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Abstract - Information Centric Networking (ICN) is a network paradigm alternative to the classic host-

centric communication model: it provides users with content exposed as names, instead of providing 

communication channels between hosts. In this paper, we present a peer-to-peer application for live 

streaming of video content encoded at multiple bit rates. The application enables a small set of neighbouring 

cellular/Wi-Fi devices to increase the quality of video playback by using the Wi-Fi network to share the 

portion of the live stream downloaded by each peer via the cellular network. The application exploits the 

main functionalities of ICN: routing by name, in network caching and multicast delivery. Our work includes 

the implementation of a Java prototype of the application on a test-bed composed by Linux machines 

running the CCNx tool and streaming MPEG-DASH videos. We measured the performance of our solution 

and verified on the field that ICN simplifies the development of applications, as it provides built-in 

functions, which would be much more difficult to implement by relying on classical TCP/IP tools only. 

1 Introduction 

The classical Internet model relies on the IP host-centric paradigm, in which the network layer is 

used to transfer bits among hosts. This model is a very good fit for a set of current Internet 

applications, such as conversational (VoIP) or remote control (SSH) services, in which two specific 

hosts need to exchange data. However, most Internet applications nowadays use the network as a 

repository of contents, identified by names. And when these contents are requested by a very large 

number of users, their delivery on top of a host-centric IP network has required to introduce many 

incompatible, proprietary, content-oriented functionality, like name-based routing, caching, 

NOTICE: this is the author’s version of a work that was accepted for publication in Elsevier Computer Network Journal. Changes resulting from the publishing process, 
such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made 
to this work since it was submitted for publication. A definitive version is published in Elsevier Computer Network Journal, Volume 81, 22 April 2015, Pages 272-288, 
doi:10.1016/j.comnet.2015.02.018 



multicasting, data replication. For instance, Content Delivery Networks heavily exploit such 

functionality. 

The research community is proposing a new network paradigm, called Information Centric 

Networking (ICN), with the aim of harmonizing, simplifying and making more efficient the 

handling of content within the network [1]. ICN proposes an evolution of Internet core functionality 

to inherently support content-oriented services in any kind of network: wide and local area 

networks, mobile ad-hoc or mesh networks. ICN rethinks network services and distributes 

information (or contents) identified by names rather than setting up bit pipes between hosts 

identified by addresses. When a user expresses an interest for a content to the ICN Application 

Programming Interface (API), the underlying ICN functionality takes care of routing-by-name the 

content request towards the “closest” copy of the content with such a name (e.g. original or replica 

server or an in-network cache), and of delivering the content back to the requesting user. Different 

ICN architectures have been proposed so far [2]; however, most past works (and this paper) take as 

reference the Content Centric Network (CCN) architecture [3], which is also supported by a real 

implementation for Linux, MAC OS and Android devices, named CCNx [4]. A conceptually 

similar proposal to CCN is NDN, which is actively working to achieve analogous aims and has its 

roots in CCN [5]. 

Video streaming is one of the applications that motivated ICN and is expected to be one of the 

major sources of traffic for both fixed and mobile networks [6]. The video streaming community is 

rapidly adopting pull-based, adaptive schemes (e.g. MPEG-DASH [7]), which perfectly fit the ICN 

service model. Indeed, the HTTP GET primitive used to pull video segments can be easily replaced 

by a similar ICN GET primitive. Pull-based streaming schemes are used both for client-server and 

peer-to-peer streaming (PPS) applications [8]. 

In this paper, we present an ICN peer-to-peer application for live streaming of videos encoded at 

multiple bit rates (adaptive live video streaming). Peers are assumed to be a small set of 



neighbouring mobile cellular devices that cooperatively download a live video stream from the 

cellular interface and share downloaded video segments through a proximity channel (e.g. Wi-Fi 

Direct). The cooperation logic is designed to improve the playback quality perceived by a peer, with 

respect to the quality that the same peer could achieve by downloading the stream only by itself. 

The application exploits the CCN architecture [3]; as for video it uses the MPEG-DASH (Dynamic 

Adaptive Streaming over HTTP) streaming standard [7]. Our source code is freely available [24].  

Although our solution presents some improvements with respect to existing applications, our 

primary goal is not to propose a better performing application, but to show how to exploit an ICN 

API, namely the CCN API, to simplify the application development. Indeed, if we had used the 

plain TCP/IP API, we would have had the burden of implementing and orchestrating on top of it 

routing-by-name, caching and multicast functionalities, which instead are built-in in CCN. In 

addition, it is worth noting that while there are many papers dealing with core ICN challenges, e.g. 

caching, routing scalability, transport mechanisms, security, etc.[9], only few of them are concerned 

with practical experiences on application design [11][12][13][16]. 

Our solution and code [24] have been tested both in an emulated environment and in a real cellular 

environment with mobile phones served by HSDPA networks of different operators. 

