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Abstract—Container technology plays an important role in the virtualization landscape today. A container uses its own file system
consisting of a stack of layers, which are stored on the execution server’s disk. Containers running on the same server share the layers
they have in common, and this sharing results in valuable savings in server storage space. Many containers can run on a single server,
but when their resource demands grow enough, they are distributed across a cluster of nodes/servers by orchestration systems, such
as Kubernetes. In this work, we found that for the same amount of containers to run, the storage required is higher for clusters
consisting of a larger number of nodes. The severity of this storage overhead depends on the scheduling policy used to select the
nodes that run the containers. By comparing different storage-saving scheduling policies that differ from each other in the depth of
storage knowledge they leverage to make decisions, our analysis reveals that only deep, layer-level knowledge can effectively counter
the growth in storage demand as the cluster size increases. Policies with coarser-grained knowledge achieve limited benefit because
they achieve performance that is nearly equal to that of a random, zero-knowledge policy.

Index Terms—Containers, scheduling, storage
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1 INTRODUCTION

MANY modern applications are based on microservice
architectures. Netflix, Amazon, Twitter, and other

companies have indeed evolved in this direction. A mi-
croservice architecture can be defined as an architectural
style that consists of breaking up an application into a set
of small and lightweight services, each of them owning a
focused and cohesive set of functionalities [1]. In particular,
an application can be crumbled into tens or even hundreds
of services that talk to each other by using HTTP REST,
gRPC, or other kinds of network interfaces.

A widespread solution for packaging such services as
self-contained units are Containers, isolated run-time envi-
ronments whose file system encapsulates the software of
the service and all its dependencies. Container technologies
became, as a matter of fact, enablers of microservices ar-
chitectures and, nowadays, one of the most common and
easy-to-use engine for running, developing, and shipping
containers is Docker [2]. However, there are other container
engines available (e.g. Cri-O, Podman, ContainerD, etc.)
that, along with Docker, follow the standard recommen-
dations provided by the Container Initiative (OCI) [3] to
promote interoperability.

A typical workflow followed by a developer to run
a containerized service consists of three steps: assemble
the base file system of the container, called image of the
container; upload the image to a central repository, e.g.
Docker Hub; run a new container based on such image on a
selected server. During this last step, the server’s container
engine retrieves the image from the repository (if it is not
available locally), creates an isolated run-time environment
whose file system is that of the image, and, finally, within
this environment, the engine runs the service packaged in
the container.

The execution of containerized microservices applica-
tions is usually supported by a cluster of nodes, which
are physical or virtual servers. When the application load
grows, an advantage of microservice design is the ability
to scale up the resources of only the impacted services and
to perform this scaling horizontally, via replication. When a
container running a service is overloaded, it is possible to
run other replica containers in parallel and expose them all
as a single entity by a load balancing function, which evenly
distributes service requests to the containers in the replica-
set. In this way, the cluster resources used by a service can be
scaled horizontally by increasing or decreasing the number
of containers running the service. For some applications,
such as those related to Serverless Computing or Function
as a Service (e.g., Azure Functions, AWS lambda, etc.), the
number of containers running a service can drop to zero
after quite long periods of no load, for instance, a few
minutes; on the one hand this extreme scaling strategy
is considered the most efficient way to adapt the use of
resources to the actual demand, on the other hand the first
request that arrives when no container is active suffers from
a delay called ”cold start” in which the container is started
from scratch [4]. The cold start problem can also occur in
the case of mobile edge computing applications when the
user moves between edge data centers and containers of his
services that require low latency are allocated on-demand
on the cloud resources closest to him.

On which node to run a container is the result of a
scheduling policy, whose first step is to filter out nodes
that do not have enough resources or that do not meet
user constraints such as anti-affinity, whereby containers
of the same replica-set run on different nodes to increase
service reliability. After the filtering step, the scheduling
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policy ranks the remaining nodes according to some scoring
criteria that push the cluster towards the desired status; for
instance, balanced resource consumption. Replication and
scheduling are just two of the many orchestration tasks
that are handled these days by indispensable high-level
platforms like Kubernetes [5] or Docker Swarm [6].

Unlike a virtual machine whose operating system runs a
lot of processes, a container runs only the packaged service.
Therefore, there is no virtualization overhead in terms of
memory and CPU consumption. A service running in a
container has the same footprint as its uncontainerized
version running directly in the node. As a result, many
containers can run in a single node before exhausting its
CPU and memory.

In contrast to their thrifty use of CPU and memory,
the container technology is not very efficient in terms of
storage consumption because each container carries with
it an entire file system to be stored on the node’s disk.
To reduce the storage pressure (and more), containers use
union mount file systems, such as overlayFS or AUFS, for
which pieces of file systems, named layers, are combined
and presented as a single file system to the applications
running in the container. The layers are stored on the disk of
the node, and running containers can share those layers that
they have in common, thus saving disk space. In addition,
union mount file systems also reduce the startup time of
a new container because the container engine only needs
to download the missing layers of its image from Docker
Hub and decompress them, in fact each layer is stored and
transmitted by Docker Hub as compressed archival files to
save storage space and network bandwidth [7].

Although sharing layers brings important savings when
containers are run on a single node, we argue that distribut-
ing these containers across multiple nodes risks hampering
this benefit, thereby leading the entire cluster to consume
more storage space. Specifically, for a given number of
running containers, the overall storage space used by them
increases as the number of nodes in the cluster scales
out. Fig. 1 shows a hands-on proof of this observation.
We deployed 50 containers on a Kubernetes (k8s) cluster
consisting of a variable number of nodes. For each container,
its image has been randomly selected from a pool of 10807
Docker Hub images. For the selection, we used an empirical
popularity distribution based on Docker Hub statistics. In
the figure, the first bar in each group is the total amount of
disk space used by the containers in the cluster. The other
bars are measures of the disk space used in each individual
node. We note that as we increase the number of nodes in
the cluster, the storage space used at each node decreases,
but less than linearly, therefore the total disk space usage
increases.

