
Modeling LRU Cache with Invalidation

Andrea Dettia,b, Lorenzo Braccialea, Pierpaolo Loretia, Nicola Blefari Melazzi*a,b

aElectronic Engineering Department, University of Rome ”Tor Vergata”, Rome, Italy
bConsorzio Nazionale Interuniversitario per le Telecomunicazioni (CNIT), Italy

Abstract

Least Recently Used (LRU) is a very popular caching replacement policy. It is very

easy to implement and offers good performance, especially when data requests are

temporally correlated, as in the case of web traffic.

When the data content can change during time, as in the case of dynamic websites

or within databases, there is the need to prevent the cache to serve stale data. This is

usually done by triggering an invalidation event in the cache, to purge all the previously

cached data concerning the invalidated data item. The invalidation process tends to

worsen the caching performance, since stored items can be invalidated after a short

time, thus wasting storage space.

Several models in the literature allow quantifying the cache hit probability of an

LRU cache, but, to the best of our knowledge, the presence of invalidation events has

not been taken into account so far.

In this paper, we present an analytical performance evaluation of LRU caches that

takes into account data requests and invalidation events, both modeled as independent

renewal processes. Simulation results show the accuracy of our model. Moreover, we

apply our model to evaluate the LRU performance in the case of a real application,

Wikipedia. Finally, we evaluate by means of simulations the effect of invalidation in

hierarchical caching.

Our work allows us to conclude that the presence of invalidation events does not

severely impact the LRU performance in single caches. As a matter of fact, invalidation

Email addresses: andrea.detti@uniroma2.it (Andrea Detti),
lorenzo.bracciale@uniroma2.it (Lorenzo Bracciale), pierpaolo.loreti@uniroma2.it
(Pierpaolo Loreti), blefari@uniroma2.it (Nicola Blefari Melazzi*)

Preprint submitted to Computer Networks March 21, 2018



effects can be ignored there, unless the invalidation rate is comparable with the request

rate and the per-object invalidation rate and request rate are highly correlated. However,

in the case of hierarchical caching, even a limited effect of invalidation on first-level

caches is sufficient to noticeably affect the performance of second level/downstream

caches.

Key words: caching, invalidation, LRU, Wikipedia

1. Introduction

Caching is a well-known technique, used in web and database applications to re-

duce the data transport latency, processing load and network traffic and reduce/eliminate

the occurrence of congestion / bottlenecks. A caching system is typically placed be-

tween the user(s) and the data source(s) and stores a copy of the response data of some

requests, so that subsequent identical requests are served directly by that system instead

of from the origin server.

A caching system has a finite storage size. Therefore, some requested data items

may be found in the cache (cache hit), while others are not (cache miss). In the case

of a cache miss, the caching system fetches the requested item from the origin server

(or more formally, it fetches the server response), possibly stores a copy of it for future

use, and then serves the user. The main performance measure of a caching system is

the cache hit probability, which is the probability that a generic request can be served

with a cached item (cache hit), instead of being forwarded to the origin server (cache

miss).

A caching scheme determines which data items should be stored in the cache, e.g.,

in order to maximize the cache hit rate. More specifically, a replacement policy is a

caching strategy that decides whether a requested item should enter the cache in case

of a cache miss, as well as which item should then be evicted from the cache (i.e.,

which cached item will be replaced by the requested item), if the cache storage space

is exhausted. Such decisions are based on the user behavior (i.e. the requests pattern),

which is used to understand which item is addressed more frequently.

Least Recently Use (LRU) is probably the most popular caching scheme, mainly

2



due to its simple implementation, its low and constant cache update overhead, and its

relatively good performance. The LRU policy is implemented in software as a finite-

size stack of cached items. For each request, if the requested item is in the stack, then

it is moved at the top of the stack; otherwise the requested item is inserted at the top of

the stack and the last item of the stack is removed, to comply with the storage limit.

Besides its simplicity, LRU also provides very good performance in terms of cache

hit probability. This is due to the fact that LRU exploits the temporal correlations

among requests, which are often found in web and database traffic patterns. The tem-

poral locality refers to the tendency of recently requested items to be addressed again,

which makes the most recently requested items good candidates for caching.

However, any caching system must cope with a fundamental consistency problem:

how to prevent a cache from serving stale data items, i.e. items whose version is older

than the one available at the source. Indeed, the content that is stored in the origin

server is often dynamically updated. Therefore, it s necessary to check and enforce the

consistency between the cached copy of the data stored in the caching system and the

original data stored in the content server (data source).

There are two types of data consistency: weak and strong. Weak consistency mech-

anisms include the association of a time-to-live (TTL) or an expiration time (in HTTP

1.1) to the cached data. When this timer expires, the consistency of the cached data

has to be checked by contacting the origin server. Weak consistency schemes can-

not guarantee data consistency, since there is always the possibility that the data items

have been updated at the origin server between two consistency checks (i.e. while the

TTL or expiration timer was still running). Thus, this strategy can be used only for

applications that can tolerate data inconsistency, to some extent.

Other applications, though, such as on-line trading systems, cannot tolerate such

inconsistencies. In this case, the use of strong consistency mechanisms, also known as

invalidation mechanisms, is required. There are two types of invalidation mechanisms:

proactive and reactive. In proactive invalidation, when an item is updated, the data

source sends to the relevant caches an invalidation request, directing them to remove

such cached item. This form of invalidation is very common in database systems (e.g.

MySQL).

3



In reactive invalidation, which is commonly used in web systems, if the cache con-

tains the content upon a request arrival, then the cache sends a conditional request

(If-None-Match) to the origin server, which then replies either with an HTTP 304 re-

sponse NOT MODIFIED, if the cached item matches with the corresponding data item

stored in the content server (cache hit), or with the full data response, if the cached

item is stale (cache miss).

