
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Sub-linear Scalability of MQTT Clusters in
Topic-based Publish-subscribe Applications

Andrea Detti, Ludovico Funari and Nicola Blefari-Melazzi

Abstract—Message Queuing Telemetry Transport (MQTT) is
a widespread protocol for topic-based publish-subscribe ar-
chitectures supporting IoT and social networks applications.
MQTT brokers are logical entities that couple publishers and
subscribers and play a critical role in such architectures. MQTT
brokers can be implemented either as standalone servers or in
a cluster configuration. Clusters of brokers increase reliability,
availability and overall performance, since operations can be
highly parallelized among the brokers that form the cluster.
The load-balancing strategy in a cluster usually consists in
connecting an incoming client to a randomly selected broker.
This random-attach strategy, it is very simple, but generates
a significant amount of inter-broker traffic, as we demonstrate
through theoretical and experimental evaluations. Inter-broker
traffic is an overhead for the system and it increases the CPU
load of the brokers, compromising the scaling behavior of the
whole cluster. Indeed, we found that a linear increase of the
number of brokers forming a cluster does not necessarily provide
an equivalent linear gain in performance, and such a scaling
penalty can be surprisingly significant, in the order of 40%. To
solve this issue and improve performance, we propose a novel
load-balancing strategy that envisages the use of multiple MQTT
sessions per client to reduce inter-broker traffic and that can be
implemented by means of a greedy algorithm. We show feasibility
and effectiveness of our strategy for IoT and social-network
applications by means of simulations and real measurements.
The resulting scaling penalty is reduced to 10%.

Index Terms—Topic-based publish-subscribe, MQTT, Cluster,
Scalability, IoT, social networks

I. INTRODUCTION

The Message Queuing Telemetry Transport (MQTT) is a
widespread protocol for IoT and social networks applica-
tions based on a topic-based publish-subscribe communication
pattern [1]. Publishers and subscribers are coupled to each
other through a logical entity called MQTT broker, whose
failure or decrease in performance can significantly affect the
entire system. For this reason, some MQTT implementations
support cluster-based deployments. An MQTT cluster is a
distributed system that behaves, from the user point of view,
as a single logical broker, while multiple physical MQTT
brokers handle the workload behind the curtains. Clusters
bring about several advantages, from the increase of system
reliability and availability, since the failure of a single node has
a limited impact, to the achievement of better performances,
since the load of the processes that handle message routing and
forwarding is distributed over different nodes. In addition, the
number of nodes of a cluster can be increased (scale-out) or
decreased (scale-in) to better accommodate traffic demand.

Authors are with CNIT and the Department of Electronic Engineering, Uni-
veristy of Rome ”Tor Vergata”, Italy, e-mail: {name.surname@uniroma2.it}

Load-balancer

 MQTT clients

MQTT
broker #M

MQTT
broker #1

MQTT
cluster

MQTT
broker #2

MQTT
broker #3

Fig. 1: Cluster example

The brokers forming the cluster run on separate physical
servers or are hosted in virtual machines, preferably connected
on a dedicated cloud network (Fig. 1). Clients can connect
to any broker and receive messages published on any other
broker of the cluster. Usually, a load-balancer node is used
as a single TCP/IP entry-point of the cluster. It works at the
lower TCP level to avoid possible processing bottlenecks. To
establish a MQTT session, a client (publisher or subscriber)
initially sets up a TCP/IP connection with the load-balancer
that typically uses a destination NAT (DNAT) operation to
redirect the connection to one of the internal brokers, chosen
at random. This is for instance the default behavior of many
MQTT implementation supporting clustering [2] [3] [4] when
they use Kubernetes [5] as cloud orchestration platform. We
will call this load-balancing strategy random-attach.

After the TCP/IP connection establishment, the client uses
it to exchange MQTT packets with the broker [1]. With regard
to the delivery of published messages to interested subscribers,
MQTT supports 3 levels of QoS agreements between the client
and the broker. QoS 0 (best effort) means that a published
message is delivered “at most once” to interested subscribers,
i.e. loss of the message is possible; QoS 1 means “at least
one”, i.e. no loss but duplicates are possible; and QoS 2 means
“exactly once”, i.e. neither loss nor duplicate.

As regards available implementations, a popular open-
source MQTT broker is Eclipse Mosquitto [6], which however
does not support clustering and can not take advantage of
multi-core CPUs, as it leverages only one single thread.
Another widespread message broker is RabbitMQ [7]; but,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

1 2 3 4
2

4

6

8

10

12

14

16
M

es
sa

ge
 r

at
e

(m
sg

/s
)

verneMQ

linear
scaling

1 2 3 4
N. of brokers

2

4

6

8

10

12

14

16

M
es

sa
ge

 r
at

e
(m

sg
/s

)

eMQTT
linear
scaling

1 2 3 4
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

M
ea

su
re

d/
ex

pe
ct

ed

eMQTT
verneMQ

Fig. 2: Publishing rate that guarantees 2ms of message latency, in case of 1000 topics, 1 publisher and 1 subscriber per topic,
VerneMQ and eMQTT brokers

it natively supports other publish/subscribe protocols than
MQTT, like AMQP (Advanced Message Queuing Protocol),
which are less of interest for our scenario; RabbitMQ does
provide also an MQTT implementation, but, at time of writing,
the latter misses important features, such as advanced quality
of service support (QoS2, see above), which can be important
for some applications. HiveMQ [2] supports clustering and
is built in Java with scalability and enterprise-ready security
in mind, even though it needs a license in order to properly
work, as the evaluation version supports only 25 connections.
HiveMQ is available also as open-sourced Community Edition,
which however does not provide clustering capabilities. High-
performance and open-source MQTT implementations that
support clustering are VerneMQ [3] and eMQTT [4], both
based on Erlang OTP, a very popular language in the message
broker world, because it allows building distributed, highly
scalable and nearly real-time messaging systems.

Thus, we made some experiments with VerneMQ and
eMQTT implementations, aimed at measuring their perfor-
mance. Results unveiled a similar and remarkable sub-linear
scaling behavior that intrigued us to further investigate the
matter. Besides, since we used two different implementations,
the similarity of results has strengthened our belief that the
issue is not related to a specific implementation, but it is rather
due to the widely used random-attach strategy itself.

Let us better describe our experiment. By using Kubernetes
[5], we have deployed different MQTT cluster configurations,
ranging from a cluster with one broker up to a cluster with 4
brokers. The workload comprises 1000 topics, each one with
a single publisher and a single subscriber. All publishers are
equal and generate messages with a payload of 200 bytes,
with MQTT QoS equal to 0 and with a message inter-time
that follows a Poisson distribution. The brokers and the load-
balancer run on different virtual machines with 2 CPUs each,
hosted by a Microsoft Azure cloud. The publishers’ and the
subscribers’ applications run on another virtual machine with

16 CPUs, so that the message throughput bottlenecks are,
inevitably, the brokers.

We evaluated the advantage of increasing the number of
brokers on the maximum rate of publications that the system
can support, keeping the average message latency close to 2
ms. The related measurements are reported in Fig. 2.

To better understand these results, we have also included in
the plots the values that we would have in case of a linear
scaling of the performance, which implies that if we increase
the number of brokers to M , the maximum publication rate
increases to M times that of a single broker. For instance, in
our deployment, a single VerneMQ broker can support up to
4000 messages per second, targeting 2ms of message latency.
Therefore, by using two brokers, a linear scaling would imply
a rate of 8000 messages per second, and so forth.

Surprisingly, the actual performance is rather far from the
expected linear behaviour. The plot on the right of Fig. 2
measures such sub-linearity, by showing the ratio between the
measured and the linear scaling rate. If performance scaled
linearly, we should see a constant ratio equal to 1. Instead,
as the cluster size increases, the ratio falls to about half of
the expected value. The MQTT cluster is wasting half of
the computing resources. We name this behaviour sub-linear
scalability of MQTT clusters.

In this paper, we first study the characteristics and behaviour
of the system, then we model it; after that we propose a
solution to address the sub-linearity issue and we evaluate such
solution.

II. UNDERSTANDING THE SUB-LINEAR SCALING
BEHAVIOR

The random-attach strategy implies that publishers and
subscribers of the same topic can be served by different
brokers and therefore an internal exchange of messages is
needed to route publications from brokers serving publishers to
brokers serving subscribers. This internal traffic is an overhead

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

1000 2000 3000 4000 5000 6000 7000 8000
Input traffic (msg/s)

0

10

20

30

40

50
L

at
en

cy
 (

m
s)

Fig. 3: Average message latency versus input traffic in case of
a VerneMQ single broker; output traffic kept constant at 2000
msg/s. QoS=0

resulting from the clustering operation, which increases the
routing and forwarding load of each broker of the cluster,
giving rise to the sub-linear scaling behavior.