This storage inefficiency at cluster scaling out occurs
because containers that have common layers may be dis-
tributed across different nodes in the cluster, thus prevent-
ing the ability to share these layers. For example, imagine
we have two containers C1 and C2. The file system of C1
consists of an ordered set of two stacked layers, called Lu(1)
(upper) and Ll (lower). The file system of C2 consists of
the layers Lu(2) and Ll. We note that the lower layers Ll are
equal. In a cluster consisting of one node, their joint usage of
the node’s disk consists of three layers: Lu(1), Lu(2) and Ll,
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Fig. 1: Used storage space of a Kubernetes cluster in case of N = 50
containers. First bar or each group is the total storage space used in the
cluster, other bars are the per-node usage

where the latter is shared. In a cluster with two nodes, the
scheduling policy might decide to run the containersC1 and
C2 on two different nodes, e.g., N1 and N2 respectively.
In this case, their joint usage of the storage space is larger
because composed of four layers rather than three. Node
N1 stores on its disk the layers needed by C1, namely Lu(1)
and Ll. Node N2 stores the layers needed by C2, i.e. Lu(2)
and Ll. The layer Ll is no more shared.

While less efficient from a storage perspective, having a
cluster with many small nodes rather than few giant ones is
undeniably useful in other respects, such as fault tolerance,
and is sometimes even necessary due to the unavailability
or excessive cost of very powerful servers. This has mo-
tivated our interest in analyzing solutions that reduce the
inefficiency of storage in large clusters. With this regard, we
notice that the previous example highlighted two aspects
of the scaling issue. First, increasing the number of nodes
introduces the risk of using more storage space. Second, this
risk actually occurs depending on the decisions made by the
scheduling policy. Accordingly, in this paper, we propose
and compare storage-saving scheduling policies, reducing
disk occupancy at the cluster level.

The considered policies differ in the degree of knowl-
edge they have about the storage status of the cluster. Our
exploration ranges from a zero-knowledge policy for which
a new container is deployed on a node chosen at random, to
a policy with a deep knowledge, at the layer-level, whereby
a new container is run on a storage-optimal node. The
analysis also evaluates the impact of replication and anti-
affinity constraints, which are features widely used for the
deployment of microservice applications.

All in all, the contribution of this paper is threefold:
i) we devised an analytical model for evaluating cluster-
level storage occupancy for containerized applications; ii)
the model revealed a storage problem not addressed so far,
i.e., storage utilization grows as cluster size increases; iii)
once we understood the nature of the problem, we analyzed
and proposed several storage-saving scheduling policies,
and one of them, called Layer Locality, turned out to be
very promising.

Regarding the impact of our research, we note that,
undeniably, storage is one of the cheapest resources in a
server today compared to CPU and memory, so the use
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of storage-saving scheduling policies may raise practical
concerns. However, for large real/virtual infrastructure with
hundreds of servers, reducing the size of the batch of disks
to be installed can result in valuable capital expenditure
savings. Moreover, the resulting benefits of a storage-saving
policy are also about a reduction in the time needed to start a
container, which has an impact on the flexibility of a system
to effectively adapt to dynamic loads with rapid scale-ups,
while also avoiding long cold start times [8]. In fact, if a
scheduling policy selects a node where a container already
finds all or part of its layers, the container engine does not
have to either download the missing layers or decompress
them, which reduces the container startup time.

The paper is organized as follows. In Sec. 2, we present
an analytical proof that storage inefficiency occurs when the
scheduling policy doesn’t use any storage-related informa-
tion and chooses nodes at random. In Sec. 3, we describe
the considered scheduling policies whose performance is
evaluated and discussed through simulations and real mea-
surements in Sec. 4. Finally, we revised related works in
Sec. 5 and draw conclusions in Sec. 6.

2 ANALYTICAL UNDERSTANDING

In this section, we present an analytical model that helps
to understand how increasing the number of cluster nodes
impacts storage space utilization. We consider the simplest
case of a so-called Random scheduling policy that chooses
the node where to deploy a new container at random, using
a uniform distribution. To help the comprehension of the
model, we first describe how a container engine builds the
file system of a container. Then we present the analytical
model and related considerations, which are based on a
performance evaluation that uses a set of images gathered
from Docker Hub (Tab. 1).

This set of images contains 10807 of the most pulled
images, as of April 2020. Overall, the number of layers that
compose the images is 77249 layers, a layer on average is
contained in 1.446 images (layer reuse factor). For each im-
age, we saved: the image ID, the pull count 1, the sizes and
the identifiers (SHA256) of the relative layers it is composed
2 . From this information, we computed all required model
inputs.

Total number of images 10807
Total number of layers 77248
Sum of image sizes 2778 GB
Average number of layers per image 10.31
Average image size Simg 257 MB
Average layer reuse 1.446

Table 1: Docker Hub image set

1. The pull count value is the number of times an image has been
pulled and, after normalization, it is the popularity of the image
Pimg(k).

2. We considered the compressed size of the layers, which is the only
information available from Docker Hub. Therefore, the actual storage
occupation may be higher than what we calculated in our analytical
analysis and simulations. However, we are interested in understanding
phenomena and comparing scheduling policies, and for these purposes
the use of compressed sizes is not relevant

Background
As shown in Fig. 2, a container image is built up from a
stack of layers. The figure shows two images, I1 and I2,
each made of three layers which are identified by a digest
that is calculated by applying the SHA256 algorithm to
a layer’s content. The two bottom layers (L1, L2) of the
images are the same, whereas the next layers (L3, L4) are
different. The figure also shows how these layers are stored
and combined to run 4 containers on a host. Containers 1
and 2 are based on the image I1; containers 3 and 4 on the
image I2. The files of layers L1 and L2 are shared among
the four containers. The files of the layers L3 and L4 are
shared only among containers based on the same image.
Moreover, for each container, a different (thin) upper layer
(Lu) is added. Every write operation made by applications
running in the container will be saved in the upper layer,
the other lower layers are read-only.