2 Related works 

2.1 CCN overview 

CCN addresses contents by using unique hierarchical names that follow a URI syntax, e.g. 

ccnx:/foo.eu/video1. Long contents are split into chunks, uniquely addressed by names that contain 

the content name and the chunk number, e.g. ccnx:/foo.eu/video1/#x for the xth chunk of content 

ccnx:/foo.eu/video1 (in what follows we will omit the scheme identifier ccnx:/). To fetch a chunk, a 

receiver sends out an Interest message which includes the chunk name; then the network sends back 



the data within a Data message. Interest and Data messages are sent and received through any 

network interface available on a node; these interfaces, in the CCN framework, are called faces. 

 

Fig. 1 – CCN node 

Fig. 1 reports the main elements of a CCN node, namely the Forwarding Information Base (FIB), 

the Pending Interest Table (PIT) and the Content Store (aka the content cache). A CCN node uses a 

name-based FIB to route-by-name Interest messages using a prefix match logic. A FIB entry 

contains a name prefix (e.g. foo.com) and the identifier of the upstream faces on which the Interest 

message can be forwarded towards available sources (e.g. face 2 in case of Fig. 1). In case an 

Interest message matches more than one FIB entry, a forwarding strategy selects one or a set of 

them on which to relay the Interest. Similarly to IP forwarding, we assume that the CCN forwarding 

strategy selects the face that provides the longest prefix match. 

While the FIB is used to forward Interest messages, the PIT is used to forward back Data messages. 

During the Interest forwarding process, a CCN node leaves reverse path information <chunk name, 

downstream face list> in the PIT, where the downstream face list contains the list of faces from 

which the node received the same Interest. For instance, in case of Fig. 1 the node has received two 
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Interests for the content ccnx:/foo.eu/video1/#x from faces 0 and 1. Only the first received Interest 

is forwarded; the following Interests are not forwarded but their downstream face identifiers are 

added to the downstream list of the PIT. When an Interest reaches a node having the requested 

chunk, the node sends back the chunk within a Data message. A node can have the chunk either 

because it is temporarily available in its Content Store or because there is a local repository 

application connected through a local face that permanently stores the chunks of a given content. 

The Data message is routed on the downstream path by consuming the information previously left 

in the PITs. The Data message is relayed hop-by-hop on all the downstream faces, so inherently 

providing in-network multicast distribution. Traversed CCN nodes temporarily cache forwarded 

Data messages in their Content Store so inherently providing in-network caching functionality. 

To download a content, a receiver fetches all the related chunks by sending out a sequence of 

Interest messages. For flow control purposes, the receiver uses a receiver-driven approach [10] 

which consists in limiting the number of in-flight Interests through a congestion window (cwnd). 

The congestion window size may be constant or e.g. regulated by an Additive Increase 

Multiplicative Decrease (AIMD) congestion control mechanism.  

CCNx [4] is a Linux-based implementation of CCN, whose faces are UDP or TCP tunnels. The 

software is mainly composed of: ccnd that implements the node functionality of Fig. 1 by using C 

code; a set of applications/libraries of which the most used are ccnr, which is a permanent 

repository of contents, ccngetfile and ccnputfile used to pull a content from or to push a content in a 

repository respectively, and ccndc, which controls the CCN FIB.  

2.2 MPEG DASH  

MPEG-DASH (Dynamic Adaptive Streaming over HTTP) [7] is the first standard for adaptive 

video streaming. In MPEG-DASH a video is divided in segments. Each segment is available at 

different bit rates, uniquely identified by a URL, and usually contained in a file with a M4S 

extension. A related file, named Media Presentation Descriptor (MPD), contains meta-information: 



coding scheme, duration of segments, their playtime, resolutions and URLs. Video segments and 

related manifest files can be offered by an HTTP server. 

A client wishing to see a video, first downloads the MPD file and then pulls segments with a given 

bit rate using HTTP GETs. Since each segment has an independent URL, plain HTTP proxies can 

be used to provide in-network caching functionality. The rate selection strategy and the coding 

scheme are not defined by the standard and can be chosen as a function of the specific application 

environment. The download strategy is also left to the application developer. For instance, VLC 

uses a playout buffer storing a number of DASH segments and downloads a new segment whenever 

a segment is drained from the buffer by the decoding process, so keeping reserve segments in the 

buffer. 

Streaming MPEG DASH videos over CCNx is rather straightforward. Each segment can be stored 

in a CCNx repository (i.e. ccnr) with the name of the related segment URL. The ccngetfile library 

can be used to fetch each segment. The video client can be a modified version of an off-the-shelf 

client (e.g. in [31] authors propose to use an open-source DASH-over-CCN VLC Plugin) or an 

unmodified version of the client bound with an HTTP-to-CCN proxy that converts HTTP GETs to 

ccngetfile instances; the latter approach is the one used in this paper. 

2.3 Peer to Peer Video Streaming  

Peer to Peer video Streaming (PPS) is a popular approach to distribute live media over Internet. The 

proposed architectures can be roughly classified in two classes [8]: Push/Tree based and Pull/Mesh 

based.  