Within a broker, the routing function is used to single out
which are the subscribers interested in an incoming message,
usually by exploiting fast matching algorithms (e.g. subscrip-
tion tries). Therefore, the CPU load due to the routing directly
depends on the number of messages (publications) per second
received by the broker, hereafter named input traffic. This
behavior is shown in Fig. 3, in which we plot the average
message latency versus the input traffic for a VerneMQ broker,
while output traffic is kept constant at 2000 msg/s. 1. The
increase in input traffic leads to an increase in latency, which
rapidly grows after 6000 msg/s as the broker gets close to the
saturation of its CPUs.

After the routing function is executed, the forwarding func-
tion is used to send the message to the selected subscribers,
while managing their QoS. The CPU load due to the forward-
ing operation is a function of: (i) the number of messages
per second sent out by the broker, hereafter named output
traffic, and (ii) the QoS level. Fig. 4 shows the average message
latency versus the output traffic for a VerneMQ broker, while
input traffic is kept constant at 2000 msg/s 2. The increase
of the output traffic leads to a message latency increase,
which rapidly grows after 14000 msg/s because the broker
is running out of CPUs. Besides, comparing Fig. 3 and Fig. 4,
we note that for the same amount of msg/s, the input traffic
has a considerably higher impact on the message latency,
highlighting that routing is a more complex function than
forwarding.

As shown in Fig. 5, when a broker joins a cluster, its input
and output traffic not only comes from and goes to external
clients but also comes from and goes to other brokers of the
cluster. In general, a broker k manages a subset of publishers

1The whole testbed runs in the same data-center, thus network delay is
negligible. For this experiment, we varied the number of topics from 100 to
2000. Each topic is used by a different publisher, sending a message with an
average rate of 4 msg/s. The number of subscribers is 2000 and each of them
is interested in a single topic, which is chosen using a round-robin strategy
among the topics.

2We used 500 publishers of different topics, sending a message with an
average rate of 4 msg/s. The number of subscribers is varied from 500 to
4500 and each of them is interested in a single topic, which is chosen using
a round-robin strategy.

2000 4000 6000 8000 10000 12000 14000 16000 18000
Output traffic (msg/s)

0

20

40

60

80

L
at

en
cy

 (
m

s)

Fig. 4: Average message latency versus output traffic in case
of a VerneMQ single broker; input traffic kept constant at 2000
msg/s

Internal
Network

broker #k

broker #1

Publishers

Publishers

Subscribers

Subscribers

Internal output
traffic (Aio1)

Internal input
traffic (Aii1)

Internal output
traffic (Aiok)

Internal input
traffic (Aiik)

External input
traffic (Aei1)

External output
traffic (Aeo1)

External input
traffic (Aeik)

External output
traffic (Aeok)

MQTT Cluster

Fig. 5: Internal and external traffic of an MQTT cluster

and subscribers and deals with four types of traffic:

• External input traffic (Aeik): the stream of messages
generated by the connected publishers.

• External output traffic (Aeok): the stream of messages
sent to the connected subscribers.

• Internal output traffic (Aiok): the part of messages of the
external input traffic forwarded to other brokers of the
cluster, having interested subscribers.

• Internal input traffic (Aiik): the stream of messages
received from other brokers of the cluster, when the
broker k has interested subscribers.

By using the random-attach strategy, the load-balancer fairly
distributes publishers and subscribers among brokers. Thus,
as the number M of brokers increases, each broker serves
1/M of external traffic (Aeik, Aeok). However, the cluster
configuration gives rise to the generation of internal traffic
(Aiik, Aiok); as a consequence, the overall traffic handled by
a broker, as well as its CPU load, actually scales out less than
1/M , causing the sub-linear scaling behavior.

III. ANALYTICAL MODEL OF THE RANDOM-ATTACH
STRATEGY

In order to derive insights on the effect of different con-
figurations and traffic parameters, in this section we present
an analytical model for evaluating the total internal and

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

external traffic of an MQTT cluster that uses the random-attach
strategy. We note that, since the traffic is uniformly distributed
over the brokers by the load-balancer, the traffic handled by
each broker is simply the total traffic divided by the number
of brokers M of the cluster.

To simplify the development of the model we make the
following assumptions:
• each topic has one publisher and many subscribers3;
• publishers and subscribers are connected to a broker

randomly selected among the M possible ones (random-
attach);

• the number of topics (and thus of publishers) is kept
constant to Ntop;

• the number of subscribers is kept constant to Nsub;
• the average rate of messages published on topic j is equal

to λj (msg/s);
• the distribution of the topics chosen by a subscriber

depends on the application scenarios; we modeled two
of them, namely: social network and IoT.

As described below, the difference between the two ap-
plication scenarios is mainly that in the social network case
subscribers follow a constant number of topics, while in the
IoT case topics are organized hierarchically and the number
of topics followed by a subscriber is variable.

A. Social network scenario

This scenario is inspired by publish/subscribe social net-
work applications like Twitter, where a subscriber is interested
in different topics [8]. Accordingly, we assume that every
subscriber is interested in a number of topics equal to Nsxs
(number of subscriptions per subscribers) and that the topic
popularity follows a Zipf distribution with shape factor α, as
observed in [9] [10].

An important parameter of the analytical model is the
subscription-probability Psj that the topic j is included within
the Nsxs topics of a subscriber. This value is independent of
the specific subscriber, because they have identical statistical
behaviour. When Nsxs = 1, the subscription-probability is
merely equal to the Zipf, i.e. Psj = c/jα, where c is the
Zipf normalization constant. However, when Nsxs > 1,
computational problems show up.

In the general case, the subscription-probability is equal to
the so-called inclusion probability, resulting from a process
of sampling without replacement, made of Nsxs extractions
coming from a finite population of Ntop elements.

As in [11], we assume a sampling strategy working as
follows: during the sampling process every extracted element
is reinserted in the ballot, but whenever a duplicate appears, the
current draw is rejected and is redrawn. Under this assumption,

3MQTT makes possible to express the interest to an aggregation of topics
by using a single subscription that includes wildcards like “+” and “#”. This
possibility can be taken into account in the model (and in the following
greedy algorithm too) decomposing such subscription in many single-topic
subscriptions made by the same subscriber. Moreover, the extension to many
publishers per topic is not difficult. Each message stream generated by a
publisher can be associated with a separate sub-topic and a subscription made
on the main topic can be handled as a set of subscriptions made on all the
associated sub-topics.

the subscription probability can be computed by modelling the
extraction process as the superposition of Poisson processes.
There is a process per topic, whose average frequency is equal
to the topic popularity. The average time τ needed to extract
Nsxs different samples is the unique root of the following
equation 4:

Ntop∑
j=1

(1− e−(c/j
α)τ) = Nsxs (1)

Consequently, the subscription probability of the j element
can be approximated as the probability to have at least an
arrival of the element j in τ seconds, i.e.

Psj = 1− e−λjτ (2)

B. IoT Scenario

This scenario is inspired by IoT applications
in which topic names follow a hierarchy that is
somehow shaped as the physical environment, e.g.
<roomId>/<sensorType>/<sensorId> [13]
[14]. Subscribers can be interested in the publications
related to a specific topic or in those related to an
aggregation of topics sharing the same name-prefix, e.g.
<roomId>/<sensorType>/#, where # is a multi-level
wildcard meaning that the subscriber will receive all messages
of a topic that begins with the pattern before the # character.

We model the hierarchy of possible subscriptions with a
tree having depth d and fan-out f . Fig. 6 depicts an example
of the tree for d = 3. The first level of the tree contains the
root node, which represents a subscription on every topic, i.e.
on “#”. The second level of the tree contains subscriptions
for aggregations of topics, simply identified by name-prefixes
1, 2...f . Finally, the third level leaves represent subscriptions
for specific topics, ranging from 1/1 to f /f .

The selecting process of the subscription provides that a
subscriber firstly chooses one level of the tree according to
a given probability vector Pl = Pl1..P ld, where Pli is the
probability of selecting the ith level. Then, the subscriber ran-
domly chooses one out of the nodes of the level. Consequently,
the subscription-probability Psj can be readily expressed as:

Psj =

d∑
i=1

Pli
1

f i−1
(3)

C. External Input and Output Traffic

The total external input traffic (Aei) is simply the sum of
all the message flows (λj) generated on each topic, i.e.

Aei =

M∑
k=1

Aeik =

Ntop∑
j=1

λj (4)

The total output traffic (Aeo) is equal to the average traffic
sent to a subscriber, multiplied by the number of subscribers
Nsub. The average traffic sent to a subscriber is the sum of

4It is worth mentioning that the same approximation is used in caching
models with LRU policy and is known as Che’s approximation [12].

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

#

1/#

1/f1/1

2/#

2/f2/1

f/#

f/ff/1...

Pl1

Pl2

Pl3

Fig. 6: Subscription tree with d = 3

the traffic generated on the different topics λj , each multiplied
by the probability that the specific topic is selected by the
subscriber, i.e. the Psj subscription-probability previously
evaluated.

Aeo =
M∑
k=1

Aeok = Nsub

Ntop∑
j=1

Psjλj (5)

Now let us turn our attention to the computation of the
internal traffic. The total internal input traffic Aii is equal to
the total internal output traffic Aio because there is no traffic
loss within the cluster. Consequently, we can compute only
the internal input traffic and simply call it internal traffic Ai.

