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Abstract—The recent evolution of the Internet towards
“Information-centric” transfer modes has renewed the interest
in characterizing multi-cache systems, in which requests not
satisfied by a cache are forwarded to other caches. In this work,
we characterize the traffic statistics of the output (miss) stream,
via a simple but accurate approximate analysis for LRU caches
feeded by general “renewal” traffic patterns. In turn, we exploit
such output stream traffic pattern to analyze the performance
of the subsequent cache stage, and so on. The computational
efficiency of our model, joint with its ability to handle traffic
patterns beyond the traditional independent reference model,
permits simple and tractable assessment of cache hierarchies.

Index Terms—information centric networking; in-network
caching; analytical model; performance evaluation;

I. INTRODUCTION

Caching is a technique used to temporarily store data,
usually coming from an origin source, within a memory
quickly accessible from the intended user of that data. Caches
decrease access time and/or system load, as repeated requests
for the same data are served by a fast/local memory rather
than by a slower/remote source. Requests of a data item to
a single cache system result in a cache hit when that item
is found in the cache. In case of a cache miss, the request is
forwarded to the origin location of the item, or to a subsequent
cache along the path, when networks of caches are employed.
Multi-cache systems can have different topologies, including
cascade or hierarchical configurations. When caches are full,
a replacement policy chooses which item is to be cancelled
to make room for a new item, following a cache miss. A
popular replacement policy is the Least Recently Used (LRU)
algorithm, which discards the least recently used data item.

A thorough understanding of the performance and phenom-
ena involved in multi-cache systems is beneficial not only
in traditional web caching and content distribution network
scenarios, but also because of the proposed evolution of the
Internet towards a so called Information Centric Network
(ICN) [1]–[5]. An ICN provides users with contents exposed as
names, instead of providing communication channels between
hosts; the network transfers individual, identifiable content
chunks, instead of unidentifiable data containers (i.e., IP
packets). Content chunks are explicitly addressed by-name
allowing to perform content caching systematically and on-the-
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fly, potentially in every network node, and without the need to
deploy cumbersome tasks such as HTTP header parsing [6].

The main contribution of this letter consists in characteriz-
ing the miss stream of an LRU cache loaded by a requests
stream that follows a general renewal model, and exploiting
such miss stream model to analyze subsequent caching stages.
As shown by comparison with simulation results, our approach
is extremely accurate and computationally convenient. In
essence, our work provides a first step towards a tractable
analysis of multi-cache systems using a practical replacement
policy (LRU), and with traffic exhibiting temporal locality.

Indeed, most of the previous analytic work dealing with
caching [7]–[13] either assume exponentially distributed inter-
arrival times between requests, or employ the conceptually
analogous discrete model called Independent Reference Model
(IRM), which states that “requests for items occur in an infinite
sequence where the item indexes required on the i-th request,
for i > 0, are independent random variables on {1, 2, · · · , N}
with a common probability distribution” [14]. As shown in
[15], the IRM model fails to be realistic even when considering
the traffic natively offered by clients to an edge cache (i.e. with
no intermediary cache): real world traffic exhibits temporal
correlation properties that cannot be captured by IRM or
Poisson models. And the cache hit probability in presence of
temporal locality can largely differ from the one computed
with the IRM or Poisson assumption [16].

Moreover, even if we assume IRM traffic arriving at a
first edge cache, it was proven in [10] that the resulting
miss stream, which would be offered as input to a second
stage cache in a multi-cache system, is no more IRM, thus
preventing an accurate modeling of multi-cache systems. As
a matter of fact, previous models for network of caches rely
on IRM, but recognize it to be an approximation [8]. To the
best of our knowledge, the only model for multi-cache systems
(cascade and trees) that does not employ the IRM assumption
is [17], which instead uses a renewal traffic assumption similar
to ours, and to [16] for the single cache case. However, [17]
resorts to an idealized cache operation based on a time-to-live
(TTL) eviction policy, rather than the practical LRU policy
modeled in this paper.