Then, we have a cache hit only if the requested item is found in the cache and it is

not stale. Nevertheless, surprisingly enough, the impact of invalidation mechanisms on

the LRU cache hit rate has not been studied in the literature. The goal of this article is

to address this issue.

Accordingly, the contribution of this paper is to extend the existing models of LRU

caches, with the aim of evaluating the cache hit probability in presence of both request

and invalidation events, modeled as renewal processes. Then we use the extended

model to derive insights on the impact of invalidation patterns on cache performance

and compare proactive and reactive strategies. We also evaluate the performance of

LRU caching systems with frequently invalidated data in real world scenarios, using a

dataset extracted from Wikipedia traffic. Finally, we evaluate the effect of invalidation

in hierarchical caching.

2. Related Work

Several caching replacement policies have been proposed in the literature, from

simple FIFO, LRU, and LFU schemes to the recent Time To Live (TTL) based cache

[1], SG-LRU cache [2] and many other ones. Among them, LRU is perhaps the most

popular in real-world systems, given its implementation simplicity and very good per-

formance in case of traffic with temporal locality [3]. For instance, MySQL, the world’s

most popular open source database, has a built-in feature called Query Cache that uses

an LRU cache to store query results1. Reverse proxies, such as Varnish 2 (used by 5.2%

1http://dev.mysql.com/doc/refman/5.7/en/query-cache-status-and-maintenance.

html
2https://varnish-cache.org/

4



of the most popular 10000 sites in the web), memory object caching systems, such as

Memcached 3 (used by Wikipedia, Flickr, LiveJournal, Craigslist), and several client-

side caching proxies, such as the popular and historical Squid Proxy 4, use LRU as the

default solution for their memory replacement policies.

2.1. Performance evaluation of LRU

LRU caches have been studied for a long time, with models and approximations

devised to calculate the cache hit probability [4] [5]. Several years later, in 2002,

Che et al. provided a very practical approach for LRU performance modeling called

“Che’s approximation” [6]. The model exploits several approximations to derive very

simple formulas for computing the cache hit probability, given a certain popularity

statistics of the contents and Poisson request inter-times. Despite its simplicity, Che’s

approximation achieves a very high accuracy, as recognized by many authors, even if

a complete mathematical analysis of such model has been provided only 10 years after

the original paper, by Fricker et al. in [7]. However, recently, it has been noted in

[8] that the ”Che’s approximation” is essentially a re-phrasing of the Fagin asymptotic

formula [4]. Thus, we also refer to it as “Characteristic Time Approximation”.

Che’s approximation paved the way for many research works that extend the orig-

inal model to a broader set of cases, for instance to cope with different inter-time dis-

tributions and cache chains [9] [10] [11]. To the best of our knowledge, this is the

first work that presents the effects of invalidation in LRU caching systems, considering

proactive and reactive invalidation schemes, as described below.

2.2. Maintaining cache consistency with data invalidation

A main issue in cache systems is to guarantee data consistency, i.e. to prevent

caches to serve stale data to clients. In particular, solutions can be classified in two

main categories, providing a weak and a strong consistency of the data [12][13].

In case of weak consistency strategies, client queries might still be served with

inconsistent (stale) data items, which can be stale up to a period of time or with a

3https://memcached.org/
4http://www.squid-cache.org/

5



certain probability [14]. Weak consistency mechanisms are easily to implement, being

usually based on a validity period included in a content header; this is for instance the

case of Information Centric Networks (ICN) [15], which have recently renewed the

interest in caching systems.

One such approach is the TTL cache strategy, where an item is invalidated after an

expiration time, calculated from the start of cache placement [16] [17].

Even though in some scenarios it may be acceptable to use stale data, there are

other cases, such as databases or specific web applications (e.g., on line trading), in

which strong consistency is necessary, i.e., the cache should never provide stale data.

This can be done either with a proactive approach, in which the data source pushes a

notification to the cache, signaling a data changes and triggering the cache to clean the

changed data item (as it occurs in MySQL), or with a reactive approach, where it is

up to the cache to contact the server for checking the consistency of the stored data at

each served request (this is the case of web browser caching) [18].

2.3. Real-world traffic models

Since the Shenker et al. seminal work [3] characterizing the popularity of web con-

tent and the related implications on caching systems, traffic demand has been widely

studied, to characterize the different types of traffic [19], to assess their impact on

caches [20], and to design data-driven caching strategies [21].

However, the modeling of invalidation patterns and of their relationship with re-

quest patterns have not received the same attention, at least in the world of caching. In

[22] and [23], authors performed experiments and proposed models to estimate the fre-

quency of updating of web pages, with the goal of increasing the performance of web

crawlers, by optimizing the polling intervals used to check if a page has been changed

or not. However, these papers do not analyze the relationship between requests and

invalidation patterns, which instead plays a significant role for LRU performance, ac-

cording to our analysis in this paper.

To the best of our knowledge, this is the first work that derives statistics of invalida-

tion and correlates them with popularity, in order to assess the LRU performance with

invalidation in real world applications, such as Wikipedia.

6



3. Analytical Model of LRU Caching with Invalidation

Let us consider an LRU cache able to store up to C items taken from an universe

set of M distinct items. We consider negligible round trip times between cache and

data sources. Under these assumptions, we model the cache operation as follows.

According to the LRU policy, when a request for the item n arrives, the related

item is stored or moved to the top of the LRU memory stack. When requests for other

objects arrive, the LRU policy tends to move item n towards the bottom of the stack.

If the item overtakes the last position C of the stack, it is removed from the cache and

we call this event eviction.

A cache hit occurs if, when a request arrives, the related object is contained in the

cache, otherwise a cache miss takes place.

In what follows, we derive the cache hit probability for an LRU cache with inval-

idation, first for the case of Poisson request and invalidation processes, and then for

generic renewal processes.

