) policy. This consoli-
dation restores global server queue visibility by eliminating
the fragmentation inherent in the standard distributed load
balancing process of service mesh frameworks, without requir-
ing changes to application code or introducing collaboration
mechanisms. Importantly, service mesh control and data planes
can remain unmodified, preserving compatibility with existing
deployment architectures.

The centralization approach adopted by Proxy-Service may
naturally prompt initial skepticism regarding its scalability.
However, the broader industry trend confirms the viability of
this direction: successful service mesh frameworks, such as
Istio’s ambient mode, are already adopting more centralized
L7 proxy architectures [31]. Moreover, recent advancements
like eBPF-based acceleration offer promising opportunities
to further optimize Proxy-Service by reducing its processing
footprint and improving data path efficiency [32].

However, Proxy-Service is not a one-size-fits-all solution.
Its effectiveness relies on the explicit assumption that the com-
putational overhead of load balancing is negligible compared
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to that of microservice execution; a condition that holds in
many, but not all, microservice-based systems. In scenarios
where load balancing operations consume a non-negligible
portion of resources with respect to microservices, collabo-
rative approaches that enhance queue visibility through feed-
back (e.g., A-LSQ) remain a valid and promising alternative.
Our preliminary results indicate that such collaboration can
partially recover LOR’s lost performance. However, achieving
meaningful improvements at scale typically requires frequent
state updates, which may introduce significant synchronization
overhead.

ACKNOWLEDGMENT

This work was partially supported by the EU under the
Italian National Recovery and Resilience Plan (NRRP) of
NextGenerationEU, partnership “Telecommunications of the
Future” (PE00000001 - program “RESTART”). The authors
would also like to thank the anonymous reviewers for their
valuable feedback, which significantly motivated us to improve
the quality and clarity of the manuscript.

REFERENCES

[1] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi,
R. Mustafin, and L. Safina, “Microservices: yesterday, today, and tomor-
row,” Present and ulterior software engineering, pp. 195–216, 2017.
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