II. MODEL

In this paper we assume, for modeling convenience, that
the storage capacity C is expressed as number of items that
may be stored therein. This assumption implies items of same
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size; extensions to uneven sizes can be addressed, e.g. as
discussed in [12], [14]. We assume that items are drawn
from an universe size of cardinality N . Items are conveniently
named using the index x, with x ∈ {1, 2, ..., N}. Unlike most
past works (e.g. [7], [12], [14]), we characterize the traffic
arrival process without relying on the so-called Independent
Reference Model. Rather, we model the system under more
general conditions, by assuming: i) a continuous time scale;
ii) inter-arrival times between two consecutive requests for
a same item being independent and identically distributed
random variables Tx, with general cumulative probability
distribution function Fx(t) and probability density function
fx(t). When needed, we denote the expected inter-arrival time
with E[Tx] = 1/λx =

∫∞
0

(1− Fx(t)) dt, being thus λx
the average arrival rate associated to item x. We assume
stationary arrivals, and consequent long-term item popularity
distribution qx = λx/

∑N
i=1 λi which, unless otherwise spec-

ified, we quantify with a Zipf (non restrictive, as our model
does not require to specify any popularity distribution).

We remark that the renewal i.i.d arrival process considered
in this paper appears sufficiently descriptive to capture a wide
range of temporal locality conditions and practical bursty-like
traffic patterns, for instance by choosing a random variable Tx
with relatively large coefficient of variation.

A. First-level cache with renewal input

The single-cache model presented in what follows extends,
to the renewal input traffic assumption, a clever approximation
originally introduced in [12] by Che et al. for IRM. Let us
focus on an item x. In most generality, its cache eviction time,
namely the time elapsing between the instant of time the item
is inserted (refreshed) in the cache, and the time in which
the item is evicted from the cache because other C distinct
items have been therein accommodated, is a random variable
with non unknown distribution. [12] suggests that, for practical
(reasonably large) cache sizes and population of items (request
rate for each given item being small with respect to the overall
traffic), this random variable can be approximated with a
constant, further independent of the specific item x considered.
Despite its simplicity, such an approximation is shown to be
extremely accurate, for IRM traffic, as indeed confirmed by
the further analysis and discussion provided in [14].

Under Che’s assumption of constant (but unknown) cache
eviction time tc, a very simple model can be devised as
follows. Indeed, if tc were known, the probability Hx that a
cache hit occurs for item x ∈ (1, N) would be trivially given
by the probability that the inter-arrival time is lower than tc,

Hx = P{Tx ≤ tc} = Fx(tc), (1)

resulting in a (weighted) average hit ratio for the whole cache

H =

∑N
x=1 λxHx∑N
i=1 λi

=

N∑
x=1

qxHx. (2)

In order to find tc, we remark that the arrival of a request for
an item x ∈ (1, N) is a renewal instant. Indeed, irrespective on
whether the item was earlier evicted by the cache (and thus the
new arrival is a MISS, and the item is reinserted) or the item

was still in the cache (and thus the new arrival is a HIT), at the
instant of arrival, under the LRU policy, the item is (logically)
placed at the top of the cache, and its future eviction time
does not depend on past events, but only on future arrivals.
On top of this renewal process, we thus conveniently define a
continuous-time Indicator process Ix(t), which is equal to 1
when the item x is stored in the cache, and 0 otherwise. From
the elementary renewal theorem,

E[Ix(t)]=
E[cache time per cycle]

E[cycle duration]
=

∫ tc
0

(1−Fx(t))dt

1/λx
(3)

where the numerator is the expected value of the random
variable defined by min(Tx, tc). Indeed, the time spent in the
cache in a considered cycle is either the inter-arrival time of
the next request for x, if this comes before the eviction time
tc, or it is bounded by tc. The unknown constant tc can now be
computed by imposing the condition that, at each time instant,
the cache must contain exactly C distinct items, i.e.,

N∑
x=1

Ix(t) = C →
N∑
x=1

E[Ix(t)] = C (4)