N Number of containers running in the cluster
M Number of nodes of the cluster
K Number of images of the image pool
H Number of layers that form the images of the image

pool
Sc Average storage utilization of the cluster
Sn Average storage utilization per-node
Snc(n) Average storage utilization per-node when it exe-

cutes n containers
Ik Image kth
Simg Average image size
Pimg(k) Popularity of the image Ik
Lh Layer hth
Slyr(h) Size of the layer Lh

Plyr(h) Probability that the layer Lh is included in an im-
age chosen using the image popularity distribution
Pimg

Plxn(h, n) Probability that the layer Lh is stored on a node
when it runs n containers

Plxn(h) Probability that the layer Lh is stored on a node

Table 2: Summary of Notation

Analytical model
We assume that N containers are randomly distributed in
a cluster of M nodes (Random scheduling policy). The
containers use an image pool that includes K images. These
images are formed by a unique set of layers consisting of
H layers. A container uses the image Ik (1 ≤ k ≤ K) with
a probability Pimg(k), which is the popularity of the image.
Fig. 3 shows the Pimg rank-plot of the Docker Hub images 3.

Each node of the cluster runs a subset of the N contain-
ers, which consumes Sn bytes of the node storage space.
The average value Sc of the storage space used by the N
containers overall the cluster can be written as M times Sn.
Indeed, containers are randomly distributed on nodes, and,
therefore, nodes are statistically equivalent.

Sc =M Sn (1)

The value Sn is equal to the following weighted aver-
age, where the parameter Snc(n) is the average amount
of bytes used on a node when it executes n containers,

3. We see that the image popularity distribution Pimg resembles a
Zipf, unless in the first part of the ranking where it is flatter.
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Fig. 2: Disk footprint of docker containers

and b(n,N, 1/M) is the binomial probability that the node
executes n containers out of the N running in the whole
cluster.

Sn =

N∑
n=1

b(n,N, 1/M) Snc(n)

b(n,N, 1/M) =

(
N

n

)(
1

M

)n(
1− 1

M

)N−n (2)

A layer Lh is stored on a node if used by at least one of
the containers run by the node. Consequently, the average
amount of bytes stored on a node Snc(n) when it executes
n containers can be written as the sum of the sizes Slyr(h)
(1 ≤ h ≤ H) of the layers, weighted by the probabilities
Plxn(h, n) that layers are used in at least one container out
of n 4; i.e:

Snc(n) =

H∑
h=1

Plxn(h, n) Slyr(h)

Plxn(h, n) = (1− (1− Plyr(h))n)
(3)

Plyr(h) is the popularity of the layer Lh, that is the
probability that the layer is included in a container (and
hence in an image), whose image is chosen using the image
popularity distribution Pimg . It can be written as:

Plyr(h) =

K∑
k=1

Pimg(k) 1(Lh∈Ik) (4)

where 1(Lh∈Ik) is the indicator function equal to 1 if the
layer Lh belongs to those in the image Ik. Fig. 4 shows the
Plyr rank plot of Docker Hub images 5..

4. We are not considering the thin upper layers of containers because
they are expected to be much smaller than images for most services
(excluding large databases, etc.). Since these upper layers are not
shared, their impact on the overall storage has no relation to the number
of nodes in the cluster and, if necessary, can be taken into account by
adding an application-dependent constant per container.

5. We notice that the sum of Plyr(h) values is greater than one and is
equal to the average number of layers per image.

Using Eq. 2, Eq. 3 and Eq. 4, the average value of
the storage space used in a node Sn can be written and
simplified as follows, where q(h) = 1− Plyr(h):

Sn =

N∑
n=1

b(n,N, 1/M)

H∑
h=1

(1− q(h)n) Slyr(h)

=

H∑
h=1

Slyr(h)

(
N∑
n=1

b(n,N, 1/M)(1− q(h)n)

)
change of inner sum initial value from n = 1 to n = 0

since 1− q(h)n = 0 for n = 0

=

H∑
h=1

Slyr(h)

(
N∑
n=0

b(n,N, 1/M)(1− q(h)n)

)

=

H∑
h=1

Slyr(h)

(
1−

N∑
n=0

(
N

n

)(
q(h)

M

)n(
1− 1

M

)N−n)
reverse binomial expansion

=

H∑
h=1

Slyr(h)

(
1−

(
q(h)

M
+ (1− 1

M
)

)N)

=

H∑
h=1

Slyr(h)

(
1−

(
1− Plyr(h)

M

)N)
(5)

Finally, we have:

Sn =

H∑
h=1

Slyr(h) Plxn(h) (6)

Plxn(h) = 1−
(
1− Plyr(h)

M

)N
(7)

The Eq. 6 can be better understood observing that
Plxn(h) is the probability that the layer Lh is stored on
a node, i.e., the probability that at least one container de-
ployed on the node uses that layer 6. Therefore, the sum

6. In fact, the probability that a container run by the user has the layer
Lh and it is deployed by the scheduler on a considered node is equal
to: Plyr(h) 1/M . Consequently, the layer Lh is not stored on the node
if no container out of the N having the layer Lh is deployed on the
node, i.e., (1 − Plyr(h)/M)N . It follows that the probability Plxn(h)
that at least one container deployed on the node uses the layer Lh is
the complementary probability of (1− Plyr(h)/M)N in Eq. 7.
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of Plxn(h) for 1 ≤ h ≤ H weighted by the layers’ size
Slyr(h) (Eq. 6) is the average amount of bytes Sn stored on
the node. This value multiplied by the number M of nodes
of the cluster is equal to Sc.