We note that a broker internally receives the messages of
topic j when: i) it has at least a subscriber of topic j connected
to it, and ii) the publisher of the topic j is connected to a
different broker. Therefore, the total internal input traffic Aii,
as well as the output one Aio, can be written as:

Ai = Aii = Aio =

M∑
h=1

Ntop∑
j=1

Pbsh,j

(
1− 1

M

)
λj =

(M − 1)

Ntop∑
j=1

Pbsjλj

(6)

where, the value Pbsh,j is the probability that the hth broker
has at least a connected subscriber that is interested in the
topic j and (1− 1/M) is the probability that the publisher of
the topic j is not connected to the hth broker, since we are
assuming a single publisher per topic. Since every subscriber is
connected to a random broker with the same probability, then
Pbsh,j is independent of the specific broker h, i.e. Pbsh,j =
Pbsj .

It now remains to evaluate Pbsj , which can be written as the
probability of having at least a subscriber of the topic j when
the broker has k subscribers of any topic, i.e. 1− (1−Psj)k,
weighted for the probability that the broker has k subscribers
out of the Nsub possible ones (binomial distribution B), in
formulas:

Pbsj =

Nsub∑
k=1

B(k,Nsub,
1

M
)(1− (1− Psj)k)

where, B(k, n, p) =

(
n

k

)
pk(1− p)n−k

(7)

0 5 10 15 20
N. of brokers M

0

2000

4000

6000

8000

10000

12000

C
lu

st
er

 tr
af

fi
c

(m
sg

/s
) internal rnd - mod

external input rnd - mod
external output rnd - mod
internal rnd - sim
external input rnd -sim
external output rnd - sim

internal

external input

external output

Fig. 7: Cluster traffic vs. cluster size for the social net-
work scenario, random-attach (rnd), Ntop = 1000, Nsub =
1000, Nsxs = 10, λj = 1, α = 1.13

0 5 10 15 20
N. of brokers M

0

0.5

1

1.5

2

2.5

3

3.5
C

lu
st

er
 tr

af
fi

c
(m

sg
/s

)
104

internal rnd - mod
external input rnd - mod
external output rnd - mod
internal rnd - sim
external input rnd - sim
external output rnd - sim

internal

external input

external output

Fig. 8: Cluster traffic vs. cluster size for the IoT scenario,
random-attach (rnd), Ntop = 1000, Nsub = 1000, λj =
1, d = 4, P l = [0, 0.03, 0.3, 0.67]

Preliminary results

Fig. 7 and Fig. 8 show the cluster traffic versus the number
of brokers M for the social network and IoT scenarios,
respectively. For evaluating the external input traffic we used
Eq. 4, for the external output traffic we used Eq. 5 and for
the internal traffic we used Eq. 6. The figures also include
the results that we obtained by means of a MATLAB simu-
lator that reproduces the configurations used in the analytical
model. The simulation and the theoretical results are basically
overlapping, thereby confirming the validity of the analytical
approach. As foreseen in Sec. II, the increase in the number
of brokers results in an increase of the internal traffic, which
consumes the brokers’ processing resources, causing the sub-

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

linear scaling behavior.

IV. MULTI-SESSION BEST-MATCHING STRATEGY

To improve the cluster scalability, we have to limit the
generation of internal traffic. To this end, the load-balancer
should try to put publishers and subscribers of the same
topics together, on the same brokers, thus avoiding inter-broker
internal traffic. However, two issues make it difficult to achieve
a perfect grouping as well as zero internal traffic:

1) Subscribers are usually interested in more than one topic.
2) External input and output traffic should be as much

balanced as possible among brokers, as in the case of
the random-attach strategy.

For example, let us look at the initial configuration in
Fig. 9 (left) where we have a publisher and a subscriber of
the topic “tennis” served by broker #1 and also a publisher
and a subscriber of the topic “baseball” served by broker #2.
We have a perfect grouping of homologous publishers and
subscribers and therefore no internal traffic. Now, suppose that
a new subscriber comes into the system and is interested in
both tennis and baseball. Independently of the chosen broker
for the new incoming subscriber, a new internal traffic flow
is activated. For example, in Fig. 9 (middle) we have chosen
broker #2 and this choice implies the generation of internal
traffic that transports tennis publications from broker #1 to #2.

A possible way out to bring the internal traffic back to zero
would seem to migrate the tennis publisher and subscriber
from broker #1 to broker #2. However, such migration would
face serious feasibility issues: MQTT is a stateful protocol,
thus the MQTT context, and the underlying TCP/IP connec-
tion, cannot be moved from a broker to another in a seamless
way. Moreover, even if the run-time migration of clients were
possible, we would have to take into account that brokers
must be fairly loaded, in order to benefit from the advantages
of clustering. This fairness requirement restricts the option of
migrating clients but also the choice of the broker to which
connect a new incoming client.

In the following section, we propose a greedy load-
balancing strategy, used to choose which broker has to serve
an incoming client: publisher or subscriber. The strategy is
aimed at reducing the internal traffic without having to resort to
the migration solution and also addresses the aforementioned
fairness issue. The technical feasibility of the strategy will be
discussed at the end of the section.

We define Tak as the set of active topics of the kth broker,
where a topic is active if there exists at least a subscriber
or a publisher of that topic on the broker. Assuming that an
incoming client is interested in a set of topics Tc out of the
possible Ntop ones, Tcj is the jth topic of the set Tc and the
size of the set is indicated as “len(Tc)”.

Without loss of generality, we assume that the client is
either a publisher or a subscriber. If the client is a subscriber,
the increase of ∆Ai of the internal traffic, resulting from its
connection to broker k, can be written as:

∆Ai =

len(Tc)∑
j=1

λTcjI(Tcj , Tak) (8)

I(Tcj , Tak) =

{
1, T cj /∈ Tak and publisher of Tcj exists
0, otherwise

(9)
because, if the topic Tcj is not active on the kth broker (Tcj /∈
Tak), and the publisher of the topic is connected to the cluster,
then the broker starts receiving the related publications at a
rate equal to λTcj . Otherwise, no additional internal traffic is
generated.

If instead the client is a publisher, the internal traffic
increase ∆Ai resulting from its connection to broker k can
be written as:

∆Ai =

len(Tc)∑
j=1

M∑
h=1,h6=k

λTcjI(Tcj , Tah) (10)

because, after the connection of the client, the publications of
the jth topic of Tc are transferred to every other broker having
at least a subscriber, i.e. having the topic active. If the client
is both a subscriber and a publisher we can use Eq. 8 for the
set of subscribed topics and Eq. 10 for the topics for which
the client is a publisher.

The equations 8 and 10 initially drove us to design a best-
matching greedy strategy, which follows the minimization in
Eq. 11. Simply, when a new client arrives, the algorithm
connects it to the broker that provides the lowest increase in
internal traffic. However, to ensure a fair balance of external
traffic among brokers, not all brokers can be selected. Indeed,
the set of candidates is made up of brokers whose incoming
and outgoing external traffics are equal to the fairly share
values of Aei/M and Aeo/M , respectively, except for a
tolerance fairness factor γ ≥ 1. The greater γ, the smaller
the fairness level.

min
k

∆Aik

s.t. k ∈ {1..M}
Aeik ≤ γ Aei/M
Aeok ≤ γ Aeo/M

(11)

In Fig. 10 we plot the amount of internal traffic, obtained
with simulations, in case of the social network scenario for
the random-attach (rnd) and best-matching (bm) strategies.
In the left graph we have considered subscribers interested
in a single topic (Nsxs = 1). In this case, the best-
matching strategy is able to efficiently group homologous
publishers and subscribers, thus achieving a valuable reduction
of internal traffic compared to the classical random-attach
strategy. However, problems arise when considering the case
of subscribers interested in more than one topic. The graph
on the right shows the results we get when we consider
subscribers interested in 40 topics (Nsxs = 40). We see that
the advantages brought in by the best-matching strategy are
strongly reduced. This is simply due to the aforementioned
difficulty of efficiently grouping publishers and subscribers in
case of multiple subscriptions per subscriber, while ensuring
a good level of fairness.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

broker #1
Tennis

BaseballBaseball

Publisher

Publisher

broker #1
Tennis Tennis

broker #2
BaseballBaseball

Publisher

Publisher

Subscriber

Internal
Tennis
Traffic

No
Internal
Traffic

broker #1
Tennis

Baseball

Publisher

Publisher

broker #2

Subscriber

broker #2
Baseball

Tennis

Baseball

Tennis

New subscriber

Tennis

Subscriber

Baseball

Baseball

Tennis

Tennis

Suscriber

Initial state best-mathching multi-session best-mathching

session 1

session 2

No
Internal
Traffic

Fig. 9: New subscriber joining a cluster, best-matching (middle) and multi-session best-matching (right) algorithms

0 10 20
N. of brokers M

0

2000

4000

6000

8000

10000

12000

0 10 20
N. of brokers M

0

100

200

300

400

500

600

C
lu

st
er

's
 in

te
rn

al
 tr

af
fi

c
(m

sg
/s

)