3.1. Characteristic time approximation

The characteristic time approximation, also known as “Che’s approximation” [6]

[24]5, is a simple yet accurate model for computing the cache hit probability of an

LRU cache.

Assuming a Poisson arrival process Rn for the requests of object n, whose inter-

arrival frequency is λ(n)r , then the cache hit probability hn for that item can be calcu-

lated as:

hn ≈ 1− e−λ
(n)
r tc (1)

where tc is the eviction time, defined as the time elapsing between the instant of time

when item n is inserted at the top of the LRU stack after a request arrival, and the instant

of time when the item is removed from the cache as a consequence of an LRU eviction,

5In 1977 R. Fagin in [4] provided an in-depth miss rate analysis of an LRU cache. The paper [25]

provides the connection between Fagins asymptotic results on the LRU cache and the characteristic time

(CT) approximation introduced by Che et al in [6], providing a strong theoretical underpinning for the latter.

7



Figure 1: Cache hit and miss for item n, the dash line is the eviction time tc

under the assumption that no other request for that item occurs in the meantime. It

follows that a cache hit occurs if the next request arrives before tc.

Clearly tc is a random variable that also depends on the specific item n. However,

Che’s approximation states that tc can be considered nearly constant for large C. The

value of tc can be obtained by calculating the unique root of the equation:

M∑
n=1

(
1− e−λ

(n)
R tc

)
= C (2)

This equation can be justified by using different analytical approaches; we use the

one proposed in [9]. Due to the PASTA property, the presence probability Pn of finding

the object n in the cache at a generic time is equal to the probability of finding the object

in the cache at a request arrival, i.e. Pn = hn.

Considering B, the random variable modeling the cache occupancy, the sum of

all presence probabilities for all the objects (left-hand part) is equal to the average

occupation of the cache E[B], which, in case of an LRU cache without invalidation, is

equal to its capacity C, being the cache always full.

Despite its simplicity, “Che’s approximation” is particularly accurate, even if some

arguments are just supported by intuition in the original paper describing it. Later

works such as [7] provide a more rigorous argumentation of why this approximation

works and capture so well the dynamic of LRU cache.

3.2. Modeling Invalidation

To cope with invalidation, let us introduce another process (In) that models the

arrival of the invalidation events of the nth object.

8



Differently from the previous case, we have that an object n can be removed from

the cache either because of invalidation or because of the eviction. It follows that a

cache hit occurs if the next request of the process Rn arrives before the eviction time

tc and before the next invalidation time of the process In; otherwise a cache miss takes

place. For instance, in figure 1 we have a first request arriving to the cache and whose

element is consequently inserted at the top of the LRU stack. The second request gets

a cache hit because it arrives before both the next invalidation event and the expiration

of the eviction time tc. The third request experiences a cache miss since it arrives after

an invalidation event; the fourth request gets a cache miss because it arrives after the

expiration of the eviction time.

An invalidation event occurring when an item is stored in the cache implies two

different consequences, depending on the invalidation scheme. In case of proactive

invalidation, the stale item is immediately removed from the cache. In case of reactive

invalidation, the stale item will be removed only at the next eviction or request arrival,

and not immediately. A cache hit occurs when a request finds a valid (non-stale) data

in the cache, otherwise a cache miss occurs.

3.3. Request and Invalidation with exponential distribution

We adapted the “Che model” for the case of invalidation, where invalidation events

for item n follow an exponential distribution with rate λ(n)I . In this case we can calcu-

late the cache hit probability of item n as:

hn =

[
1− e−

(
λ
(n)
I +λ

(n)
R

)
tc

]
λ
(n)
R

λ
(n)
R + λ

(n)
I

(3)

This equation can be derived using probabilistic arguments, which we are going

to discuss in section 3.3.3. However, an intuitive explanation is that it represents the

probability that there is an event (request or invalidation) arrival before tc, weighted by

the probability that this event is a request.

To calculate the eviction time tc, we can use exactly the same arguments that led to

eq. 2, hence deriving tc as the unique root the following equation,

M∑
n=1

Pn = E[B] (4)

9



Differently from the case without invalidation, the presence probability Pn is gener-

ally different by the cache hit probability hn. For its computation we use the approach

proposed in [9][10] for which the presence probability Pn can be expressed as the av-

erage time E[Sn] spent in the cache by the nth item between two subsequent requests,

normalized with respect to the average request inter-time:

Pn =
E[Sn]

1/λ
(n)
R

(5)

The computation of E[Sn], of the average cache occupancy E[B] and, in turn, of

tc (eq. 4) are different for the cases of proactive and reactive invalidation schemes, as

discussed in the following subsections.

3.3.1. Eviction time for reactive invalidation

We recall that, for the reactive scheme, objects are removed from the cache only

because of the eviction (tc expiration). Invalidation events make objects not valid any-

more, but do not remove them from the cache.

To model this behavior, let us consider two consecutive requests, whose inter-time

is t. At the arrival of the first request, the object is placed at the top of the LRU stack and

remains in the cache for the whole inter-time period t if t ≤ tc; otherwise, it remains

in the cache for tc seconds, then it is removed from the cache until it is reinserted again

at the arrival of the second request.

It follows that the average time E[Sn] spent by an object in the cache between

two requests can be written as the expected value of the minimum between the request

inter-time random variable and the constant tc:

E[Sn] =

∫ tc

t=0

e−λ
(n)
R tdt =

1− e−λ
(n)
R tc

λ
(n)
R

(6)

Regarding the average cache occupancy, since invalidation events do not remove

the objects from the cache, the cache is always full and thus E[B] = C. Consequently,

tc can be derived by eq. 4 re-written as:

M∑
n=1

(
1− e−λ

(n)
R tc

)
= C (7)

10



3.3.2. Eviction time for proactive invalidation

In case of proactive invalidation, either eviction and invalidation events remove

objects from the cache. This strategy implies the following behavior.