Sc =M

H∑
h=1

Slyr(h) Plxn(h) (8)

Fig. 5 shows the storage space utilization of the cluster
as the number of nodes varies, in the case of 3000 con-
tainers. The plot includes analytical results from Eq. 8 (line
without markers) and results obtained from a simulator we
developed (circle markers), which confirm model validity.
The storage utilization tends to increase as the cluster size
increases (Q.E.D.). This means that if we need to deploy a
new cluster to run a given amount of containers, it is better
to install a few large nodes than many small ones, if our
goal is limited to saving storage space7.

Let us now discuss some asymptotic limits. When the
cluster size tends to infinity, Eq. 8 reaches the following
horizontal asymptote:

lim
M→∞

Sc = N

H∑
h=1

Slyr(h)Plyr(h) = NSimg (9)

To understand this result conceptually, we observe that,
in the absence of layer sharing, N containers use on average
an amount of disk space equal to N times the mean image
size Simg . This value is exactly the result of the limit that,
therefore, can be considered as a no-sharing bound towards
which the cluster tends as it grows, while the number of
containers is kept constant. In fact, as the number of nodes
increases, containers tend to run alone within their nodes
thus preventing any layer sharing.

Fig. 5 includes the no-sharing bound, and this allows
us to make two considerations. First, the approach of the
curve to the bound means that increasing the number of
nodes tends asymptotically to completely cancel the ben-
efit of layer sharing, bringing system performance toward
the performance without sharing. Second, the difference
between the no-sharing bound and the value of Sc can be

7. We note that, as mentioned in the introduction, the utilization of
the storage space of the single node decreases at the increase of cluster
size, however, the decrease rate is slower than 1/M and consequently
the whole storage utilization of the cluster increases.

seen as a measure of the effectiveness of the choice made by
container technology developers of using union mount file
systems and layer sharing to save storage resources.

So far we have explored the pros and cons of varying
the cluster size when we need to run an expected number
of containers. Let us now consider a more dynamic situa-
tion for which the number of containers does not remain
constant, but increases over the lifetime of the cluster, and,
concurrently, the cluster infrastructure is scaled proportion-
ally to support the increasing load. For example, suppose
that the infrastructure rule we use is to install one node per
η (e.g. 16 [9]) containers. For this evolutionary context, an
interesting asymptotic behavior concerns the cluster storage
utilization as the number of containers and nodes increase,
and their ratio η = N/M is kept constant. As reported in
Eqs.10 and 11, this performance can be evaluated using Eqs.
6, 7, and 8, first considering the asymptotic value of the
storage utilization per node (Sn) and then using this value
to compute the cluster-level storage utilization (Sc).

lim
N→∞
M=N/η

Sn =

H∑
h=1

Slyr(h)
(
1− eη Plyr(h)

)
(10)

Sc ≈M
H∑
h=1

Slyr(h)
(
1− eη Plyr(h)

)
for N >> 1 and M = N/η

(11)

Eq. 11 shows that if we increase the number of containers
and the cluster size together, the storage utilization linearly
grows because the sum is independent of M .

We close this section noting that the conclusions drawn
so far refer to a Random scheduling policy, which does
not care about storage. Policies that reward storage-saving
solutions, like those we present in next Sec. 3, can greatly
reduce the scale-out storage penalty, thus allowing us to take
full advantage of all the other benefits (resiliency, flexibility,
etc.) of clusters with many nodes.

3 SCHEDULING POLICIES

A scheduling policy is an algorithm whose execution is
triggered by a user request to deploy a single container or
a group of R replica containers, called replica-set. The case
of a single container is equivalent to the case of a replica-set
made of a single item; therefore, we consider the replica-set
as the general input request of a scheduling policy.
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The output of the policy is a result-set D composed
of R nodes, whose rth node is the one chosen to run the
rth replica container. The user may request an anti-affinity
constraint that, whether possible, forces the scheduler to
select different nodes for the different replica containers.
Without the anti-affinity constraint, the scheduler decides
independently for each container in the replica-set and, thus,
replica containers can also be deployed on the same node.

Algorithm 1: Generic scheduling algorithm with
anti-affinity
R = size of the replica-set
C = {c1...cK} # set of constraint functions
S = {s1...sW } # set of scoring functions
P = {1...M} # initial pool of schedulable nodes

# filtering phase
foreach m ∈ P do

foreach cj ∈ C do
if cj(m) == false then

# node m doen’t respect constraint cj
remove m from P
break

end
end

end

# scoring phase
foreach m ∈ P do

foreach sj ∈ S do
# increase the score of node m by using sj
m.score+ = sj(m)

end
end

# selection phase
Ps = pool P sorted on node score. First node has the highest

score
D = {} # scheduled nodes
for r = 0 to R− 1 do

k = mod(r, |Ps|) + 1 # node in Ps to be used for replica r
add kth node of Ps to D

end
return D

The algorithm 1 is a generic logic that can be used to
implement different scheduling policies with anti-affinity
constraint. Different policies use different constraint C and
scoring S functions. The scheduling decision is made in
three phases, called filtering, scoring, and selection. In the
filtering phase, nodes that do not meet the constraints are
eliminated from the pool P of schedulable nodes. In the
scoring phase, each node in the pool receives a score from
each scoring function. In the selection phase, nodes are
sorted according to their score and this sorted list forms
the set Ps. Next, the first R nodes of Ps are inserted into
the result-set D. If the number of schedulable nodes |Ps| is
greater than R, the result-set consists of different nodes and
the anti-affinity constraint is satisfied. Conversely, if |Ps| is
less than R, the anti-affinity constraint cannot be satisfied.
Nevertheless, we consider it more important to deploy all
replicas, therefore, we tolerate nodes being reused in these
cases. This is the effect of the modulo operator.