40 topics x sub

rnd

rnd

best
matching

best
matching

1 topic x sub

Fig. 10: Internal cluster traffic vs. cluster size for the so-
cial network scenario, best-matching algorithm, Ntop =
1000, Nsub = 1000, Nsxs = 1 (left) and Nsxs =
40 (rigth), λj = 1, α = 1.13, γ = 1.1

In order to improve the reduction of internal traffic, we
believe that it is necessary to expand the range of optimization
options at the load-balancer’s disposal, i.e. its decision space.
Accordingly, we propose to introduce a new dimension into
the game: the number of MQTT sessions a client can establish
with the cluster. A client usually establishes a single session
(and TCP/IP connection) with the cluster. To reduce internal
traffic, we force the client to establish multiple sessions, but
limiting their number to Nses. Each session will be used for
a subset of the topics Tc and will be connected by the load-
balancer to a different broker of the cluster. To showcase what
we can do with multiple sessions, we start by noting that the
configuration in Fig. 9 (in the middle) is a possible result
of the best-matching strategy that uses just one session: new
internal traffic is anyway generated. But if we simply increase

the allowed number of sessions to two, then we can connect
the client as shown in the right part of Fig. 9. The first session
is used for the subscription to the tennis topic and is connected
to broker #1. The second session is used for the subscription to
the baseball topic and is connected to broker #2. Consequently,
we obtain no increase in internal traffic.

To demonstrate the potential of introducing multiple ses-
sions per client, we measure the number of optimization
opportunities the load balancer gains by increasing the number
of sessions Nses. We can make an analytical and a simulation-
based evaluation as follows:

• analytically, we evaluate the number of possibilities the
load-balancer would have by not considering the con-
straints on fair sharing of external traffic in Eq. 11. This
computation provides an upper-bound of the real value;

• by using simulations, we measure the real number of
possibilities considering a load-balancer that makes de-
cisions taking into account of the constraints in Eq. 11
with γ = 1.1.

As far as the analytical evaluation is concerned, with only
one session, the decision space is simply made of M options.
In fact, for an incoming client, the load-balancer can only
choose which is the broker to which the client must be
connected to, among the M possible ones. With multiple
sessions, the load-balancer can instead decide:

• which is the combination of at most Nses brokers (one
per session) to use among the M available in the cluster,

• which subset of topics Tc to assign to each ses-
sion/broker.

It follows that the number of possible choices is equal to
the number of ways of partitioning, with permutations, a set
of len(Tc) elements into i “buckets”, with 1 ≤ i ≤ Nses,
with these buckets extracted from a bucket pool of size M .
Eq. 12 is the result of these choices, where

{
j
i

}
are the Stirling

numbers of the second kind.

Nses∑
i=1

(
M

i

){
len(Tc)

i

}
i! (12)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

0 2 4 6 8
N. of sessions Nses

100

102

104

106

108

1010
N

. o
f

op
tim

iz
at

io
n

po
ss

ib
ili

tie
s

0 2 4 6 8 10
N. of brokers M

102

104

106

108

8

sim

5 topics

sim sim

5 topics

10 topics

M = 8 Nses = 4

sim

10 topics

bound

bound bound

bound

Fig. 11: Upper-bound and real value of the number of op-
timization possibilities available at the load-balancer in case
of multiple sessions versus the number of session (left) and
the cluster size (right), social-network scenario, Ntop =
1000, Nsub = 1000, α = 1.13, γ = 1.1

For a cluster of 8 brokers (M = 8), Fig. 11 shows the
number of possibilities for the load-balancer optimization, as
a function of the number of Nses sessions, on the left part
of the figure, and of the number of brokers in the cluster on
the right part. We consider the case of subscribers interested
in 5 and 10 topics and plot both the upper-bound resulting
from Eq. 12 and the values calculated by simulations, which
take into account the fairness constraint in Eq. 11. Looking at
the results on the left, we can appreciate the great expansion
of the decision set when the number of sessions increases.
We go from 8 possibilities in the conventional case of 1
session per client up to 108. We also observe that the upper-
bound values are quite similar to the simulation results. This
means that the fairness constraint of Eq. 11 does not actually
limit the extension of the decision space. Another interesting
property of the proposed approach is its ability to provide more
optimization opportunities just when an optimization is more
necessary to reduce internal traffic growth, for example when
the number of subscribed topics per subscriber increases or
when there is a greater number of brokers in the cluster (see
the right part of Fig. 11).

We were looking for a new domain through which the
load-balancer could expand its optimization space. The results
presented show that the number of sessions per client can
be one of these domains. Now, we need to figure out an
optimization algorithm in this framework. The goal of such
algorithm can be easily expressed in words as follows: for an
incoming client, find a set of at most Nses brokers and the
subsets of client topics to assign to each of them in order to
minimize the increase in internal traffic, while ensuring the
fair share of external traffic as in Eq. 11.

We were not able to find an analytical, closed, solution for
such a minimization problem and consequently we designed

the sub-optimal greedy algorithm 1, named Multi-Session
Best-Matching strategy. The algorithm is recursive: in each
iteration, it finds first the next broker to use and then the set
of client topics to assign to it. When Nses brokers have been
used or all client topics have been assigned to the selected
brokers, the iterations end. The next broker (k) to be used is
found by solving the minimization in Eq. 11 by using, as input,
the set of client topics not yet assigned to any session (Tna).
The subset of topic Tbest of Tna to be assigned to that broker
k are those that provide the minimum traffic increase 5. This
computation is made on a per-topic base by using Eq. 10 for
a publisher client, or Eq. 8 for a subscriber client.

Algorithm 1: Multi-Session Best-Matching strategy

/* Tc, topics of client interest */
/* Tcbk, topics of the client assigned

to a session connected to the
broker k */

/* Uset set of used brokers */
/* Tna, topic of the client not yet

assigned to any broker */
/* Nses, max number of sessions per

client */
/* */
i = 1 , Tna = Tc , Tcbk = {} , Uset = {}
while len(Tna) > 0 do

k = solution of Eq. 11 using Tna rather than Tc
Tbest = subset of Tna topics providing minimum
internal traffic increase when handled by broker k
Tcbk = Tcbk

⋃
Tbest

Tna = Tna \ Tbest
Uset = Uset

⋃
k

if len(Uset) == Nses then
Tcbk = Tcbk

⋃
Tna

Tna = {}
end

end

We now verify the performance of the multi-session best-
matching greedy algorithm in two small experiments by com-
paring its results with the ones obtained by a brute force
algorithm that test all possible combinations and thus reaches
optimal results. Larger tests were computational unfeasible
for the brute force algorithm because of the hugeness of the
decision space that is in the order of Eq. 12. Fig. 12 shows
the amount of internal traffic in these two experiments versus
the number of sessions in the left part of the figure, and the
number of brokers on the right. Our greedy algorithm is sub-
optimal because its internal traffic is slightly greater than the
optimal one, but it is rather close to the optimum.

5This procedure assigns to the broker the client topics that are active and
therefore do not produce any traffic increase, or only the topic that produces
the minimum traffic increase. The remaining client topics will be assigned in
a new iteration round, thus calculating Eq. 11 with a different set of Tna
remaining topics, since for this new set the best broker may be different.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

1 2 3 4 5
N. of sessions Nses

200

300

400

500

600

700

800

900

1000

C
lu

st
er

's
 in

te
rn

al
 tr

af
fi

c
(m

sg
/s

)

2 4 6 8 10
N. of brokers M

0

50

100

150

200

250

300

350
Nses = 4M = 8

greedy
greedy

opt

opt

Fig. 12: Internal cluster traffic vs. number of sessions Nses
(left) and cluster size M (right) for the social network scenario;
comparison between the multi-session best-matching greedy
algorithm and the optimal solution, for Ntop = 1000, Nsub =
1000, Nsxs = 5,M = 8 (left) and Nses = 4 (rigth), λj =
1, α = 1.13, γ = 1.1

A. Implementation issues

The multi-session best-matching algorithm requires the
knowledge of the topics of interest of a client. The imple-
mentation of any topic-aware load-balancer, such as ours, is
not an easy task. In particular, it is necessary to know which
topics a client is interested in, before setting up the eventual
connection with the internal broker(s); to this end, the load-
balancer should be the end-point of the MQTT session, acting
like a proxy, to decode MQTT messages such as PUBLISH,
SUBSCRIBE, etc. But, in doing so, the load-balancer would
surely become a severe system bottleneck, thus vanishing the
horizontal scaling advantages of the cluster. Therefore, we
have to face a challenge: how can we connect clients to the
right brokers without closing the MQTT session on the load-
balancer?