The Push/Tree based solution creates an overlay network among peers that has a tree shape; then 

the source pushes video data on such a tree. The Pull/Mesh based solution is inspired by the 

BitTorrent file sharing mechanism. A Tracker collects information about the state of the set of 

participating peers (aka swarm). A peer forms a mesh overlay network with a subset of peers, and 

exchanges video data with them. A peer announces which data items has available and requests 



missing data items announced by (or discovered from) connected peers. In case of live streaming, 

the involved data set regards only a recent window of data items published by the source. 

Pull/Mesh based PPS solutions are the best candidate for the ICN deployment, since most ICN 

approaches provide a pull-based API. In addition, Pull/Mesh based PPS are more robust than 

Push/Tree, and the Peer to Peer Streaming Protocol (PPSP) working group [26] is also proposing a 

Pull/Mesh based solution. 

Besides the delivering strategy, the use of multi-rate encoding schemes has also a high impact on 

the quality of experience of PPS solutions. Multi-rate encoding schemes can be roughly classified 

as with or without dependent substreams. The use of a multi-rate encoding approach with dependent 

substreams, like Multiple Description Coding (MDC) or H.264 Scalable Video Coding (SVC), 

clearly improves the peer to peer (P2P) sharing. Data fetched by peers reproducing a video at low 

quality can be re-used also by peers that are reproducing the video at higher quality. Conversely in 

the case of a multi-rate encoding approach with independent substreams, e.g. a set of independent 

H.264 AVC streams coded at different rates, only peers that are reproducing the video at the same 

rate can share data, which obviously reduces the chances of sharing content. However, practically, 

MDC and H264 SVC encoding schemes are more complex than AVC; as of today, they do not avail 

themselves of efficient and cheap hardware decoding and there is little (experimental) software 

support for PC/Laptop. Instead, AVC decoding is available off-the-shelf for any device, including 

mobile phones and tablets. 

2.4 Advances with respect to the state of art 

In this paper we design a Pull/Mesh based PPS application for cellular devices that are physically 

close to each other. The application has four distinguishing features: it is based on CCN; it is 

devised for live-streaming; it handles videos using the MPEG-DASH streaming format, encoded at 

multi-rates with independent streams (H.264 AVC); the P2P collaboration strategy aims at 

maximizing the video playback quality by concurrently exploiting the cellular downlinks of peers. 



This work is an evolution and a completion of three previous conference papers [15] [27] [28] of 

ours. Specifically, in [15] we proposed a CCN on-demand single-rate PPS application for mobile 

devices, whose goal is to offload the cellular interface; the considered streaming format was Apple 

Live Streaming. In [27] (and in its demo [28]) we proposed an early version of the application 

proposed in this paper that suffered of a long startup delay; for instance, in case of 3 peers and with 

2 seconds long MPEG DASH video segments, the startup delay was in the order of 20 seconds. In 

this paper we modify the cooperation strategy introducing the concept of parts and significantly 

reduce the startup delay at the cost of a limited bandwidth overhead. Limiting startup delay is of 

great importance. In [29] the authors report some measurements carried out on a wide data set 

provided by the Akamai client-side media analytics plug in; these measurements show that “viewers 

start to abandon the video if the startup delay exceeds about 2 seconds. Beyond that point, a 1-

second increase in delay results in roughly a 5.8% increase in abandonment rate”. In this paper we 

not only repeat the set of experiment performed in [27] by using the new P2P strategy but also 

introduce a new formulation to compute the tradeoff between startup delay and bandwidth 

overhead, increasing also the measurement set. 

As regards other papers on PPS, we note that in [13] the authors propose a CCN adaptive video 

streaming application called AMVS-NDN, which enables a mobile device either to use its own 

3G/4G connection or to connect via Wi-Fi to another mobile device to exploit its possibly better 

3G/4G link. The cooperation strategy behind this solution resembles a selection of the best cellular 

gateway, and thus the achievable video coding rate is bounded by the capacity of the downstream 

link of this single gateway. In [16] the authors set up a test-bed for video streaming over CCN, 

named NDN Video: the scenario is rather different from ours, as they consider a fixed network and 

a client–server interaction model, i.e. without P2P cooperation. The naming scheme, instead, is 

similar to ours. In [17] the authors propose a TCP/IP application dealing with on-demand single-

rate video streaming. In [18] the authors propose a BitTorrent approach for live streaming in a fixed 

network. The video is single-rate and the cooperation is aimed at offloading the server. Finally, we 



observe that our application could in part resemble the case of “multi-homed” video streaming 

[20][30], since we propose to concurrently use more (cellular) links to fetch data. However, in a 

multi-homed scenario, different links are hosted by the same device whereas in our case each 

(cellular) link is bound with a different device. Clearly many other papers on PPS exist (see e.g. 

[21] and its references) and the research topic is well-known. However, our focus is on ICN/CCN 

and P2P adaptive video streaming exploitation. 