This algorithm can also be used in the absence of the
anti-affinity constraint by independently executing it for
each replica, and passing as input to each run a replica-set
consisting of only one container.

In the following, we present five scheduling policies

aimed at reducing the storage consumption of the cluster.
These policies leverage different storage status knowledge,
ranging from zero knowledge to layer-level knowledge,
for which the scheduler has a view of what layers are
stored on the nodes. Comparing these policies allows us
to understand how useful it is to have a deep knowledge of
the storage status to gain a real advantage in disk savings.
The related algorithms can be implemented on the base of
algorithm 1 by defining specific constraint (C) and scoring
(S) functions.

We note that the scheduling policy of a real system
focuses not only on storage optimization but also on other
aspects of the system such as balanced CPU utilization,
fair distribution of containers on nodes, etc., which can
be considered in the algorithm 1 through appropriate con-
straints and scoring functions. However, from this paper, we
want to derive guidelines for the design of storage-targeted
constraints and scoring functions and, therefore, we do not
consider other aspects in depth.

3.1 Random
This policy has zero knowledge of the storage status of
the cluster. When a request of deploying a new replica-set
arrives, the scheduler chooses nodes at random, without
repetition. It can be implemented by algorithm 1 by con-
sidering a void set of constraints C and the single scoring
function

s1(m) = rand (12)

that returns a uniform random value in the interval (0, 1).

3.2 Least Used Disk
This algorithm leverages a disk-level knowledge of the
storage status of the cluster whereby favors nodes that have
the least disk space utilization. It can be implemented by
algorithm 1 by considering a void set of constraints C and a
single scoring function

s1(m) = −Sn(m) (13)

where Sn(m) is the amount of bytes of the disk used by
containers running on node m.

3.3 Image Locality
This algorithm exploits an image-level knowledge of the
storage status through which it tries to deploy new con-
tainers on nodes that already have containers based on the
same image 8. The related algorithm has no constraints C
and has a single scoring function

s1(m) = 1(Ik∈ nodem) − ε ρ(m) (14)

ρ(m) =
Sn(m)∑
j∈P Sn(j)

(15)

where Ik is the image of the container to deploy; 1 function
returns 1 if the image is already available on node m,
zero otherwise; ρ(m) is the disk space utilization of the

8. A similar policy is included in Kubernetes, the other three ones are
instead introduced by us.
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node m normalized to the overall storage occupation of the
schedulable nodes (P ) and ε is a number much smaller than
one (e.g. 0.001). The value −ερ(m) is used to break the tie,
by penalizing nodes with higher storage occupancy.

3.4 Layer Locality
Of all the algorithms, the Layer Locality one requires the
most in-depth knowledge of the status of the storage. The
scheduler needs to know which layers are present on the
nodes and which layers form the Ik image of the container
to be deployed. Combining this information, the scheduler
computes the increase δ(Ik,m) in storage occupancy that
would occur if the new container were deployed on node
m. For each layer of Ik, if the layer is not present on
node m, the value δ(Ik,m) is increased by the layer size;
otherwise, if the layer is present, the value δ(Ik,m) is not
increased. After this computation, the scheduler favors the
nodes with the lowest storage increase. Likely, the chosen
nodes are those running containers that have a high number
of common layers with the new container; indeed, common
layers do not increase storage utilization, and this leads to
lower values of δ(Ik,m).

In the long term, such priority management leads to
a kind of ”preferential attachment” process for which the
more containers a node has, the more likely it is chosen by
the scheduler. In fact, a node with many containers is more
likely to have layers in common with the new container and
thus to have a lower value of δ(Ik,m). As the number of
containers grows, the preferential attachment process leads
to an increasingly unbalanced use of cluster resources. To re-
establish a proper balance, we introduced in the algorithm
the following fairness constraint: a node m can be chosen
only when the normalized disk usage ρ(m) is less than
the perfect fair share value 1/M , multiplied by a tolerance
factor γ > 1. The greater γ, the greater the possible storage
unfairness.

Overall, the Layer Locality policy can be implemented
by using the following constraint and scoring functions,

c1(m) : ρ(m) ≤ γ

M
(16)

s1(m) = −δ(Ik,m)− ερ(m)

δ(Ik,m) =
∑

h|Lh∈Ik

Slyr(h)1(Lh /∈ nodem)
(17)

Also in this case the value −ερ(m) is used to break tie con-
ditions by penalizing nodes with higher storage occupancy.

3.5 Multi-Constraint Layer Locality
The Layer Locality policy considers a single constraint
(c1) that aims at a fair use of the nodes’ storage space.
To analyze possible performance losses in multi-constraint
environments, we considered another policy called Multi-
Constraint Layer Locality, which takes into account another
resource constraint, in addition to the storage fairness one.
We assumed that a container with base image Ik, running
on node m, impacts its resources both in terms of storage
by an amount equal to δ(Ik,m), and in terms of another
generic resource (e.g., CPU, memory, etc.) by an amount
equal to Grimg(Ik). The amount Grn(m) of the generic

resource consumed on the mth node is equal to the sum
of the Grimg(k) values of the containers run by the node.

Eq. 18 shows the two constraints c1 and c2 of the Multi-
Constraint Layer Locality policy. The first constraint c1
enforces a fair consumption of the generic resource among
nodes. The set of nodes that are not filtered by c1 are
subsequently subject to the second constraint c2, which aims
at storage fairness, as in the case of the plain Layer Locality
policy.

c1(m) : σ(m) ≤ γ

M

c2(m) : ρ(m) ≤ γ

M

σ(m) =
Grn(m)∑
j∈P Grn(j)

(18)

The value of Grimg(k) obviously depends on what the
resource we are considering actually is and what is the
service run by the image Ik. In the next performance evalu-
ation section, we considered this value as a random number,
between 1 and 500, for the only purpose of evaluating
a possible performance degradation of the Layer Locality
policy in the presence of an additional, generic, resource
constraint. The specific range is not as relevant because the
constraint c1 aims at fairness.