Let us consider two consecutive requests for which: the inter-time is t, the first

request arrives at time tr and the residual invalidation time between tr and the next

invalidation time is ti. At the arrival time tr the object is placed at the top of the LRU

stack and remains in the cache for the whole inter-time period t if t ≤ min(tc, ti);

otherwise it is removed from the cache after a period equal to min(tc, ti), until it is

re-inserted again at the next request arrival.

It follows that the average time E[Sn] can be written as the expected value of the

minimum among the request inter-time random variable, the residual invalidation time

random variable and the constant tc. Since the invalidation process is exponentially

distributed, the residual time ti random variable is exponentially distributed as well,

with invalidation rate equal to λ(n)I , therefore:

E[Sn] =

∫ tc

0

e
−
(
λ
(n)
R +λ

(n)
I

)
t
dt =

1− e−
(
λ
(n)
R +λ

(n)
I

)
tc

λ
(n)
R + λ

(n)
I

(8)

Let us now discuss the computation of the average cache occupancy E[B], which

in case of proactive invalidation gets more complicated, since the cache is not always

full. For analytic tractability, we resort to an approximation that uses the lower of the

two following upper bounds. A first upper bound of E[B] is clearly the cache capacity

C. Another upper bound of E[B] is the average occupancy that the cache would have

if no eviction occurs or tc → ∞. Indeed, evictions limit the growing of the cache

occupancy. In this latter case the average cache occupancy can be readily written as:

lim
tc→∞

E[B] = lim
tc→∞

M∑
n=1

Pn =

M∑
n=1

λ
(n)
R

λ
(n)
R + λ

(n)
I

(9)

Consequently, the average cache occupancy can be written as:

E[B] ≈ min

(
C,

M∑
n=1

λ
(n)
R

λ
(n)
R + λ

(n)
I

)
(10)

11



and to derive tc eq. 4 can be rewritten as:

M∑
n=1

[
λ
(n)
R

λ
(n)
R + λ

(n)
I

(
1− e−(λ

(n)
R +λ

(n)
R )tc

)]
= E[B] (11)

We observe that the approximation 10 is extremely tight in practical cases of inter-

est, for which the cache size is much lower than the number of objects, e.g., some orders

of magnitude lower, and the invalidation rate is lower or in the order of the request rate.

Indeed, in these cases the cache is practically always full and eq. 10 returns the cache

capacity C, thus providing a negligible error. From some simulation measurements we

observed that the maximum approximation error takes place at the discontinuity point,

i.e. when
∑M
n=1 Pn(tc → ∞) = C. However, this is not a realistic scenario. Indeed,

for realistic values of request and invalidation rates, this condition happens when the

cache size is in the order of the data set.

3.3.3. Invalidation with generic distributions

In this section, we derive the cache hit probability in case of request and invalida-

tion renewal processes, with generic inter-time distribution, by extending the previous

exponential results.

We model the request and invalidation events as two independent renewal pro-

cesses. The specific nth item, with n ∈ {1, 2, ...,M}, is characterized by a stationary

request process whose inter-times between subsequent requests are independent and

identically distributed (i.i.d.) random variables, and their general CDF, PDF, average

frequency and standard deviation are F (n)
R (t), f (n)R (t), λ(n)R , σ(n)

R , respectively. Sim-

ilarly, the nth item is also characterized by a stationary invalidation process, whose

inter-times between subsequent invalidations are i.i.d. random variables, and their gen-

eral CDF, PDF, average frequency and standard deviation are F (n)
I (t), f (n)I (t),λ(n)I ,

σ
(n)
I , respectively.

To compute the cache hit probability, let us consider a request whose arrival time is

tr (e.g. first request of fig. 1). The next request of the same object will be a cache hit

if the request inter-time t is lower than both i) the eviction time tc and ii) the residual

invalidation time, from tr to the next invalidation event. This is for instance the case

of the second request of fig. 1, whereas the third and forth request do not verify this

12



condition. It follows that the cache hit probability can be evaluated as the probability

that the request inter-time is less than the minimum between the residual invalidation

time and the eviction time tc, i.e.:

hn =

∫ tc

0

f
(n)
R (t)

(
1− FI

(n)
(t)
)
dt (12)

where FI
(n)

(t) is the CDF of the residual invalidation time. Since the invalidation and

request processes are independent from each other, a generic request can happen at any

time during the invalidation process. Thus the CDF of residual invalidation time can

be written as [26]:

FI
(n)

(t) =

∫ t
0
1− F (n)

I (x)dx

1/λ
(n)
I

(13)

To calculate the eviction time tc of reactive and proactive schemes we reuse eq. 4

and the same approach used for the exponential case, as it follows.

3.3.4. Eviction time for reactive invalidation

For reactive invalidation, the average time spent in the cache between two subse-

quent requestsE[Sn] can be written as the expected value of the minimum between the

request inter-time and the eviction time tc, i.e.

E[Sn] =

∫ tc

0

(
1− F (n)

R (t)
)
dt (14)

It follows that to derive tc we can solve the following equation:

M∑
n=1

∫ tc
0

(
1− F (n)

R (t)
)
dt

1/λ
(n)
R

= C (15)

3.3.5. Eviction time for proactive invalidation

For proactive invalidation, the average time E[Sn] can be written as the expected

value of the minimum between the request inter-time, the residual invalidation time

and the eviction time tc:

E[Sn] =

∫ tc

0

(
1− F (n)

R (t)
)(

1− FI
(n)

(t)
)
dt (16)

13



Figure 2: Modeling (lines) and simulation (markers) results of the per-object cache hit probability (hn)

versus the object ID, Rn exp, In exp, different values of the normalized invalidation rate γ, proactive

invalidation.