A possible idea that can be simply developed as a software
library to be used on the client side is the following. We divide
the load-balancing operations in two planes: (i) a control-
plane that decides which are the Nses brokers to be used
for the different sessions and the related topics to assign to
each of them; (ii) a data-plane that sends and receives topic
messages from these brokers/sessions. Usually, a load-balancer
implements both planes. In our proposal the control-plane
remains in the hands of the cluster, but we move the data-
plane to the client’s side. Before connecting to the cluster, the
client contacts the load-balancer control-plane in the cluster
(e.g. through a REST interface) and tells it what topics is
interested in. The controller applies the greedy algorithm and
sends back a map containing, for each topic, the IP address and
TCP port of the broker to be used. In practice, the controller
behaves like a DNS for MQTT topics. Consequently, the client
autonomously establishes the MQTT sessions and uses them

for topic messages as indicated by the control-plane.
This solution does not require any modification of the

MQTT standard. If changes to MQTT were possible, then
other solutions could be explored. For example, we could
introduce an MQTT Redirect message, to be used by the
cluster to request the redirection of some topics to a specific
broker in the cluster.

It is worth noting that, by allowing more sessions per
client, we are increasing the number of TCP/IP connections
that a single broker and a client has to handle; this may
seem a serious disadvantage. On the broker side, we have
measured experimentally that this is not a practical problem
with current technology and we will present related results in
the performance evaluation section. Roughly speaking, on a
Linux system, the maximum number of TCP/IP connections
is related to the maximum number of file descriptors, usually
more than 300K, and thus we have an abundant space to
support many connections. In addition, the memory footprint
of a TCP/IP connection is negligible with modern memory
chips, because the default read/write buffers are in the order of
16KB and this size can be reduced or increased by the kernel
if necessary. On the client side, increasing the number of
sessions may be unfeasible for constrained devices. However,
the results will show that the proposed strategy appreciably
improves performance already from 4 sessions/connections per
client. Therefore, even constrained devices such as Raspberry
PI and Arduino should not have any implementation problems.

Finally, we observe that having multiple sessions obviously
increases the initial setup time, because the client needs to
i) interact with the load-balancer control plane, as described
above, and to ii) establish more than one MQTT session
followed by the related subscription. This latter component
linearly increases with the number of sessions in case of
single-threaded implementation. In our testbed, whole running
in the same data-center, we measured about 3.5 ms per
session/subscription, mainly due to client/broker processing.
Consequently, because in MQTT applications a session is
usually maintained for a long period (hours, days) a setup
overhead in the order of milliseconds is reasonably negligible.

V. PERFORMANCE ANALYSIS

In this section, we evaluate the scaling performance of an
MQTT cluster whose load-balancer uses either the random-
attach or the multi-session best-matching strategy. Some per-
formance parameters we consider are the routing and forward-
ing overheads, defined as the increase of the related processing
load due to internal traffic, compared to the ideal case of no
internal traffic. The higher the overhead, the lower the scaling
performance, i.e. the advantage of increasing the number of
brokers in the cluster.

We have seen that the routing load is proportional to the
rate of messages received by brokers, i.e. Aei+Aii, and the
forwarding load is proportional to the rate of messages sent
by brokers, i.e. Aeo+Aio. Consequently, by using Eq. 6, the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

routing hrt and forwarding hfw overheads can be written as:

hrt = 1 +
Ai

Aei

hfw = 1 +
Ai

Aeo

(13)

For example, a value of hrt = 1.5 corresponds to a cluster
whose internal traffic increases the forwarding load by 50%
compared to the ideal case of no internal traffic.

A. Social Network Scenario

First of all, we analyze cluster performance for social
network applications and we consider a value of 1.13 for the
Zipf parameter α [9].

In Fig. 13 we can see how the system responds to a scale-out
of the number M of brokers in the cluster. In this figure and
in the next ones, we plot the simulation results of the random-
attach strategy (rnd) with a solid line without markers and the
analytical results with markers only. For the multi-session best-
matching strategy (greedy), we show the simulation results
obtained by using up to 4 sessions per client (Nses = 4).

As a general comment, having more brokers corresponds to
an increase in the overhead. For a given topic, the spreading
of interested subscribers among the different brokers becomes
higher and this increases the internal traffic needed to bring
them such publications. The routing overhead is much higher
than the forwarding one because each subscriber is interested
in 10 topics, in the considered configuration. In turns, the
external output traffic (Aeo) is 10 times greater than the input
traffic (Aei) and thus the impact of internal traffic (Ai) is
greater on the routing overhead rather than on the forwarding
one (see Eq. 13).

In the case of a random-attach strategy, the overhead reaches
a discouraging value of about 4, for a cluster of 20 brokers.
Using the multi-session best-matching strategy, the overhead
is practically halved. This implies, for example, that a cluster
using the greedy algorithm is theoretically capable of support-
ing a double publication rate with the same performance, e.g.
the same average message latency.

Similar considerations motivate the cluster’s response to the
growth in the number of subscribers (Nsub) and the number
of subscriptions per subscribers (Nsxs), as shown in Fig. 14
and Fig. 15 for a cluster with 8 brokers. However, it should be
noted that, compared to Fig. 13, in these cases the forwarding
overhead decreases slightly because the increase in Nsub or
Nsxs leads to a higher growth in external output traffic (Aeo)
than the growth in internal traffic (Ai). This is not the case
for the routing overhead because the number of publishers,
and therefore the external input traffic (Aio), remains constant
while the internal traffic (Ai) grows.

For a cluster of 8 brokers, Fig. 16 shows that by increasing
the number of sessions, the greedy algorithm is more and more
able to reduce both routing and forwarding overhead, thus
showing that the number of sessions is an effective tool to
address the problem of sub-linear scaling of MQTT clusters.
The random-attach strategy has constant results because it
always uses a single session.

0 5 10 15 20
N. of brokers M

1

1.5

2

2.5

3

3.5

4

O
ve

rh
ea

d

routing rnd (h
rt

)

forwarding rnd (h
fw

)

routing
greedy (h

rt
)

forwarding
greedy (h

fw
)

Fig. 13: Routing and forwarding overhead vs. cluster size
M for the social network scenario, random-attach (rnd)
and multi-session best-matching (greedy) strategies, Ntop =
5000, Nsub = 5000, Nsxs = 10, λj = 1, α = 1.13, Nses =
4, γ = 1.1

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
N. of subscribers Nsub

1

1.5

2

2.5

3

3.5

4

O
ve

rh
ea

d

routing
greedy (h

rt
)

forwarding rnd (h
fw

)

routing rnd (h
rt

)

forwarding
greedy (h

fw
)

Fig. 14: Routing and forwarding overhead vs. number of
subscribers Nsub for the social network scenario, random-
attach (rnd) and multi-session best-matching (greedy) strate-
gies, Ntop = 5000, Nsxs = 10, λj = 1, α = 1.13, Nses =
4,M = 8, γ = 1.1

Fig. 17 shows the overhead by varying the popularity pa-
rameter α of the Zipf distribution, which is used by subscribers
to select the topics of interest. When α increases, subscribers
focus on fewer topics, thus reducing the number of used topics
in the cluster and the resulting inter-broker traffic that causes
the overhead.

Finally, to evaluate the fair sharing of the load among the
brokers of the cluster, we used the well-known Jain’s index
metric (J), applied to the sum (lk) of input and output traffics,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

0 10 20 30 40 50
N. of subscriptions per subscriber Nsxs

1

2

3

4

5

6

7
O

ve
rh

ea
d

routing rnd (h
rt

)

routing
greedy (h

rt
)

forwarding
rnd (h

fw
)

forwarding
greedy (h

fw
)

Fig. 15: Routing and forwarding overhead vs. number of
subscription per subscribers Nsxs for the social network
scenario, random-attach (rnd) and multi-session best-matching
(greedy) strategies, Ntop = 5000, Nsub = 5000, λj = 1, α =
1.13, Nses = 4,M = 8, γ = 1.1

1 2 3 4 5 6 7 8
N. of sessions Nses

1

1.5

2

2.5

3

O
ve

rh
ea

d

routing rnd (h
rt

)

routing
greedy (h

rt
)

forwarding
greedy (h

fw
)

forwarding
rnd (h

fw
)

Fig. 16: Routing and forwarding overhead vs. number of
sessions (Nses) for the social network scenario, random-
attach (rnd) and multi-session best-matching (greedy) strate-
gies, Ntop = 5000, Nsub = 5000, Nsxs = 10, λj = 1, α =
1.13,M = 8, γ = 1.1

which has been considered to be a cumulative measurement
of routing and forwarding load (Eq. 14).

lk = Aeik +Aeok +Aiik +Aiok

J =

(∑M
k=1 lk

)2
M
∑M
k=1 l

2
k

(14)

0.5 1 1.5 2
Zipf shape factor

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

O
ve

rh
ea

d

routing greedy (h
rt

)

forwarding greedy (h
fw

)

routing rnd (h
rt

) - sim

forwardind rnd (h
fw

) - sim

routing rnd (h
rt

) - mod

forwarding rnd (h
fw

) - mod

Fig. 17: Routing and forwarding overhead vs. Zipf shape
parameter α for the social network scenario, random-attach
(rnd) and multi-session best-matching (greedy) strategies,
Ntop = 5000, Nsub = 5000, λj = 1, Nsxs = 10, Nses =
4,M = 8, γ = 1.1

0 5 10 15 20
N. of brokers M

0

0.5

1

Ja
in

's
 in

de
x

rnd
greedy
min

Fig. 18: Jain’s index size for the social network sce-
nario vs. cluster size, random-attach (rnd) and multi-session
best-matching (greedy) strategies, Ntop = 5000, Nsub =
5000, Nsxs = 10, λj = 1, α = 1.13, Nses = 4, γ = 1.1

Fig. 18 shows the Jain’s index obtained by varying the
number of brokers of the cluster as in Fig. 13. The maximum
value of the index is 1 and it means perfect fairness. The
minimum value is 1/M and it means the worst possible level
of fairness, i.e. a configuration for which all the processing
load is handled by a single broker, while the other brokers
in the cluster are inactive. Fig. 18 includes the minimum
value and we note that the greedy algorithm provides levels
of fairness very similar to those offered by the random-attach
strategy. The random-attach strategy has a Jain’s index of
about 0.99 regardless of the number of brokers. The Jain’s
index of the greedy algorithm reaches about 0.96 as the
number of brokers increases.