4 PERFORMANCE EVALUATION

We compared the five policies using a simulator to under-
stand the extent to which a system can benefit from in-
creasing knowledge of its storage situation. In fact, Random,
Least Used Disk, Image Locality, and Layer Locality policies
have an increasing fine-grained knowledge of storage: zero,
disk-level, image-level, and layer-level knowledge, respec-
tively.

The simulation workload provides the sequential de-
ployment of replica-sets, the image of each of them is chosen
following two possible strategies, called vanilla and hybrid:

• vanilla: for this strategy, the image of a replica-set is
one from the Docker Hub image set (Tab. 1), chosen
at random using the image popularity in Fig. 3 or
a synthetic Zipf distribution. Therefore, the cluster
exclusively executes containers based on unchanged
Docker images.

• hybrid: this strategy aims to simulate configurations
in which the cluster runs containers that use both
unchanged Docker Hub images and custom images
based on them. We believe that this configuration
better captures real-world situations for which the
cluster is used to run microservices applications.
In fact, in a microservices application, only a few
containers use unchanged Docker Hub images, e.g.
to run generic services such as databases or HTTP
proxies. On the other hand, for the many remain-
ing containers, the developer uses Docker Hub im-
ages (e.g. those including programming runtimes as
Python or Node.js) to create new custom images con-
taining the code of specific services to be executed.
The hybrid strategy simulates these configurations
as follows: the base image used by a replica-set
is initially extracted from the Docker Hub image
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Fig. 6: Used cluster storage space for 3000 containers versus cluster size, vanilla and hybrid image selection
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Fig. 7: Used node storage space for 3000 containers versus cluster size, hybrid image selection with 80% of custom containers

set following the image popularity in Fig. 3 or a
synthetic Zipf distribution. Then, with probability pc,
this base image is used to create a custom image,
which has a new unique identifier; otherwise, with
probability 1−pc, the base image is used directly. For
simplicity, we do not consider the additional storage
space resulting from the new layers added to a base
image to create a custom image. Therefore, the size of
a custom image is equal to the size of its base image.
The two images differ only in their identifiers 9. We
note that if pc = 0, vanilla and hybrid strategies are
equal.

In the following, we call replica-set consisting of a single
container (R = 1) simply ”container”, and use the term
replica-set only when it contains more than one replica
container (R > 1). We also use Docker Hub related image
popularity, unless otherwise noted.

Fig. 6 shows the cluster storage space used by 3000
containers. The left plot refers to a vanilla configuration,
the other two plots refer to a hybrid configuration with an
increasing number of custom containers, from 50% (center)
to 80% (right) of the whole amount of containers. Random
and Least Used Disk policies practically have the same per-
formance. Therefore, the knowledge of disk usage doesn’t
help in limiting storage inefficiency at the increase of the
number of nodes. Indeed, the Least Used Disk policy tends

9. We made this simplification because it is difficult to make assump-
tions about the size of the new layers. In addition, these layers are cus-
tom and thus cannot be shared with any other container. Consequently,
their impact on storage is the same for any policy, so neglecting them
from the storage calculation does not alter the policy comparison we
want to undertake.

to equalize the use of storage space but this goal, in the long
term, is reached also by the zero-knowledge Random policy.

The performance of the Image Locality policy is strongly
dependent on the amount of custom containers in the
cluster. For no custom containers (vanilla case), the policy
is quite effective in limiting the storage footprint when
scaling out the cluster. This happens because the popularity
of images is rather skew (Fig. 3) and, as a result, many
containers use the same image. The policy tends to cluster
these homogeneous containers on the same nodes, thus pro-
moting layer reuse and saving storage space. However, this
saving virtue fades out for hybrid configurations, and when
the cluster runs 80% of custom containers the performance
gets closer to that of the Random policy 10. We conclude
that knowing which images are running on the nodes does
not help in the case of (realistic) microservice applications
with many custom containers. In contrast, the Layer Local-
ity policy nearly eliminates the scale-out problem in any
configuration. Recall that the optimal performance, i.e. the
minimum storage footprint, is that for a ”cluster” of a single
node. With Layer Locality, this optimum value is practically
maintained as the cluster size increases and, therefore, a
fine-grain, layer-level knowledge of the storage status can
really help save disk space.

For the case of 80% custom containers, Fig. 6 (right) also
shows the performance obtained by the Multi-Constraint
Layer Locality policy described in Sec. 3.5. The additional
generic constraint (c1) clearly reduces the ability to select

10. For this reason, the analytical model of the Random policy of
Sec. 2 can be considered as an approximation of what would happen
in a real cluster, since the Image Locality policy is used in the current
Kubernetes codebase.
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the best storage node, however, the performance reduction
compared to the plain Layer Locality policy is very lim-
ited, suggesting that its integration into multi-constraint
scheduling problems should not considerably reduce its
effectiveness.

Fig. 7 shows the storage space used per node, for differ-
ent schedulers, in the case of 80% of custom containers. All
policies use node storage rather equally 11. Except for Layer
Locality, for the other schedulers, the storage occupancy per
node decreases less than linearly as the number of nodes
increases. This sub-linear reduction leads to an increase
of the total cluster storage utilization, as shown in Fig. 6.
In contrast, in the case of Layer Locality, we notice an
almost linear reduction as the number of nodes increases,
and because of this, the cluster storage occupancy remains
almost insensitive to the cluster size.