3 The P2P Video Streaming Application 

3.1 Scenario 

As shown in Fig. 2, we consider a small set of neighbouring mobile cellular devices (from now on 

called mobile video peers, or simply peers) interested in streaming the same live video. For 

instance, we can imagine a situation in which passengers of a train are interested in watching news 

with their mobile phones, or alternatively a pay-per-view scenario in which all the mobile devices 

available in an apartment are concurrently used to improve the video quality of a stream offered by 

a content provider like Netflix. 

 

Fig. 2 - The application scenario 
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Each mobile device is connected to two different networks: a remote cellular network through the 

cellular interface (e.g., 3G), and a local full mesh one hop network, though a proximity wireless 

technology (e.g., Wi-Fi Direct). 

Usually the transfer capacity of the proximity link is much greater than the single cellular link of 

each peer: thus, the remote link towards the cellular network operator is the bottleneck of the 

system. Besides, the group of mobile video peers is quite small (e.g. five peers), and thus the 

scalability of the application with respect to the number of peers of the group is not a central design 

issue. 

3.2 Collaboration strategy at a glance 

The application logic resembles that of a BitTorrent or Pull/Mesh approach in which the video 

server (i.e. a CCNx repository) is the seeder and the mobile video peers are the lechers. When two 

or more peers are interested in the same stream, each peer downloads from the server just a subset 

of video segments, sharing them with other peers through the proximity interface. For instance in 

Fig. 2, peer 1 pulls segments 1 and 3 from the server, and shares them with peer 2 through a 

proximity link. Peer 2 carries out the same operation for segments 2 and 4.  

The tracker function is distributed. When another peer needs a video segment, it first checks the 

segment availability on the one-hop local mesh among peers; if the segment is found in a peer, it is 

downloaded from the proximity interface; otherwise it is downloaded from the server via the 

cellular interface. Being a live streaming, not all video segments are available from the beginning, 

and download operations are organized in periodical rounds, during which peers cooperate to 

download a window of latest-published segments (e.g. 3 segments). Moreover, peers communicate 

to each other their monitored cellular bandwidth and this information is used to select the bit rate of 

the video stream.  



In what follows we show how we implemented this strategy with CCN means. Even though CCN 

functionality within any network node can further improve performance (e.g. due to in network 

caching), our PPS application strictly requires CCN functionality only on peers and server. 

3.3 Video source, server and contents 

The video source produces the MPD and M4S files, i.e. video segments coded at different bit rates. 

These contents are inserted in a video server, which is a plain CCN repository. The MPD file is 

available on the source since the beginning of the video stream distribution, while the segments are 

inserted in the repository as they are created during the live streaming.  

Differently from [27] [28], we do not directly store MP4 files in the repository but, to reduce the 

initial playback delay, we fragment them in a number of parts and store the parts in the repository. 

It is not difficult to see that by choosing the fragmentation level (i.e. the number of parts per 

segment) it is possible to find a tradeoff between playback delay and application efficiency. The 

relationship among segments, parts and CCN chunks is sketched in Fig. 3 

  

Fig. 3 – Segment, parts and chunks 
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Information (VTI), which contains the sequence number of the last-produced video segment, its 

publishing time and the current time of the live stream.  

3.4 Naming scheme 

We chose a hierarchical name for all the contents. The names used for MPD, VTI, M4S, PRI and 

PSI information are reported in Tab. 1. PRI and PSI are signalling information that will be 

described later on.  

Content Name 

MPD ccnx://server-prefix/filename.mpd 

VTI ccnx://server-prefix/filename.vti 

M4S ccnx://server-prefix/filename/SN=X/PN=Y/BW=Z.m4s 

PRI ccnx://prd/server-prefix/filename/SN=X/PN=Y/BW=Z.m4s 

PSI ccnx://prd/server-prefix/filename/PS/IP 

 

Tab. 1 - Naming scheme 

The server-prefix is a legal DNS name identifying the video server. The filename identifies the 

specific live stream. The parameter X is the video segment number, Y is the part number and Z is the 

bit rate of the segment. As an example, part 4 of segment 145 coded at 100 bps of the video stream 

video1 provided by the foo.eu server is identified by the name 

ccnx://foo.eu/video1/SN=145/PN=4/BW=100.m4s.  

3.5 Video peer operation 

3.5.1 Peer join 

To join the video stream, the peer downloads the VTI file and gets synchronized with the video 

source, i.e. it is aware of the latest segment number published by the source, and of the source 

clock. Even if this synchronization is clearly not very precise, it is sufficient for our purposes.  



3.5.2 Collaboration strategy  

After joining, the peer fetches the MPD file and begins to cooperate with other peers to pre-fetch 

and play video segments. As shown in Fig. 4, a pre-fetcher module uses the CCN layer to 

concurrently download video parts from both the proximity and cellular interface. A peer first tries 

to download a missing part from others peers; if it is not available the peer will use the cellular 

interface. During the download of a part the peer can redistribute the downloaded chunks on the 

proximity interface to requesting peers in a multicast fashion. After the download, the part is also 

cached in the CCN content store, in order to be shared with other peers requesting it on the 

proximity interface. Thus, both multicasting and in-network caching capabilities of CCN are 

exploited. 