B. IoT Scenario

In this section we report the results relevant to the IoT
scenario described in Sec. III-B. Let us consider the Pli
probability used by subscribers to choose the ith level of the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

subscription tree (Fig. 6), given in Eq. 15; we assume: firstly,
Pl1 = 0 to avoid the presence of subscribers interested in ev-
ery topic; secondly, a Zipf distribution for the remaining levels,
because it allows to simply evaluate the impact of different
Pl configurations by varying the α parameter of the Zipf.
To simulate scenarios where subscribers interested in specific
topics (e.g. <roomId>/<sensorType>/<sensorId>)
are more than those interested in topic aggregates (e.g.
<roomId>/#), the popularity ranking has a reverse order
with respect to the tree levels, i.e. Pli ≥ Pli−i .

Pli =

1

(d−i+1)α∑d−1
j=1

1
jα
, if i ≥ 1

0, otherwise
(15)

For example, for α = 1.5 and a tree with depth d = 4, we have
Pl = [0, 0.122, 0.222, 0.656]. Reducing alpha to 0.5, we get
Pl = [0, 0.258, 0.293, 0.449], which is a condition with more
subscribers interested in aggregates of topics.

0 5 10 15 20
N. of brokers M

1

1.5

2

2.5

3

3.5

4

4.5

5

O
ve

rh
ea

d

routing rnd (h
rt

)

forwarding
greedy (h

fw
)

forwarding
rnd (h

fw
)

routing
greedy (h

rt
)

Fig. 19: Routing and forwarding overhead vs. cluster size M
for the IoT scenario, random-attach (rnd) and multi-session
best-matching (greedy) strategies, Ntop = 5000, Nsub =
5000, d = 4, α = 1.5, f = 30, λj = 1, Nses = 4, γ = 1.1

In Fig. 19 and Fig. 20, we plot the overhead as a function
of the cluster size M and of the number of sessions Nses,
respectively. As in the social network scenario, also in the
IoT one the overhead increases with the cluster size and
the greedy algorithm performs better than the random one,
especially as the number of sessions increases. Finally, Fig. 21
shows that the overhead, especially the routing one, decreases
by increasing α. This is motivated by the fact that for low
values of α there are more subscribers interested in aggregates
of topics and this means that the average number of topics
subscribed by each subscriber is higher, as well as the internal
traffic. The greater alpha, the lower the number of subscribers
interested in aggregates of topics as well as the internal traffic.

We conclude the section by reporting some general insights
on the behavior of overheads that we have obtained from the
analysis of social network and IoT scenarios:

1 2 3 4 5 6 7 8
N. of sessions Nses

1

1.5

2

2.5

3

3.5

4

O
ve

rh
ea

d

routing rnd (h
rt

)

routing
greedy (h

rt
)

forwarding
greedy (h

fw
)

forwarding rnd (h
fw

)

Fig. 20: Routing and forwarding overhead vs. number of
sessions Nses for the IoT scenario, random-attach (rnd)
and multi-session best-matching (greedy) strategies, Ntop =
5000, Nsub = 5000, d = 4, α = 1.5, f = 30, λj = 1,M =
8, γ = 1.1

0.5 1 1.5 2
Zipf shape factor

1

2

3

4

5

6

7

8

O
ve

rh
ea

d

routing greedy (h
rt

)

forwarding greedy (h
fw

)

routing rnd (h
rt

) - sim

forwardind rnd (h
fw

) - sim

routing rnd (h
rt

) - mod

forwarding rnd (h
fw

) - mod

Fig. 21: Routing and forwarding overhead vs. Zipf shape
parameter α for the IoT scenario, random-attach (rnd) and
multi-session best-matching (greedy) strategies, Ntop =
5000, Nsub = 5000, d = 4,M = 8, f = 30, λj = 1, Nses =
4, γ = 1.1

1) The increase in the number of brokers corresponds to
an increase in routing and forwarding overheads.

2) The amount of routing and forwarding overhead is
inversely proportional to the input and output external
traffic, respectively, which depend on the application
scenario. For example, in the case of a few publishers
and many subscribers we have low input and high output
external traffic, therefore high routing overhead and low
forwarding overhead.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

3) The overhead is also inversely proportional to the skewe-
ness of the topic popularity distribution. It is greater
in the case of subscribers whose interests are evenly
distributed over the available topics and it is lower in
case of subscribers interested in a few popular topics.

4) The multi-session best-matching strategy reduces rout-
ing and forwarding overheads, achieving a good level
of fairness. The reduction in overheads increases as the
number of sessions increases.

C. Measurements on a real implementation

We conclude the performance evaluation by presenting
real measurements made with VerneMQ running on our Ku-
bernetes cluster, using an MQTT Benchmarking Tool [15],
comparing the (default) random-attach strategy of VerneMQ
with the proposed multi-session best-matching strategy. Dif-
ferently from Fig. 2 in which we had a benchmark scenario
simply made of 1000 publisher/subscriber couples, here we
consider a social network scenario with 1000 publishers and
100 subscribers, each one interested in 10 topics.

The left plot in Fig. 22 shows, as a function of the number
of brokers M , the maximum publication rate supported by
the cluster such that the average message latency remains
lower than 10ms; also included is the ideal linear scaling
behavior. The middle plot shows the normalized value of the
maximum publication rate with respect to the ideal linear
scaling. The greedy algorithm is quite better than the default
random one, as it supports a greater publishing rate. The
central graph shows that for 4 brokers the random algorithm
has a performance that is only 67% percent of the ideal one.
The greedy algorithm reaches 95%. The down-up behavior of
the greedy strategy in the central plot is due to the fact that
we are using a maximum number of sessions Nses = 4, but
when the number of brokers is less than 4, the number of
sessions exploited is actually equal to the number of brokers,
i.e. real Nses = min(M, 4). Therefore, by increasing the
number of brokers we are practically increasing the number
of sessions exploited as well, thus improving the optimization
possibilities. After 2 brokers, this improvement is so great to
overcome the worsening due to the increase in internal traffic
with the number of brokers.

The plot on the right in Fig. 22 shows the average message
latency with respect to the publication rate, in the case of a
cluster composed by 4 brokers. The random-attach strategy has
a sudden increase in message latency around 35 msg/s because
brokers run out of CPUs, whereas the greedy one is able to
limit the message latency up to 50 msg/s, thus demonstrating
a better efficiency in handling MQTT traffic.

Fig. 23 describes the resource consumed by a VerneMQ
broker in a cluster of 4 brokers in terms of CPU, memory
and network traffic. The resources have been measured during
a test in which we first send traffic (35 msg/s) by using the
random-attach strategy, then paused and finally send again the
traffic but using the greedy algorithm with 4 sessions. The
graph on the right shows the traffic reduction provided by
the greedy algorithm compared to the default random one.
The graph on the left shows that this traffic reduction results

in lower CPU usage which, in turn, leads to lower message
latency (see the right Fig. 23 for 35 msg/s). Finally, the
memory consumption reported in the central plot of Fig. 23
reveals that the memory growth due to the increased number of
sessions used by the greedy algorithm is limited to 20 Mbytes,
with respect to a base level of about 500 Mbytes relevant to
the random algorithm.

Finally, we point out that the presented results are obtained
by using a Poisson traffic model, for which message inter-
times follows an Exponential distribution. This distribution
simulates the behavior of time-driven publishing applications.
We obtained similar performances by using also a LogNormal
distribution, with a coefficient of variation equal to 4 and 8
(for Poisson it is equal to 1). The LogNormal distribution
generates more bursty traffic with respect to the Poisson
one and, therefore, better simulates the behavior of event-
driven publishing applications [16]. The burstiness increases as
the coefficient of variation increases. The Poisson/LogNormal
results are similar because what affects the performance of the
MQTT cluster is the mix of traffic generated by all publishers
and the burstiness of the aggregated traffic fades by mixing so
many publishers. Therefore, the considerations we made apply
to both time-driven and event-driven publishing applications.