For the average cache occupancyE[B] we reuse the approximation of the exponen-

tial case, for which it is equal to the minimum between C and the average occupancy

in case of tc →∞ . Therefore,

E[B] ≈ min

C, M∑
n=1

∫∞
0

(
1− F (n)

R (t)
)(

1− FI
(n)

(t)
)
dt

1/λ
(n)
R

 (17)

It follows that to derive tc we can rewrite eq. 4 as follows:

M∑
n=1

∫ tc
0

(
1− F (n)

R (t)
)(

1− FI
(n)

(t)
)
dt

1/λ
(n)
R

= E[B] (18)

4. Numerical Results

In this section, we assess the tightness of our model through simulations and de-

rive some insights about the impact of invalidation on caching performances. Then

we present the effect of invalidation in a real-world scenario using the statistics of

14



Figure 3: Modeling (lines) and simulation (markers) results of the per-object cache hit probability (hn)

versus the object ID, Rn logn CVr = 4, In exp, different values of the normalized invalidation rate γ,

proactive invalidation.

the Wikipedia page views and revisions, and finally discuss the case of hierarchical

caching.

4.1. Model evaluation

We consider a cache size with C = 100 items and a universe of contents composed

by M = 10000 ordered objects assuming that, without loss of generality, objects with

lower IDs are more popular than objects with higher IDs. The object’s popularity is

modeled with a Zipf distribution, i.e., the request rate of the nth object is λ(n)R =

1/nα∑
n 1/nαλ

tot
R where α = 0.6 is the Zipf shape factor and λtotR is the overall request rate.

To the best of our knowledge, realistic models of the invalidation processes are

not fully investigated in literature, thus we make some assumptions on their shape, to

proof the validity of our model and to derive some general conclusions. We model the

distribution of invalidation rates of the different objects with a Zipf, in which the nth

object invalidation rate is λ(n)I = 1/nα∑
n 1/nαλ

tot
I .

Thus, we are considering cases for which there is a relationship between the popu-

larity of an object and its invalidation (i.e. update) rate: the nth object more frequently

15



Figure 4: Modeling (lines) and simulation (markers) results of the per-object cache hit probability (hn)

versus the object ID, Rn logn CVr = 4, In logn CVi = 4, different values of the normalized invalidation

rate γ, proactive invalidation.

requested is also the nth object more frequently invalidated. We also considered a case

(fig. 5) where the popularity and the invalidation rates are not correlated, obtained by

scrambling the order of the invalidation rates.

Fig. 2 reports the per-object cache hit probability evaluated with the analytical

model (eq. 12) and with simulations, assuming that both invalidations and requests are

exponentially distributed. We simulated the system for different values of the normal-

ized invalidation rate γ = λtotI /λtotR (γ = 0 means no invalidation). Only the first 20

objects are shown to avoid cluttering the figure. Solid lines are the modeling results,

while markers are simulation results.

Figures 3 and 4 present the same performance, with different request and invalida-

tion distributions. In fig. 3 the request process is modeled with a Lognormal distri-

bution with coefficient of variation (CV ) equal to 4, reproducing request streams with

temporal locality [27]. In fig. 4 both request and invalidation streams present temporal

locality and are modeled with two Lognormal distributions with CV = 4.

In all cases, the simulation results (markers) match the analytic ones (solid lines).

16



Figure 5: Modeling (lines) and simulation (markers) results of the per-object cache hit probability hn versus

the normalized invalidation rate γ, for different invalidation mechanisms.

This observation holds true for the other figures as well. Also, we notice that the

increase of the normalized invalidation rate (γ) leads to a decrease of the per-item

cache hit probability, as expected.

Similarly, in fig. 5 we show the total cache hit probability vs. the normalized in-

validation rate, for both proactive and reactive invalidation mechanisms. It is shown

that the total cache hit probability decreases at the increase of the normalized invali-

dation rate. In addition, we note that the proactive invalidation scheme provides better

performance than the reactive one because it does not waste cache space with stale

data.

This is explained in fig. 6, which illustrates the eviction time (tc) vs. the normalized

invalidation rate for both the proactive and the reactive invalidation schemes.

More specifically, it is shown in this figure that when the reactive scheme is used,

the eviction time is constant and independent from the invalidation rate, while when the

proactive scheme is used, the eviction time increases as a consequence of the greater

availability of free spaces caused by the invalidation.

In fig. 5 we also consider a case in which the Zipf invalidation rates are randomly

17



Figure 6: Modeling results of eviction time vs normalized invalidation rate, for proactive and reactive inval-

idations, Rn logn with CVr = 4, In exp

distributed among the item IDs, thus decoupling popularity from invalidation rates.

In this scenario (labeled “rand”), the effect of invalidation on caching performance is

minor. Therefore, we conclude that invalidation leads to a non-negligible reduction of

caching performance only when the invalidation/update events are frequent for popular

items.

Fig. 7 presents the effect of the temporal locality by assuming Lognormal distri-

butions for both request and invalidation inter-times. More specifically, in this figure

we plot the total cache hit probability vs. the coefficient of variation of the requests

streams (CVr) for different coefficients of variation of the invalidations streams (CVi).

The higher the CV value, the higher the temporal locality [28]. It is well known that

temporal locality in requests brings about a relevant improvement in terms of cache

hit probability in an LRU cache. We note that the temporal locality in the invalidation

process leads to a similar benefit as well, although much smaller.

This behavior can be explained with an example. Let us consider two invalidation

events. If these events occur in the middle of two different request inter-time periods,

these events cause two cache misses. If these events are so temporally close as to occur

18



Figure 7: Modeling results of total cache hit probability vs. coefficient of variation, normalized invalidation

rate γ = 1, Rn logn, In logn

in the middle of the same request inter-time period, both events could cause at most

a single cache miss. Consequently, the more the invalidation events are close to each

other (higher locality), the lower is the number of induced miss events and the higher

is the cache hit probability. Finally, we point out that this effect of temporal locality

can be observed also in figs. 2,3,4; indeed, we are inserting temporal locality, first in

the requests (fig.3) and then in the invalidations (fig. 4).