The search of missing parts on other peers is carried out by a proximity route discovery procedure 

discussed in section 3.5.4 below, and the selection of the interface for the download of a part is 

enforced by a dynamic management of the CCN FIB discussed in the section 3.5.3 below.  

 

Fig. 4 – Pre-fetch and play 
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fetch round starts and peers collaborate to download the pre-fetch window as fast as possible [18]. 

A pre-fetch round lasts for P Ts seconds, i.e. the time needed by the source to produce the P video 

segments of the next window, being Ts is the duration of a video segment (e.g. 2 sec). At the end of 

a round, peers estimate their cumulative downlink cellular bandwidth and compute the highest 

possible video coding rate that they can request during the next round. This rate selection procedure 

is described in section 3.5.5 below. 

As shown in Fig. 4, all downloaded parts are sent to an aggregation function that reassembles 

DASH segments and sends them to a playout buffer. The buffer is drained by a DASH video player 

(e.g. VLC) that starts the playback when the buffer contains 2P segments. Thus, the playout delay is 

2 P Ts. 

 

Fig. 5 - Time evolution during the 6th pre-fetch round 
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proximity interface. We assumed that each segment is divided in three parts, thus e.g. segment 10 is 

formed by 10.1, 10.2 and 10.3 parts. Moreover, to avoid the occurrence of duplicated cellular 

fetches (i.e. two or more peers downloading the same part from the cellular interface) peers 

randomly shuffle the sequence of parts to download during the round. 

3.5.3 Management of CCN FIB 

CCN selects the forwarding face of an Interest message using its FIB. Thus, by properly controlling 

the FIB entries with a routing strategy, it is possible to enforce the interface to be used on a per-

content basis. 

To download a part from the cellular interface, a peer inserts in its CCN FIB a cellular-route, 

pointing to the video server public IP addresses (e.g. discovered through DNS). As an example, Fig. 

6 reports the CCN FIB of two video peers, 1 and 2. For peer 1, we can see that there is a cellular-

route for part 3 of segment 11 pointing to the video server at the public address 

160.80.103.102:9695, via the cellular interface rmnet0. For peer 2, a similar cellular-route is 

inserted for part 1 of segment 10. 

If, instead, the desired part is found on the proximity network, a proximity-route is inserted in the 

CCN FIBs pointing to the neighbour peer. With reference to Fig. 6, we can see that there are two 

proximity-routes: for peer 1, the route is for part 1 of segment 10 and points to the IP address of 

peer 2 (192.168.0.2) via the proximity interface wlan0; for peer 2, the route is for part 3 of segment 

11 pointing to the IP address of peer 1 (192.168.0.1) via the proximity interface wlan0. 

Once the download has been completed, the cellular-route or the proximity-route is removed from 

the FIB, in order to limit the size of the information base. 



 

Fig. 6 - Example of CCN FIBs of two video peers 

3.5.4 Proximity route discovery 

The proximity route discovery allows a peer to discover the availability of parts on neighbour peers. 

It exploits the CCN Interest-Data interaction as follows. When a peer starts downloading a given 

part from the cellular interface, it also publishes a “signalling” content called Proximity-Route-Info 

(PRI), whose name is equal to the name of the downloading part with an added “prd/” control prefix 

(see Tab. 1). The data contained in the PRI is merely the IP address and CCNx port of the 

downloading peer. The PRI contents are stored in a fast repository inside the PPS application. As an 

example, the PRI published with the part ccnx:/foo.eu/video1/SN=1/PN=4/BW=100.m4s is 

ccnx:/prd/foo.eu/video1/SN=1/PN=4/BW=100.m4s. 

The PRI acts as a routing announcement that must be solicited. Peers continuously query for PRIs 

of missing parts with periodic Interest messages. These Interests are routed by the FIB on a 

preconfigured multicast address. As shown in Fig. 6, the FIB has an entry for the prd prefix towards 

a multicast address bound with the proximity interface wlan0 and also has an entry used for 

incoming prd Interest, which points to a local face connected to the internal PRI repository.  

FIB of video peer 2
Name prefix output‐face
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
ccnx:/prd internal
ccnx:/prd 224.0.0.1:9605 (wlan0)
ccnx:/foo.eu/video1/SN=10/PN=1/BW=100.m4s    160.80.103.202:9695 (rmnet0)
ccnx:/foo.eu/video1/SN=11/PN=3/BW=100.m4s    192.168.0.1:9695 (wlan0)
…

FIB of video peer 1
Name prefix Output face
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
ccnx:/prd internal
ccnx:/prd 224.0.0.1:9695 (wlan0)
ccnx:/foo.eu/video1/SN=11/PN=3/BW=100.m4s    160.80.103.202:9695 (rmnet0)
ccnx:/foo.eu/video1/SN=10/PN=1/BW=100.m4s    192.168.0.2:9695 (wlan0)
…



Once a peer retrieves a PRI, it inserts the proximity-route in the FIB and then immediately starts to 

download the interested video part by requesting it to the CCN layer. 