B. Characterizing the cache output stream
An interesting remark in [12] is that a cache can be viewed

as a low-pass filter with a cutoff frequency equal to the inverse
of the eviction time of the cache, tc. Here, filtering must be
understood in the sense that requests of an item occurring with
a frequency lower than 1/tc will result in a cache miss and
thus contribute to the miss stream. Higher frequency requests
will find the item in the cache and will not be forwarded
to the next cache. Since our model (1) is fully described by
the inter-arrival distribution of requests for each item, we can
push further such a filtering analogy. Indeed, we can look
at this filtering process on the time axis: if an arrival of a
request occurs later than tc from the previous one, it will
“pass through” the cache and contribute to the miss stream;
otherwise it will be filtered out.

More specifically, let T̄x be the r.v. describing the inter-
arrival time between two consecutive cache misses for a same
item x, and recall that Fx(t) and fx(t) are the CDF and PDF
of the original inter-arrival process Tx offered to the first level
cache. By construction, a cache miss is caused by a (last) inter-
arrival Tx > tc, possibly preceeded by 0 or more inter-arrival
times shorter than tc (hence filtered out as first level cache
hits). Hence, the PDF fx̄(t) of the r.v. T̄x can be expressed as
(for t > tc, otherwise zero):

fx̄(t) = u1(t− tc)fx(t) ∗
∞∑
k=0

{(1− u1(t− tc)) fx(t)}∗k (5)

where u1(t) is the unit-step function, the operator * denotes
convolution, {g(t)}∗k is the n-fold convolution of the (generic)
function g(t) with itself, with the usual convention that
{g(t)}∗0 yields the Dirac δ(t).

It is also useful to derive compact expressions for mean
and variance of T̄x. The mean value is trivially given by the
inverse of the miss stream frequency, i.e.,

E[T̄x] =
1

λx(1−Hx)
=

E[Tx]

1−Hx
. (6)
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The variance instead requires some more algebra and is
expressed in terms of the statistics of the original inter-arrival
time Tx by

V ar[T̄x] =
V ar[Tx]

1−Hx
− Hx(E[Tx]2 − 2E[Tx]E[Tx|Tx ≤ tc])

(1−Hx)2

(7)
Finally, dividing (7) by the the square of (6) yields the square
of the Coefficient of Variation

C2
x̄=

V ar[T̄x]

E[T̄x]2
=C2

x(1−Hx)+Hx

(
2E[Tx|Tx ≤ tc]

E[Tx]
−1

)
(8)

Note that this value depends on the cache filtering effect;
in other words, caching not only affects popularity, but also
individual flow statistics (e.g. the coefficient of variation). For
instance, if we assume exponentially distributed inter-arrival of
requests as input, (8) simplifies to 1− 2λxtce

−λxtc , showing
that the cache has a varying smoothing effect on the CV,
depending on the product λxtc, with smoothing maximum at
λxtc = 1, with a resulting CV =

√
1− 2/e.

C. Cache cascade

At this point it is easy to evaluate the performance of a
series of caches, where each cache is loaded with the output
stream the previous one. Since the arrival process at a cache is
the miss stream of the previous cache, to derive the probability
that a cache hit occurs for item x ∈ (1, N) it suffices to apply
(1) using (5) as probability distribution function. In the case of
more general cache networks, the offered traffic may lose the
renewal property, as it is the superposition of exogenous inputs
(e.g. miss streams of several neighboring caches). As shown in
[17] for TTL caches, the renewal assumption however appears
to be a reasonable approximation.