4.2. Analysis with real-world data: the Wikipedia case

To verify the impact of invalidation in a real world application, we apply LRU

caching to Wikipedia data, which currently is the fifth most visited website in the world,

according to Alexa Rank. We analyzed views and revisions of the top 1000 most

popular pages of Wikipedia during two months: September 2015 and September 2016.

Each view is considered as a data request and each revision as an invalidation event. We

used the Wikipedia REST APIs6 to obtain the data describing page views and revisions.

6https://wikimedia.org/api/rest_v1/

19



(a) Wikipedia views September 2015 (b) Wikipedia views September 2016

Figure 8: Number of Wikipedia page views sorted by page popularity. Fitting with a Zipf distribution whose

shape parameters are s = 0.432 for 2015, and s = 0.515 for 2016

Fig. 8 reports the number of views (or popularity) of the Wikipedia pages sorted

by their popularity, i.e. the xth value is the number of views of the xth most viewed

page. The resulting distribution follows a Zipf law, where the shape parameters that

minimize the RMSE are respectively s = 0.432 for September 2015 and s = 0.515 for

September 2016.

Figure 9 reports the number of revisions for each page in the same time periods,

sorting the pages on the x-axis by their popularity, i.e. with the same order of fig. 8.

Such a scattered behavior clearly shows the lack of any apparent correlation between

the rank a page has in terms of number of views and the rank it has in terms of number

of revisions. In other words, there is no relationship between the popularity of an object

and its invalidation rate, such as it occurs in the ”rand” case of fig. 5.

Figure 10(a) shows the number of revisions in Sept. 2016 but, differently from

fig. 9, we used a page revision ranking in x-axis, i.e., the xth value is the number of

revisions of the xth most revised page. Differently from the page views, this curve

shows a geometric law rather than a Zipf one. Specifically, the geometric distribution

provides a good level of accuracy if we partition the items in three groups and fit them

by using three different values of the parameter p.

Figure 10(b) provides a detail of objects ranked from 130 to 800 (i.e. the central

group of items) fitted with a geometric distribution with parameter p = 4.013× 10−3.

Now we evaluate the effects of invalidation in LRU caches using these real world

20



(a) Sept. 2015 (b) Sept. 2016

Figure 9: Number of revisions for the top 1000 most popular Wikipedia pages. Pages sorted by number of

views.

(a) Wikipedia revisions September 2016 (b) Fitting with a geometric distribution

Figure 10: Wikipedia revision of 1000 most popular pages (sept 2016), sorted by number of revisions. All

pages are shown in 10(a), while in 10(b) we consider the pages ranked between 130 and 800 and fit them

with a geometric distribution.

data. In particular, we consider a universe of objects whose size isM = 10000, a cache

size of C = 100 items, object popularity distributed with a Zipf whose shape param-

eter is s = 0.515, invalidation rates distributed geometrically with p = 4.013 · 10−3;

the popularity of a page and its invalidation rate are not correlated. We consider a

proactive invalidation scheme and we model the inter-time between subsequent inval-

idation events with an exponentially distributed random variable, following [22] and

[23]. As for the request inter-times, we used a Lognormal distribution with coefficient

of variation (CVr) equal to 4.

We first consider the case of a single server side LRU cache, receiving all request

21



Figure 11: Modeling (lines) and simulation (markers) of the cache hit probability for the first 20 most popular

Wikipedia pages, with and without proactive invalidation.

and invalidation events. The total requests rate is 187.77s−1 and the total invalidation

rate is 0.021 s−1, which correspond to the average rates of the Wikipedia views and

revisions in Sept. 2016. Figure 11 shows the cache hit probability versus the object

id using these rates. We report both the real case with invalidation and an ideal case

without invalidation. As we can see, the impact of invalidation in such server side LRU

cache is negligible, since the volume of invalidations is much smaller than the volume

of requests coming from all over the world.

In figure 12, we show how the average cache hit probability changes when the

request rate is reduced, hence the normalized invalidation rate γ is increased. The

lowest γ = 1.12 · 10−4(≈ 0.021/187.77) represents the previous case of a cache that

receives all the Wikipedia requests and invalidations. The figure shows that we have to

decrease a lot the requests rate, i.e., increase a lot γ, to produce a significant impact of

the invalidation mechanism on the caching performance.

4.3. Hierarchical Caching

Many network scenarios imply the presence of more than one cache in the end-to-

end path, where requests not served by a cache (i.e., cache misses) become the input of

22



Figure 12: Total cache hit probability vs. the normalized invalidation rate γ

the next cache of the path. For instance, this is the case of browser and edge caches, or

the case of cache networks such in Content Delivery Networks or Information Centric

Networks.

In this section, we analyze the impact of invalidation in a basic cache network

topology, namely a two level cache hierarchy formed by eleven caches: ten first level

caches connected to a single second level cache. Even if this is a simple scenario, it

allows deriving some general insights. The ten first-level caches are loaded with inde-

pendent lognormal request streams, whose popularity follows a zipf distribution with

α = 0.6. Per-object invalidation rate is equal to the per-object request rate observed

at a first level cache. Invalidation uses a proactive scheme. The analysis is performed

by means of simulations, but our model is still exploited to understand the impact of

invalidation also in the case of hierarchical caching.

Let us initially analyze the case without invalidation. It has been previously ob-

served that the effectiveness of a cache in a hierarchy decreases when going up in the

hierarchy [9][29]. Indeed, an LRU cache behaves like a filter of requests of popular

items, since many of them experience a cache hit and thus do not reach to the next

level cache. Consequently, the next level cache will see a request stream whose re-

23



lated object popularity is more flat and this implies a lower LRU cache hit probability,

similarly to what occurs if we loaded the cache with a Zipf with a lower α parameter .