VI. RELATED WORK

Publish/subscribe systems are used and studied for a wide
range of applications [17]. Several proposals suggest the use
of publish/subscribe systems specifically tailored to IoT and
sensor applications ([18], [19], [20], [21]).

Sensor Andrew [20] is an infrastructure for Internet-scale
sensing and actuation across a range of heterogeneous devices
for data dissemination. MQTT-S [19] is a stripped-down ver-
sion of MQTT, optimized for the small frame sizes in sensor
networks, which are typically under 128 bytes. Gateways often
found in sensor networks are used to translate MQTT-S to
ordinary MQTT and forward messages to upstream brokers.

The OpenIoT project [22], instead, uses an ecosystem
for mobile crowdsensing applications which relies on the
Cloud-based Publish/Subscribe [18], a specifically designed
content-based publish/subscribe with the ability to have mobile
brokers, i.e. mobile publish/subscribe-enabled gateways. The
OpenIoT project has compared their system to MQTT, but
only considering qualitative metrics and messaging overhead,
mostly in a protocol level analysis.

Zhang et al. [21] propose not to rely on the cloud for
messaging, but instead to use a fully distributed system of
message routers to deliver messages across a global IoT
overlay network offering a publish/subscribe interface. These
works, therefore, emphasize the need for publish/subscribe
integration in sensor applications. Still, none of them focus
on or provides a performance analysis of the internal traffic,
nor address the scaling consequences caused by the internal
traffic, which inevitably affect the cluster setup.

Previous work has been done in the field of performance
evaluation of publish/subscribe systems ([23], [24]). However,
comparisons of different systems in the literature usually do
not consider the specific requirements, use-cases or traffic

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

1 2 3 4
N. of brokers M

5

10

15

20

25

30

35

40
M

es
sa

ge
 r

at
e

(1
03 m

sg
/s

)

1 2 3 4
N. of brokers M

0.6

0.7

0.8

0.9

1

M
ea

su
re

d/
lin

ea
r

m
es

sa
ge

 r
at

e

10 20 30 40 50

Publishing rate (103 msg/s)

0

50

100

150

200

250

300

L
at

en
cy

 (
m

s)

greedy

rnd (default)

greedy

greedy

linear scaling

rnd (default)

rnd (default)

Fig. 22: VerneMQ performance for the social network scenario, default VerneMQ strategy (rnd) and multi-session best-matching
(greedy) strategy. Maximum message rate for message latency ≤ 10ms vs. cluster size (left, middle), message latency vs.
publishing rate for a cluster with 4 brokers (right). Ntop = 1000, Nsub = 100, Nsxs = 10, α = 1.13, Nses = 4, γ = 1.1.

Fig. 23: VerneMQ performance in case of social network scenario versus time. Default VerneMQ strategy (rnd) and multi-
session best-matching (greedy) strategies. Message rate 35 msg/s, Ntop = 1000, Nsub = 100, Nsxs = 10, α = 1.13, Nses =
4, γ = 1.1.

patterns relevant to the phenomena at hand in this paper. In
[23], a good overview of works on performance evaluation of
publish/subscribe systems is given. In [24], the authors give
a generic publish/subscribe benchmark based on scenarios in
the field of logistics.

Recent studies focused on the concept of scalability, specif-
ically on scaling the architecture to hundreds of IoT devices,
concentrating their effort in building a broker with these
capabilities ([25], [26], [27]). The authors of [25], designed
a stateless broker that decouples the networking functionality
of the broker from the state information it needs to maintain.
EMMA [26], is an edge-enabled publish/subscribe middleware
that addresses the challenges of the strict quality of service
(QoS) requirements imposed by many applications that cannot
be satisfied only by a cloud-based solution. In fact the goal
of this middleware is to migrate MQTT clients to brokers,
offloading the burden to a broker which is located in proximity
of the clients in order to optimize QoS and reduce end-to-end

latencies. Lastly, [27] examines the main research challenges
to scale up a publish/subscribe architecture for upcoming IoT
applications in 5G networks.

While these fundamental researches are essential for un-
derstanding the basic concepts and techniques required for
building large scale publish/subscribe systems, they did not
work and did not unveil the MQTT sub-linear scaling issue
we have focused on this paper.

We conclude by mentioning that, in addition to MQTT,
publish/subscribe systems can be based on other standard
protocols, including AMQP [28], HTTP and CoAP [29].
AMQP can support more publish-subscribe patterns than the
topic-based of MQTT, however, its implementation is more
complex and has a higher overhead. HTTP-based systems use
an HTTP server, which exposes a REST API through which
it is possible to publish/receive messages, subscribe, etc. A
subscription also includes a notification URI where the client
wants to be connected to receive related publications. Being

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

based on the REST paradigm, each action requires the creation
and release of an HTTP session and this increases the message
latency compared to other solutions. CoAP is similar to HTTP
but is faster than HTTP being based on UDP, is better designed
for constrained devices and is capable of operating in scenarios
with and without broker. Compared to MQTT, CoAP shows
better performance in case of high packet loss rates because
the underlying TCP used by MQTT is not suitable in these
scenarios [30]. For IoT application, AMQP is not widely used
because of its complexity, but many IoT platforms, such as
ETSI oneM2M [31] and OMA NGSI [32] support HTTP,
CoAP and MQTT.

VII. CONCLUSIONS

The use of MQTT broker clusters offers an undeniable
advantage in terms of availability, reliability and scalability.
However, as far as scalability is concerned, the expectation that
the addition of resources will contribute to the same amount
of additional capacity can be largely disappointed.

Many clustered applications scale out much better than
MQTT, because they are simply client-server. MQTT, on
the other hand, is designed for client-to-client applications,
supported by a server mediation. Clients are connected to
different servers in the cluster and therefore internal server-
to-server traffic is generated to create the client-to-client path.
This extra internal traffic, not usually existing in client-server
applications, is a form of clustering overhead that leads the
cluster to have a sub-linear scaling behavior, meaning that
an increase in the number of brokers does not results in an
equivalent improvement of application performance.

But how much sub-linear? It strongly depends on the
application scenario. One must consider that each topic can
at most generate M − 1 internal publication flows, from the
broker serving the publisher to all other brokers that may have
subscribers. Therefore, if each topic has a small number of
subscribers, such an amount of internal traffic is similar to
that of the external traffic and sub-linearity can be significant;
for example, it can waste 30-40% of resources, as in our
experiments. If there are few topics used by many subscribers,
the amount of internal traffic is relatively low compared to
external traffic and sub-linearity is still present, but in a less
accentuated way.

Designing a load-balancer that restores the linear scalability
of the cluster may be hard, because subscribers are interested
in more than one topic, because we still want to have a fair load
distribution between brokers and because MQTT is stateful.
Our proposal to address the problem is to distribute clients’
subscriptions over multiple MQTT sessions. This opportunity
drastically increases the optimization possibilities available to
the load-balancer, which, together with our greedy algorithm,
allows the cluster to scale almost linearly. An undeniable
disadvantage is the increased complexity on both the broker
and client side. As a result, future works could focus on finding
other possible domains in addition to sessions’ one, which
could also increase the decision space of the load-balancer,
but possibly providing a less complex implementation.

ACKNOWLEDGMENT

This work is supported in part by the H2020 EU-JP Fed4IoT
project (www.fed4iot.org, EU contract n. 814918) and by the
Italian MIUR PRIN Liquid Edge project. The document re-
flects only the authors’ view, European Commission, Japanese
MIC and Italian MIUR are not responsible for any use that
may be made of the information it contains

Andrea Detti is a professor of Wireless Networks
and Cloud Computing at the University of Rome
Tor Vergata. His research activity spans on differ-
ent topics in the area of computer networks and
copes with framework design, analytical modeling,
performance evaluation through simulation and test-
bed. He is co-author of more than 80 papers on
journals and conference proceedings, and partic-
ipated to several EU funded projects with coor-
dination and research roles. Currently is the re-
search area is focused on Cloud Computing and IoT.

(http://netgroup.uniroma2.it/people/faculties/andrea-detti/)

Ludovico Funari Ludovico Funari is a researcher
at the University of Rome Tor Vergata. He re-
ceived the master’s degree in ”ICT And Internet
Engineering” in October 2019. His research activity
includes IoT, Cloud and Edge computing. He has
worked as a CNIT (Italian National Inter-University
Consortium for Telecommunications) researcher for
the UE H2020 ”Fed4IoT” project. He is currently
working for the ”Liquid Edge Computing Based on
Distributed Machine Learning and Millimetre-Wave
Radio Access” research project.