It is noteworthy that when a peer starts to fetch a part from another peer, the latter peer may still be 

downloading that part from its cellular interface. In this case, this peer will become the splitting 

point of a multicast tree, because as soon as it receives CCN chunks from the cellular interface, they 

will be relayed both to the local pre-fetcher and to all other peers that have established a proximity 

route for the part. In case of late discovery, a same (but delayed) distribution result is obtained 

thanks to the CCN content store of the video peer. 

3.5.5 Video coding rate selection algorithm 

At the beginning of a new pre-fetch round, each peer computes the bit rate of the video parts that 

are going to be downloaded in the round. The selected bit rate is the highest possible one that avoids 

emptying the playout buffer, i.e. video freezes. This evaluation is made considering: i) the available 

video coding rates BWh , where h is a bit rate index; and ii) the net rate Ci that each peer may obtain 

on the cellular interface, i.e. the maximum download rate seen above the CCN layer. 

We observe that the straightforward approach of selecting the first available bit rate below the 

cumulative net cellular bandwidth Ctot =  Ci could not be effective. Indeed, a peer can download an 

integer number of parts, but not fractions of them, and all peers must download all parts of a pre-

fetch window within the round period, in order to avoid starving the playout buffer. We refer to 

these constraints as quantization constraints and the bit rate index h* of the video parts downloaded 

during the round #k+1 is derived by solving the following constrained maximization problem: 

௜,௛ܬ ൌ floor ൤
௜ሺ݇ሻܥ ܣ

ܤ ௛ܹ
൨ ሺ1ሻ
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                   ௛
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minሺ஺,ெሻ

௜ୀଵ
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The parameter Ji,h in eq. (1) represents the integer number of video parts that a peer can download 

by using the cellular interface during a pre-fetch round, assuming that parts are coded with a 

constant bit rate BWh.. The parameter Ci(k) is the net cellular capacity estimated by peer i at the end 

of round k. The parameter A is the number of parts forming the pre-fetch window. The 

maximization of eq. (2) yields the index h* of the highest video coding rate such that it is possible to 

download all parts of the pre-fetch window within the round duration. The parameter M is the 

number of peers. In what follows, we use the symbol BW to indicate the selected video coding rate 

BWh*.  

We note that the quantization constraints may prevent to exploit all the cumulative net cellular 

capacity Ctot. For instance, the sum in eq. (2) is limited to min(A,M), since at most A peers can be 

exploited to download A parts from the cellular interface; thus the cellular capacity of the remaining 

peers is not used. In addition, even with A>M, the solution of eq. (2) may prevent some slow peers 

to download parts from their cellular interface; indeed, only peers that have Ji,h>0 will carry out 

remote downloads, while peers with Ji,h=0 will not, because these peers will be unable to download 

even a single part within the pre-fetch round duration. We analyse the inefficiency deriving from 

the quantization constraints in the next section. 

To solve eqs. (1) and (2), a peer should know the set of available coding rates BWh and all the net 

cellular capacities Ci(k) for 1 ≤ i ≤ M. If a video has L possible coding rates, a peer discovers these 

rates BWh (1≤h≤L) from the MPD file fetched during the join operation. The shared knowledge of 

Ci(k) requires the ith peer to compute its own Ci(k) and to distribute it to other peers. To compute 

Ci(k), a peer monitors the download rate above CCN during round #k and either directly uses the 

observed value or computes Ci(k) by injecting the observed value in a smoothing average algorithm 

(which we did in our implementation). The computed value is distributed by the peer as a named 

content, called pre-fetch status information (PSI). The naming scheme used for the PSI is reported 

in Tab. 1, where the parameter IP is the IP address of the providing peer. Using the information 



contained in the PRIs, at the end of a round, a peer has a list of the IP addresses of peers that 

participated to the cellular download and can pull the PSI of these peers through traditional CCN 

Interest-Data interaction. In this way, all peers will have the same set of Ci(k) and compute the same 

value of h*. 

4 Dimensioning 

The PPS application has two main configuration parameters, namely the number of parts A forming 

the pre-fetch window and the number of parts F per segment. These parameters should be carefully 

dimensioned, both to efficiently use the cellular radio resources and to limit the initial playout 

delay.  

4.1 Efficiency and playout delay 

We measure the efficiency E of the PPS application as the ratio between the video coding rate BW 

and the overall gross cellular capacity Rtot provided by downlinks of the peers.  

ܧ ൌ ௧௢௧ܴ/ܹܤ  ൌ ܸ ܶ        ሺ3ሻ 

The efficiency E is lower than one for two reasons:  

i) below the CCN API,  the CCN/UDP/IP stack obviously introduces control overheads. 