III. NUMERICAL RESULTS

In order to evaluate the accuracy our model we devised a
trivial MATLAB simulator of an LRU cache [18] that takes
as input the requests vector and outputs the per-item cache
hit probability and the missed stream. This stream is used to
estimate the miss sequence pdf and to feed the next cache.
Results are obtained using a cache size C = 1000 and a
total population of 106 content items. Although request inter-
arrivals per different items may follow different probability
distributions, for convenience we report results only for homo-
geneous distributions with frequency of requests proportional
to the popularity qx drawn from a Zipf distribution with
slope coefficient α = 0.8. We consider Exponential (Poisson)
inter-arrivals, to model a request stream that follows the
independent reference model (IRM) [14], and Lognormal or
Hiperexponential distributions reproducing a request stream
with temporal locality. In these latter cases, following [15], we
change the coefficient of variation (CV , defined as the ratio
between the standard deviation and the mean value) ranging
from 1 to 8 to affect the temporal locality.

We start with the analysis of a first-level cache. Fig. 1
shows the total cache hit probability for three distributions
of the request inter-arrival time versus CV (CV = 1 for the
Exponential case). Model (2) and simulations are compared,

Fig. 1. Miss stream popularity distribution

Fig. 2. Miss stream popularity distribution

Fig. 3. Probability density function (PDF) of an item on the miss stream

showing a quite perfect fit with a mean squared error between
the simulation points and those of the model in the order of
10−7 in the LogNormal case and 10−8 in the Hiperexponential
one. As expected, performance significantly depends on the
chosen inter-request distribution and improve for a greater CV,
i.e. greater temporal locality. This is yet another confirmation
of the finding in [10], that an error can be done by assuming
Poisson input streams to assess the performance of cache
networks fed by traffic with temporal locality [19]. Turning
now to second-level cache issues, Fig. 2 shows how the Zipf
popularity law of requests arriving to the first cache qx is
modified by the first-level cache: the popularity distribution of
the miss stream q′x = qx(1−Hx), shown for both exponential
and lognormal distribution of the inter-arrival process of
requests at the first cache, is a filtered replica of the ingress
one; the miss stream popularity q′x computed using the hit
probability Hx with our model (1) closely follows simulations,
with a mean squared error lower than 10−10.

Fig. 3 shows the probability density function of the inter-
arrival time of the most popular item (i.e., the first item of the
input stream, with a first-level cache of size 100) in the miss
stream, comparing simulations and model (5); the inter-arrival
process of item requests to the first-level cache is exponential.
The filtering effect is evident: the pdf is zero for inter-arrival



4

(a) Exponential input stream

(b) Lognormal input stream

Fig. 4. PDF of the output (miss) stream for different items; q′x ∗ 10−4 is the
(normalized) popularity at the output of the cache

Fig. 5. Per item hit-rate on 2nd cache for exponential distrib. on 1st cache

Fig. 6. Average cache hit rate on 1st and 2nd level caches vs. the cache size

times less than tc (93.2ms). Once again, fitting is remarkable,
with a mean squared error of 11.7 ∗ 10−7. Fig. 4 shows
the same performance measure for other items and for both
exponential and lognormal inter-arrivals at the first cache. Fig.
5 shows the items hit-rate on the first and second cache, with
an exponential distribution of the inter-arrival process at the
first cache. The difference between the two is noticeable and
confirms the need of suitable models for multi-cache systems.
Finally, Fig. 6 shows how our model perfectly succeeds in
evaluating average cache hit rate for different cache sizes.

IV. CONCLUSION AND FUTURE WORK

We conclude with three remarks: i) as noted in [14],
the approximation [12] works very well even beyond the

applicability scenarios stated by its own authors; in addition to
the results presented above, we followed a suggestion of [14]
and used the approximation [12] instead of the model [7] for
the single cache approximation used in [8] to evaluate cache
networks; the result was a 30th fold decrease of the computing
time in some exemplary cases, with a remarkable accuracy;
ii) the summation (5) converges very rapidly: few iterations
are enough to reach accuracy in the order of 10−6 in some
exemplary cases; iii) our model is general, as it allows using
any renewal distribution, tractable as it requires simple algebra
with low computing time, and accurate, as our results make
evident. A more thorough analysis of results, ensuing design
principles and applications, and explicit extension of the model
to cache networks, possibly considering the approximation
approach proposed in [17], is left for further work.
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