Nicola Blefari Melazzi Nicola Blefari-Melazzi
(http://blefari.eln.uniroma2.it/) is a full Professor
of Telecommunications at the University of Roma
Tor Vergata, where he served as Chair of the
PhD program in Telecommunications Engineer-
ing, Chair of the undergraduate and graduate
programs in Telecommunications Engineering and
Chair of the Department of Electronic Engineer-
ing. He is currently the Director of CNIT (Na-
tional Inter-University Consortium for Telecommu-
nications, http://www.cnit.it/), a non-profit Consor-

tium among 37 Italian Universities. More than 1,300 people, belonging to
the participating universities, collaborate with CNIT, while the number of
own-employees is more than 100. His research projects have been funded
by Italian Ministries, by the Italian National Research Council, by major
companies (e.g., Ericsson, Telecom Italia), by the ESA and by the EU. He has
participated in 31 EU projects, playing the role of project coordinator for seven
of them. He has been an elected member of the 5G Public Private Partnership
association (https://5g-ppp.eu/), a 1.4 Billion Euro initiative established to
create the next generation of networks. He evaluated many research proposals
and projects in EU programs and served as TPC member, TPC Chair, General
Chair and Steering Committee Chair for IEEE Conferences and guest editor
for IEEE Journals. He is an area editor for Elseviers Computer Networks.
He is author/co-author of about 240 papers. His research interests lie in the
performance evaluation, design and control of telecommunications networks.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

REFERENCES

[1] “Mqtt version 5.0,” OASIS, Tech. Rep. [Online]. Available: https:
//docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html

[2] HiveMQ. Reliable data movement for connected devices. [Online].
Available: https://www.hivemq.com/

[3] VerneMQ. Clustering mqtt for high availability and scalability. [Online].
Available: https://vernemq.com

[4] eMQTT. The massively scalable mqtt broker for iot and mobile
applications. [Online]. Available: http://emqtt.io/

[5] Kubernetes (k8s): Production-grade container orchestration. [Online].
Available: https://kubernetes.io/

[6] Mosquitto. An open source mqtt broker. [Online]. Available: https:
//mosquitto.org/

[7] Rabbitmq. [Online]. Available: https://www.rabbitmq.com/
[8] H. Kwak, C. Lee, H. Park, and S. Moon, “What is twitter, a social

network or a news media?” in Proceedings of the 19th international
conference on World wide web. AcM, 2010, pp. 591–600.

[9] H. Liu, V. Ramasubramanian, and E. G. Sirer, “Client behavior and feed
characteristics of rss, a publish-subscribe system for web micronews,”
in Proceedings of the 5th ACM SIGCOMM conference on Internet
Measurement. USENIX Association, 2005, pp. 3–3.

[10] V. Setty, G. Kreitz, R. Vitenberg, M. Van Steen, G. Urdaneta, and
S. Gimåker, “The hidden pub/sub of spotify,” in Proceedings of the
7th ACM international conference on Distributed event-based systems.
ACM, 2013, pp. 231–240.

[11] Y. Yu et al., “On the inclusion probabilities in some unequal probability
sampling plans without replacement,” Bernoulli, vol. 18, no. 1, pp. 279–
289, 2012.

[12] H. Che, Y. Tung, and Z. Wang, “Hierarchical web caching systems:
Modeling, design and experimental results,” IEEE Journal on Selected
Areas in Communications, vol. 20, no. 7, pp. 1305–1314, 2002.

[13] “Benchmark of mqtt servers,” Scalagent, Tech. Rep., 2015.
[Online]. Available: http://www.scalagent.com/IMG/pdf/Benchmark
MQTT servers-v1-1.pdf

[14] “Mqtt topics & best practices - mqtt essentials: Part 5,” HiveMQ, Tech.
Rep.

[15] Mqtt benchmarking tool. [Online]. Available: http://netgroup.uniroma2.
it/Andrea Detti/papers/journals/mqtt bench-master.zip

[16] N. Nikaein, M. Laner, K. Zhou, P. Svoboda, D. Drajic, M. Popovic,
and S. Krco, “Simple traffic modeling framework for machine type
communication,” in ISWCS 2013; The Tenth International Symposium
on Wireless Communication Systems. VDE, 2013, pp. 1–5.

[17] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The
many faces of publish/subscribe,” ACM computing surveys (CSUR),
vol. 35, no. 2, pp. 114–131, 2003.

[18] A. Antonic, K. Roankovic, M. Marjanovic, K. Pripuic et al., “A mobile
crowdsensing ecosystem enabled by a cloud-based publish/subscribe
middleware,” in 2014 International Conference on Future Internet of
Things and Cloud. IEEE, 2014, pp. 107–114.

[19] U. Hunkeler, H. L. Truong, and A. Stanford-Clark, “Mqtt-sa pub-
lish/subscribe protocol for wireless sensor networks,” in 2008 3rd
International Conference on Communication Systems Software and
Middleware and Workshops (COMSWARE’08). IEEE, 2008, pp. 791–
798.

[20] A. Rowe, M. E. Berges, G. Bhatia, E. Goldman, R. Rajkumar, J. H.
Garrett, J. M. Moura, and L. Soibelman, “Sensor andrew: Large-scale
campus-wide sensing and actuation,” IBM Journal of Research and
Development, vol. 55, no. 1.2, pp. 6–1, 2011.

[21] B. Zhang, N. Mor, J. Kolb, D. S. Chan, K. Lutz, E. Allman,
J. Wawrzynek, E. Lee, and J. Kubiatowicz, “The cloud is not enough:
Saving iot from the cloud,” in 7th USENIX Workshop on Hot Topics
in Cloud Computing (HotCloud 15). Santa Clara, CA: USENIX
Association, Jul. 2015.

[22] J. Soldatos, N. Kefalakis, M. Hauswirth, M. Serrano, J.-P. Calbimonte,
M. Riahi, K. Aberer, P. P. Jayaraman, A. Zaslavsky, I. P. Žarko et al.,
“Openiot: Open source internet-of-things in the cloud,” in Interoperabil-
ity and open-source solutions for the internet of things. Springer, 2015,
pp. 13–25.

[23] K. Sachs, Performance modeling and benchmarking of event-based
systems. Sierke, 2011.

[24] K. Sachs, S. Kounev, J. Bacon, and A. Buchmann, “Performance eval-
uation of message-oriented middleware using the specjms2007 bench-
mark,” Performance Evaluation, vol. 66, no. 8, pp. 410–434, 2009.

[25] S. Sen and A. Balasubramanian, “A highly resilient and scalable broker
architecture for iot applications,” in 2018 10th International Conference

on Communication Systems & Networks (COMSNETS). IEEE, 2018,
pp. 336–341.

[26] T. Rausch, S. Nastic, and S. Dustdar, “Emma: Distributed qos-aware
mqtt middleware for edge computing applications,” in 2018 IEEE
International Conference on Cloud Engineering (IC2E). IEEE, 2018,
pp. 191–197.

[27] A. E. Redondi, A. Arcia-Moret, and P. Manzoni, “Towards a scaled
iot pub/sub architecture for 5g networks: the case of multiaccess edge
computing,” arXiv preprint arXiv:1902.07022, 2019.

[28] S. Vinoski, “Advanced message queuing protocol,” IEEE Internet Com-
puting, vol. 10, no. 6, pp. 87–89, 2006.

[29] Z. Shelby, K. Hartke, and C. Bormann, “The constrained application
protocol (coap),” Internet Requests for Comments, RFC Editor, RFC
7252, June 2014. [Online]. Available: http://www.rfc-editor.org/rfc/
rfc7252.txt

[30] D. Thangavel, X. Ma, A. Valera, H.-X. Tan, and C. K.-Y. Tan, “Per-
formance evaluation of mqtt and coap via a common middleware,” in
2014 IEEE ninth international conference on intelligent sensors, sensor
networks and information processing (ISSNIP). IEEE, 2014, pp. 1–6.

[31] S. K. Datta, A. Gyrard, C. Bonnet, and K. Boudaoud, “onem2m
architecture based user centric iot application development,” in 2015
3rd International Conference on Future Internet of Things and Cloud.
IEEE, 2015, pp. 100–107.

[32] O. M. Alliance, “Ngsi context management,” OMA, OMA-TS-NGSI
Context Management-V1 0, 2012.

https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://www.hivemq.com/
https://vernemq.com
http://emqtt.io/
https://kubernetes.io/
https://mosquitto.org/
https://mosquitto.org/
https://www.rabbitmq.com/
http://www.scalagent.com/IMG/pdf/Benchmark_MQTT_servers-v1-1.pdf
http://www.scalagent.com/IMG/pdf/Benchmark_MQTT_servers-v1-1.pdf
http://netgroup.uniroma2.it/Andrea_Detti/papers/journals/mqtt_bench-master.zip
http://netgroup.uniroma2.it/Andrea_Detti/papers/journals/mqtt_bench-master.zip
http://www.rfc-editor.org/rfc/rfc7252.txt
http://www.rfc-editor.org/rfc/rfc7252.txt

	Introduction
	Understanding the sub-linear scaling behavior
	Analytical Model of the Random-Attach Strategy
	Social network scenario
	IoT Scenario
	External Input and Output Traffic

	Multi-Session Best-Matching Strategy
	Implementation issues

	Performance analysis
	Social Network Scenario
	IoT Scenario
	Measurements on a real implementation

	Related Work
	Conclusions
	Biographies
	Andrea Detti
	Ludovico Funari
	Nicola Blefari Melazzi

	References