Consequently, the overall net cellular capacity Ctot available at the CCN API is lower than 

Rtot of a factor V, named control efficiency; i.e. Ctot = V Rtot. In appendix I we trivially show 

that the control efficiency V has an inverse proportionality with the number of parts per 

segment F. In facts, the greater is F, the smaller is the byte length of a part and the higher is 

the control overhead. Moreover, for a fixed value of F, the control efficiency increases at the 

increasing of the overall gross cellular capacity Rtot  since it is possible to select higher video 

coding rates; therefore the video parts have a greater byte length and a lower control 

overhead.    



ii) upon the CCN API, the quantization constraints of the rate selection algorithm (see eqs. 1,2) 

may prevent the complete use of the overall net cellular capacity Ctot.  Therefore, even in the 

ideal case of a video coding providing any possible video coding rate, the achievable video 

coding rate BW obtained through the cooperation could be lower than Ctot of a factor T, 

named rate selection efficiency; i.e. BW = T Ctot. In appendix II we analyse the behaviour of 

T versus A, in case of M of peers with net cellular rates Ci that follows a uniform or 

Gaussian distribution. We find out that T strongly depends on the ratio A/M and to achieve a 

higher efficiency a greater value of A/M is required. Moreover, T mildly depends on the 

heterogeneity of the downlink rates of the peers and increasing the heterogeneity slightly 

worsen the rate selection efficiency.  

As discussed in section 3.5.2, the playout delay D is equal to the duration of 2P segments, where P 

is the integer number of segments of the pre-fetch window. Thus the playout delay can be written 

as: 

ܦ ൌ 2 ܲ ௦ܶ ൌ 2 
ܣ
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where the ratio P=A/F is the integer number of segment forming the pre-fetch window.  

4.2 Dimensioning with delay constraint  

We observe that playout delay and efficiency are contrasting performances. Indeed, by increasing F 

or by decreasing A, the delay decreases but the efficiency decreases as well. In what follow we 

discuss a dimensioning approach that gives priority to the delay. It consists in searching the couple 

(A,F) which assures a given playout delay D and, secondarily, a good efficiency E. Clearly, other 

dimensioning approaches are possible, e.g. by giving priority to the efficiency rather than to the 

playout delay. 

Eq. 4 imposes that, to obtain a given delay D, the length of pre-fetch window A should be equal to: 
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Consequently, only the parameter F can be changed, to find a good value of the efficiency E. We 

analyse the impact of F on E under the constraint of eq. 5 by using a Matlab simulator. We assume 

to have M peers. The jth peer has a gross cellular capacity equal to Rj constant over the time and 

equal to R+jR, where R is a constant rate (e.g. 1 Mbit/s) independent of j and jis a sample of a 

random variable. For each value of F, the simulator performs 2000 trials. At the end of the 

simulation, the final value of E is computed as the mean of the 2000 E values of the single trials. 

The size of the 95% confidence interval is below 1% of the mean value. 

We carry out simulations in case of following uniform and Gaussian distributions with zero 

mean. In the uniform case we consider two possible ranges of the distribution, namely ± 0.2 and ± 

0.8. In Gaussian case we consider two possible values of the standard deviation namely2= 0.2 

and 2= 0.8. We only report the case of Uniform distribution in the interval ± 0.8, since the derived 

conclusions are valid also in the other cases.  

Fig. 7, Fig. 8 and Fig. 9 report the efficiency E = T V in case of D = 4Ts for an average gross 

cellular capacity R per peer equal to 200 kbps, 500 kbps, 1Mbps respectively. We consider the case 

of 3, 5 and 8 peers. We also consider a configuration with a single peer, since also in this extreme 

case the PPS application should provide valuable performance. Fig. 10, Fig. 11 and Fig. 12 report 

the same results when D = 2Ts. 

In case of a single peer, the rate selection efficiency T is obviously equal to one. Therefore, the 

increase of F only implies a penalty in the control efficiency V and thus a decrease of the efficiency 

E = T V. In case of more peers, the rate selection T efficiency is lower than one but improves 

increasing F (i.e. A from eq. 5).  Fig. 7, Fig. 8 and Fig. 9 show that the gain in the rate selection 

efficiency T obtained increasing F overcomes the control efficiency loss, and the efficiency tends to 

increase at the increase of F. 



We also note that for a given value of F, having peers with a higher gross cellular capacity R 

improves the efficiency E since higher video coding rate (BW) will be used, which improves the 

control efficiency. 

Overall, we observe that a value of F between 15 and 20 provides efficiency closes to the maximum 

value in most of the considered scenarios. Further increasing F can excessively penalize the case of 

a single peer.  

Fig. 7 – Efficiency E versus number of parts per 
segment F, uniform distribution ± 0.8, average 

gross cellular capacity per peer R = 200 kbps, 
playout delay D = 4 Ts 

 
Fig. 8 - Efficiency E versus number of parts per 
segment F, uniform distribution ± 0.8, average 

gross cellular capacity per peer R = 500 kbps, 
playout delay D = 4 Ts 

Fig. 9 – Efficiency E versus number of parts per 
segment F, uniform distribution ± 0.8, average 

gross cellular capacity per peer R = 1 Mbps, 
playout delay D = 4 Ts 

Fig. 10 – Efficiency E versus number of parts per 
segment F, uniform distribution ± 0.8, average 

gross cellular capacity per peer R = 200 kbps, 
playout delay D = 2 Ts 



Fig. 11 – Efficiency E versus number of parts per 
segment F, uniform distribution ± 0.8, average 

gross cellular capacity per peer R = 500 kbps, 
playout delay D = 2 Ts 

Fig. 12 – Efficiency E versus number of parts per 
segment F, uniform distribution ± 0.8, average 

gross cellular capacity per peer R = 1 Mbps, 
playout delay D = 2 Ts 

5 Experimental assessment 

5.1 The prototype 

We implemented a Linux-based prototype of the PPS application using Java and plain CCNx 0.8.1. 