We quantify these observations by using the rank-frequency plot in fig. 13 (Object

ID = rank) and the cache hit probability measurements reported in fig.14. Fig.13 shows

that the request frequency seen by a first level cache perfectly fits a zipf distribution,

i.e., it resembles a straight line, using a log-log scale. The request frequency seen by

the second level cache (without invalidation) is more flat, due to the reduction of the

number of requests of popular objects reaching the cache. Such a reduction of the

popularity skewness has a dramatic impact on the cache hit probability of the second

level cache, which is about 4.5 times smaller than the one provided by a first-level

cache, as shown in fig.14.

The same figures also show what happens when we insert the invalidation process.

Fig.14 shows that, as expected, the cache hit probability of a first-level cache decreases

but, surprisingly, the cache hit probability of the second level cache increases. The

reason of such a behavior is the result of two contrasting effects taking place at the

second level cache:

1. the presence of invalidation events tend to decrease the cache hit probability and

this reduction is proportional to the ratio γ between the invalidation rate and re-

quest rate (fig. 12);

2. since the cache hit probability of the first-level caches is lower, the filtering effect

that they have on request streams is lower and the popularity observed at the sec-

ond level tends to be more similar to the one observed at the first level. Therefore,

the popularity is more skewed and this tends to increase the cache hit probability.

In the considered case, the second effect prevails over the first one and we have a

cache hit improvement for the second level cache. Overall this implies that, albeit

not reported, the cache hit probability provided by the whole system in presence and

absence of invalidation are very close.

Finally, fig.15 shows how the ratio between invalidation and request rate (γ) changes

for the different caches. In our simulations, each first level cache is loaded with a re-

quest rate that is equal to the invalidation rate. It follows that the value of γ seen by a

24



first level cache is equal to 1. We have ten first-level caches thus, considering the cache

hierarchy as a closed system, the total γ is equal to 0.1, since the invalidation rate is

independent by the number of caches.

What is more interesting is the shape of γ seen by the second level cache. We

observe that if the cache hit probability of first-level caches was equal to zero, each

request would arrive to the second level cache and, consequently, the value of γ would

be equal to 0.1. The figure shows that by decreasing the object popularity (greater

Object ID) the value of γ tends to such limit value of 0.1, since the related cache hit

probability at the first level tends to zero. Conversely, for popular objects, the cache hit

probability at first level is higher, thus the request rate arriving to the second level is

lower and the γ of these objects is rather higher than 0.1.

Figure 13: Rank-frequency plot of a two level cache hierarchy, with and without proactive invalidations, first

level cache Rn logn with CVr = 4, In exp, γ = 1

5. Conclusions

In this paper, we extended the literature models of LRU caches to include in the

analysis the data invalidation case. Our model describes the cache hit probability for

25



Figure 14: Cache hit probability plot of of a two level cache hierarchy, with and without proactive invalida-

tions, first level cache Rn logn with CVr = 4, In exp, γ = 1

request and invalidation renewal processes having generic distribution, and for reactive

and proactive invalidation schemes.

The main result obtained with our model is that the invalidation worsens the cache

performance only when the invalidation rate is close or higher than the request rate,

at least in single, first-level, caches. This is not a common situation, as it does not

occur often in practice; indeed the number of expected requests is usually much higher

than the invalidation ones. Consequently, we conclude that LRU caching is a valuable

caching strategy also in presence of invalidation events.

Another result worthy of note is that temporal locality both in the request and in

the invalidation patterns improves the caching performance, although remarkable im-

provements only show up for temporal locality in the request pattern. Furthermore,

proactive schemes provide limited benefit versus the reactive ones, at least in the ob-

served absence of correlation between the popularity of an object and its invalidation

rate.

Finally, we show that, in the case of hierarchical caching, even a limited effect of

invalidation on first-level caches is sufficient to perceptibly affect the performance of

26



Figure 15: Ratio between invalidation and request rates, with proactive invalidations, first level cache Rn

logn with CVr = 4, In exp, γ = 1

second level/downstream caches.

Acknowledgement

This work was partly funded by the EU H2020 Bonvoyage and EU-JP H2020

ICN2020 projects.

References

[1] N. C. Fofack, P. Nain, G. Neglia, D. Towsley, Analysis of ttl-based cache net-

works, in: Performance Evaluation Methodologies and Tools (VALUETOOLS),

2012 6th International Conference on, IEEE, 2012, pp. 1–10.

[2] G. Hasslinger, K. Ntougias, F. Hasslinger, O. Hohlfeld, Performance evaluation

for new web caching strategies combining lru with score based object selection,

in: Teletraffic Congress (ITC 28), 2016 28th International, Vol. 1, IEEE, 2016,

pp. 322–330.

27



[3] L. Breslau, P. Cao, L. Fan, G. Phillips, S. Shenker, Web caching and zipf-like

distributions: Evidence and implications, in: INFOCOM’99. Eighteenth Annual

Joint Conference of the IEEE Computer and Communications Societies. Proceed-

ings. IEEE, Vol. 1, IEEE, 1999, pp. 126–134.

[4] R. Fagin, Asymptotic miss ratios over independent references, Jour-

nal of Computer and System Sciences 14 (2) (1977) 222 – 250.

doi:https://doi.org/10.1016/S0022-0000(77)80014-7.

URL http://www.sciencedirect.com/science/article/pii/

S0022000077800147

[5] P. Flajolet, D. Gardy, L. Thimonier, Birthday paradox, coupon collectors, caching

algorithms and self-organizing search, Discrete Applied Mathematics 39 (3)

(1992) 207 – 229. doi:https://doi.org/10.1016/0166-218X(92)90177-C.