The previous performance was obtained considering
the popularity of the images related to Docker Hub pull
frequency (Fig. 3). We also considered a model of image
popularity that follows the Zipf distribution, as in [8], and
conducted a sensitivity analysis with respect to the Zipf
parameter α. Fig. 8 shows the result of this analysis for a
cluster with 16 nodes, with 3000 containers of which 80%
are custom. For low values of α, most containers use a dif-
ferent image, so the storage footprint is larger because layers
reuse is limited. As α increases, more and more containers
use the same image, layers reuse increases, and storage
utilization consequently decreases. In any case, the Layer
Locality policy provides the lowest storage utilization, close
to the optimal value (dashed line). This is the only analysis
where we use Zipf image popularity, in the following we
continue to use Docker Hub image popularity.

Fig. 9 shows the storage utilization for a cluster with 16
nodes versus the number of containers. Again, the Layer
Locality policy almost achieves the optimal performance,
which is that achieved in the case of a single-node cluster,
as also shown in the figure.

We now analyze what happens when we introduce
replication with anti-affinity constraint. If there are enough
nodes in the clusters, the containers of a replica-set are
spread over different nodes; otherwise, some node is reused
to complete the deployment (see algorithm 1). Fig. 10 shows

11. For Layer Locality we used the fairness factor γ = 1.5

the performance in case of 750 replica-sets, each made of
four replica containers (R = 4). In particular, we can identify
two distinct behaviors of the curve: before and after M = R.

As long as the cluster size is less than or equal to the
number of replicas (M ≤ R), the policies do not differ from
each other and the storage utilization grows linearly. This
happens because each policy first tries to guarantee the anti-
affinity constraint. Therefore, the R containers of a replica-
set are distributed in a round-robin fashion on each node
to avoid, as much as possible, their presence on the same
node. Since nodes are less than the R containers, each node
executes at least one container, stores a copy of its image,
which can also be used by the other containers of the replica-
set that the node is possibly running. Consequently, each
node stores the complete set of images/layers of containers
executed in the cluster, and these images occupy Sn(full)
bytes of a node’s disk. This behavior holds for 1 ≤ M ≤ R
and, in this interval, the memory occupancy of the cluster Sc
grows linearly as M Sn(full). After the initial interval, the
scheduler recovers the ability to make different decisions
about where to deploy containers, and as a result, differ-
ences between the policy capabilities arise. Once again, the
Layer Locality policy achieves the optimal performance for
any cluster size. In fact, when the linear growth due to the
anti-affinity constraint ends, the policy is able to hold the
storage footprint at that minimum value.

So far, we have varied the number of nodes in the cluster,
or the number of containers, separately. In a final evaluation,
we keep the ratio η between the number of containers
and nodes constant as discussed in Sec. 2 and consider
greater clusters up to 200 nodes [9]. This analysis allows
us to evaluate policies in an evolving cluster infrastructure
that is scaled out to follow container demand 12. Fig. 11
shows that when the number of containers and nodes are
increased together (η = 16), Random, Least Used Disk
and Image Locality, perform almost linearly, as foreseen by
Eq. 11 The Layer Locality policy behaves better because by
increasing the number of nodes, it has more possibilities to
efficiently distribute containers while respecting the fairness
constraint. And it effectively exploits these possibilities to
reduce the linear growth of storage footprint. For a cluster
of 200 nodes, the Layer Locality policy provides a storage
footprint reduction of 2.5 and 2.35 compared to the Random
and Image Locality policies, respectively. Similar results
have been obtained for η = 200 and η = 110, where the
latter value is the maximum number of containers (Pods)
per node on standard Kubernetes clusters. For these greater
values of η, the improvement of the Layer Locality policy
with respect to Image Locality is greater than 2.35, e.g.,
about 2.6 for η = 110 and 32 nodes. In fact, with more
containers per node, the Layer Locality policy makes better
use of its ability to reuse layers.

We conclude the performance evaluation by reporting
some results we obtained using a real Kubernetes (v1.21.2)
cluster running on virtual machines in an Azure data center.
The cluster runs 300 containers using vanilla Docker Hub

12. We are also assuming that as the cluster infrastructure increases,
running containers are redistributed across nodes. This condition can
actually happen, albeit in the long term, due to the deployment of new
versions of services/containers, as is the case with Kubernetes rolling
updates.
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images. We requested Kubernetes to deploy the 300 con-
tainers all at once. Fig. 12 shows the storage occupancy of
the entire cluster both using the plain Kubernetes sched-
uler and the Layer Locality policy 13. This real experiment
confirms that the Layer Locality policy is insensitive to the
number of nodes in the cluster (as in Fig. 6), while the
cluster storage utilization increases in the case of the plain
Kubernetes scheduler that is unaware of layers, even though

13. We used the simulator to compute the execution nodes for the
Layer Locality policy. Then we applied these choices in the real cluster
using Kubernetes nodeSelector constraint.

it implements Image Locality as a scoring function 14.
Fig. 13 shows the time required to deploy the full set

of 300 containers. This graph supports that a reduced stor-
age footprint is only one side of the benefit that a layer-
level knowledge of the storage can bring. The other aspect,
which may be even more important as discussed in the
introduction, relates to the reduction in the time required to
start a container. With the Layer Locality policy, a container
finds all or part of its layers on the node where it is being
executed. As a result, the container engine does not have
to either download missing layers or decompress them, and
this reduces the container startup time compared to that
with a layer unaware scheduling policy, such as the one
currently used by Kubernetes.

In any case, increasing the number of nodes reduces the
deployment time because the network and CPU capacities
offered by the nodes are used in parallel to download and
decompress the layers, and finally execute the containers.
However, the reduction rate is lower in the case of the plain
Kubernetes policy because there is the contrasting effect
of increasing the storage space (Fig. 12), i.e., the number
of bytes that must be downloaded from the network and
decompressed to run containers increases at cluster scale
out. This contrasting effect is not there for the Layer Locality
policy, which therefore takes full advantage of having more
nodes in the cluster and, in fact, the deployment time
decreases faster with respect to the plain Kubernetes.