URL http://www.sciencedirect.com/science/article/pii/

0166218X9290177C

[6] H. Che, Y. Tung, Z. Wang, Hierarchical web caching systems: Modeling, design

and experimental results, IEEE Journal on Selected Areas in Communications

20 (7) (2002) 1305–1314.

[7] C. Fricker, P. Robert, J. Roberts, A versatile and accurate approximation for lru

cache performance, in: Proceedings of the 24th International Teletraffic Congress,

ITC ’12, International Teletraffic Congress, 2012, pp. 8:1–8:8.

URL http://dl.acm.org/citation.cfm?id=2414276.2414286

[8] C. Berthet, Approximation of LRU caches miss rate: Application to power-law

popularities, CoRR abs/1705.10738.

URL http://arxiv.org/abs/1705.10738

[9] N. B. Melazzi, G. Bianchi, A. Caponi, A. Detti, A general, tractable and accurate

model for a cascade of lru caches, IEEE Communications Letters 18 (5) (2014)

877–880.

28



[10] G. Bianchi, A. Detti, A. Caponi, N. Blefari Melazzi, Check before storing: what

is the performance price of content integrity verification in lru caching?, ACM

SIGCOMM Computer Communication Review 43 (3) (2013) 59–67.

[11] M. Garetto, E. Leonardi, V. Martina, A unified approach to the performance anal-

ysis of caching systems, ACM Transactions on Modeling and Performance Eval-

uation of Computing Systems 1 (3) (2016) 12.

[12] E. Nahum, A. Iyengar, R. Tewari, A. Shaikh, Web caching, consistency, and con-

tent distribution, in: The Practical Handbook of Internet Computing, Chapman

and Hall/CRC, 2004.

[13] J. Cao, Y. Zhang, G. Cao, L. Xie, Data consistency for cooperative caching in

mobile environments, Computer 40 (4).

[14] W. Li, E. Chan, D. Chen, S. Lu, Maintaining probabilistic consistency for fre-

quently offline devices in mobile ad hoc networks, in: Distributed Computing

Systems, 2009. ICDCS’09. 29th IEEE International Conference on, IEEE, 2009,

pp. 215–222.

[15] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs, R. L.

Braynard, Networking named content, in: Proceedings of the 5th international

conference on Emerging networking experiments and technologies, ACM, 2009,

pp. 1–12.

[16] O. Bahat, A. M. Makowski, Measuring consistency in ttl-based caches, Perform.

Eval. 62 (1-4) (2005) 439–455. doi:10.1016/j.peva.2005.07.015.

URL http://dx.doi.org/10.1016/j.peva.2005.07.015

[17] S. Alouf, N. C. Fofack, N. Nedkov, Performance models for hierarchy of caches:

Application to modern dns caches, Performance Evaluation 97 (Supplement C)

(2016) 57 – 82, performance Evaluation Methodologies and Tools: Selected Pa-

pers from VALUETOOLS 2013. doi:https://doi.org/10.1016/j.peva.2016.01.001.

URL http://www.sciencedirect.com/science/article/pii/

S016653161600002X

29



[18] K. Fawaz, H. Artail, Dcim: Distributed cache invalidation method for maintaining

cache consistency in wireless mobile networks, IEEE Transactions on Mobile

Computing 12 (4) (2013) 680–693.

[19] J. Li, S. Ma, Characterization and modeling of video popularity, Inter-

national Journal of Communication Systems 27 (11) (2014) 2604–2615.

doi:10.1002/dac.2493.

URL http://dx.doi.org/10.1002/dac.2493

[20] M. Z. Shafiq, A. R. Khakpour, A. X. Liu, Characterizing caching workload

of a large commercial content delivery network, in: Computer Communica-

tions, IEEE INFOCOM 2016-The 35th Annual IEEE International Conference

on, IEEE, 2016, pp. 1–9.

[21] S. Li, J. Xu, M. van der Schaar, W. Li, Popularity-driven content caching, in:

Computer Communications, IEEE INFOCOM 2016-The 35th Annual IEEE In-

ternational Conference on, IEEE, 2016, pp. 1–9.

[22] J. Cho, H. Garcia-Molina, The evolution of the web and implications for an in-

cremental crawler, Tech. rep., Stanford (1999).

[23] J. Cho, H. Garcia-Molina, Estimating frequency of change, ACM Transactions

on Internet Technology (TOIT) 3 (3) (2003) 256–290.

[24] C. Fricker, P. Robert, J. Roberts, A versatile and accurate approximation for lru

cache performance, in: Proceedings of the 24th International Teletraffic Congress,

International Teletraffic Congress, 2012, p. 8.

[25] M. Dehghan, W. Chu, P. Nain, D. Towsley, Sharing lru cache resources among

content providers: A utility-based approach, arXiv preprint arXiv:1702.01823.

[26] L. Kleinrock, Queueing Systems, Vol. I: Theory, Wiley Interscience, 1975.

[27] V. Almeida, A. Bestavros, M. Crovella, A. de Oliveira, Characteriz-

ing reference locality in the www, in: Fourth International Confer-

ence on Parallel and Distributed Information Systems, 1996, pp. 92–103.

doi:10.1109/PDIS.1996.568672.

30



[28] R. Fonseca, V. Almeida, M. Crovella, B. Abrahao, On the intrinsic locality prop-

erties of web reference streams, in: INFOCOM 2003. Twenty-Second Annual

Joint Conference of the IEEE Computer and Communications. IEEE Societies,

Vol. 1, IEEE, 2003, pp. 448–458.

[29] S. K. Fayazbakhsh, Y. Lin, A. Tootoonchian, A. Ghodsi, T. Koponen, B. Maggs,

K. Ng, V. Sekar, S. Shenker, Less pain, most of the gain: Incrementally deploy-

able icn, in: ACM SIGCOMM Computer Communication Review, Vol. 43, ACM,

2013, pp. 147–158.

31