5 RELATED WORK

The growing adoption of the microservices architectures
[10] has led Docker, and containers in general, to be a
pivotal component of modern enterprise applications [11].
Several aspects of performance have been addressed by the
research, and of these, some studies have focused more on
issues related to container images.

The papers [12] [13] [14] [15] analysed and made pro-
posals for improving performance (speed) of container file
systems or registry architecture [16]. Other works have
provided solutions to speed up the distribution of images

14. The performance achieved is a sort of best case for the plain
Kubernetes scheduler, because its Image Locality scoring function can
take advantage of the fact that we are using containers based on vanilla
images.
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from a registry to execution nodes, which is the most time-
consuming step in the process of deploying a container [17]
[18] [19], [20] [21]. A common idea behind these solutions
is to create a shared local registry by using different ap-
proaches (DHT, network file systems, etc.).

Some works, like ours, have been interested in how to
optimize the storage footprint, motivated by the fact that
Docker and container-based virtualization technologies, in
general, are storage hungry. In [7], the authors observed that
the current layer sharing approach still leads to significant
file duplication between different layers. This finding paves
the way for research of new sharing approaches that tar-
get file-level deduplication, which can greatly reduce the
amount of storage space used, and would be particularly
useful for large-scale registries such as Docker Hub. In
this direction, [22] inspected how the process of building
container images can be modified to optimize storage via an
overall rearrangement of the layer structure itself.

Within the arena of scheduling-related papers, in [8], the
authors explored the use of scheduling policies that take
into account available images and layers on nodes to reduce
the storage footprint and startup latency of containers in a
Kubernetes cluster. After a test campaign using containers
based on vanilla Docker Hub images and a real imple-
mentation of their policies in Kubernetes, they concluded
that scheduling policies that leverage layer-level or image-
level knowledge provide a valuable improvement in startup
latency and storage footprint compared to a storage agnostic
policy (our random one). However, the benefit provided by
a, deeper, layer-level knowledge over an image-level one
was not found to be as high in their study (1.6x); in fact,
only a scheduling policy based on image-level knowledge
was eventually adopted in the main Kubernetes codebase.
To some extent, our work can be considered as a follow-
up to [8]. Unlike their study, our work revealed that when
running containers are not based on vanilla Docker Hub
images but on custom images (which we believe is very
realistic), the benefit provided by a scheduler with image-
level knowledge vanishes dramatically, while having layer-
level knowledge still significantly improves the storage
footprint (e.g., 2.35x) and, consequently, container startup
latency. In this sense, our work revamps the value of policies
that take into account layer locality. Besides this conclusion,
in our work, there is a broader discussion of the underlying
phenomena (considering also the effect of replication) and
sensitivity analysis with respect to clusters and workload
parameters. Compared to the layer-matching policy pro-
posed in [8], our Layer Locality policy takes into account a
storage fairness constraint, and we have also shown that the
policy provides good performance even when considering
additional generic constraints, which was a question mark
in [8]. Finally, at the best of our knowledge, our work
is the first one proposing an analytical model of storage
utilization in a cluster running containers, which highlights
the problem of storage usage growth as the cluster size
increases.

Many other papers related to the scheduling issue (e.g.,
[23] [24] [25] [26] [27] [28]) formulate a multi-objective
scheduling problem by focusing on heterogeneous opti-
mization aspects that include storage, such as the papers
[29], [30], and [9]. For these solutions, the storage re-

quirement is an input parameter of the request, a fixed
amount of bytes. Our work suggests that, for container-
based environments, it is better not to consider the storage
demand as constant because, due to layer sharing, the real
storage demand depends on the containers that are already
running on the cluster nodes. By taking this layered nature
of container images into account, the scheduler is able
to make much better storage-saving decisions. Therefore,
future works could include revising these multi-objective
scheduling solutions to change the storage demand from
constant to that proposed in Eq. 17.

6 CONCLUSIONS

Within a single server, the layering of images allows them
to be reused by many containers, resulting in a significant
reduction in storage (disk) utilization. However, the storage-
saving tends to fade out in a cluster, where containers are
distributed across many nodes in a storage-agnostic way.
In fact, for a given number of containers, their cumulative
storage footprint becomes higher when distributed in larger
clusters.

This storage inefficiency when the cluster scales out can
be mitigated by scheduling policies that reward storage-
saving deployments. To compute such rewards, a schedul-
ing policy must necessarily have a level of knowledge about
the storage status of the cluster. In our analysis, a layer-
level knowledge results to be the only one that a scheduler
can effectively leverage to overcome the storage inefficiency.
The scheduler must be aware of which image layers are
available on each node and which layers form the image
of the containers it is going to deploy. Such fine-grained
knowledge allows the implementation of a Layer Locality
policy that identifies the best nodes where to run containers
to minimize their impact on storage and also, as a result,
make them faster to start up. The resulting storage footprint
is (nearly) equal to the minimum one for any cluster size
and microservice configuration.

A coarse-grained knowledge, for example, about what
the storage utilization of each node is, or what images
are available on each node has not been very useful, es-
pecially with custom containers. In fact, the corresponding
scheduling policies, Least Used Disks, and Image Locality,
respectively, achieved performance almost close to that of a
zero-knowledge Random policy.

Clearly, a fine-grained knowledge such as that at the
layer-level requires more effort in scheduling and signaling,
but we believe this to be definitively feasible with current
technologies, and indeed a similar Kubernetes implemen-
tation has been already proposed in [8]. We also note that,
a layer-level scheduler must query Docker Hub to find out
which layers make up an image that it sees for the first time.
This information is then cached for later reuse. The query
delay may be a few hundreds of ms [8], but such delay
penalty is only experienced once, and thus not during the
frequent scale out operations that can occur in the lifetime
of a microservice.
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