We used VLC 2.1.0 as MPEG-DASH video client; the interaction between client and application is 

made in a proxy-style, using a local HTTP connection. Fig. 13 shows the main software 

components. VLC is connected to a local HTTP proxy module that fetches video segments from the 

playout buffer of the PPS application. The buffer is filled by the pre-fetch and aggregation 

operations, which are also supported by PRI discovery and video coding rate selection. Pre-fetch, 

rate selection and discovery use CCNx to publish and download information; the discovery 

functionality also changes the configuration of the CCNx FIB. It is noteworthy that also the VLC 

client has a video coding rate selection algorithm, whose results may be different from the bit rate 

selected by the ICN PPS application. However, we found out that VLC is insensitive of the actual 

coding rate of segments returned to an HTTP GET, and only verifies that the HTTP answer contains 

the same URL of the requested segments. 



 

Fig. 13 – Software components 

5.2 Test-bed setup 

We verified the effectiveness of our application in the test-bed configurations reported in Fig. 14 

and Fig. 15. Peers are Linux laptops connected to each other via a Wi-Fi ad-hoc full mesh at 54 

Mbps, which represents the proximity interface. The video server is a fixed Linux PC on the public 

Internet. All the devices are located in our University laboratory. Peers are connected to the video 

server either through an emulated cellular connection (Fig. 14) realized with an Ethernet link with a 

rate controlled by the Linux TC tool, or through a real HSDPA cellular connection (Fig. 15), 

offered by a USB-tethered Android mobile phone.  

We used the MPEG-DASH version of the movie “Big Buck Bunny” [32]. The resolution of the 

video is 480p, with 270 segments, each of them lasting Ts = 2 sec; the available video coding rates 

are fourteen, ranging from 100 kbps up to 4.5 Mbps. We uploaded the movie on a plain CCNx 

repository (i.e. the video server) splitting up each segment into 16 parts. We used a pre-fetch 

window length A of 48 parts, i.e. P=3 segments. 
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Fig. 14 – Test-bed setup with emulated cellular 
connections 

  
 

Fig. 15 – Test-bed setup with real HSDPA 
cellular connections 

 

5.3 Tests with emulated cellular connections 

Fig. 16 reports the cumulative net cellular capacity Ctot and the video coding rate BW versus time in 

case of 2, 4, 8 and 10 peers. The gross cellular capacities Ri of peers are homogeneous and 

configured with Linux TC tool at 500 kbps. The ticks in the Y axis of the plot indicate actual 

available video coding rates (i.e. 200, 350, 500, 700, ...). 

This plot confirms the effectiveness of the PPS application in improving the video quality by 

exploiting the cellular capacity of peers. Indeed, the higher the number of peers, the higher the 

selected video coding rate BW. We note that the net cellular capacity Ci per peer is roughly equal to 

380 kbps, i.e. 76% of the gross cellular capacity Ri =500 kbps enforced with the Linux TC1. We 

observe that the selected video coding rate (BW) may not be the one immediately below the 

cumulative net bandwidth Ctot. For instance, in case of 10 peers the video coding rate immediately 

below Ctot is 3400 kbps, but the rate selection algorithm chooses BW = 2800 kbps. This is due to the 

floor operation of eq.1, which lowers the rate selection efficiency T. In other tests, we have removed 
                                                 

1 According Fig. 22 of Appendix I, we expect a control efficiency V of 82% rather than 76%. The additional 6% comes from an underestimation of 

the net cellular capacity due to the Java processing delay, which is not taken into account in eq. 8 
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the floor operator of eq. 1 and the rate selection algorithm has chosen the video coding rate closer to 

Ctot, but the video streaming has suffered of some playback freezes, which were not observed when 

using the floor operator. 

Fig. 16 – Cumulative net cellular capacity Ctot and 
video coding rate BW during video playback in 

case of 2,4,8,10 peers with gross cellular capacity 
per peer R = 500 kbps 

Fig. 17 – Percentage of PSI/PRI control overhead 
during video playback in case of 2,4,8,10 peers 

with gross cellular capacity per peer R = 500 kbps 
 

 

Peer [kbps] 

N. Peers PSI PRI Video 

2 0.241 11.8 272 

4 0.352 10.32 774 

8 0.546 8.4 1987 

10 0.661 8.112 3085 

Tab. 2 – Average bitrate transmitted by one peer during video playback in case of 2,4,8,10 peers with 
gross cellular capacity per peer R = 500 kbps 

Tab. 2 reports the average bit rate transmitted by a peer, which includes both CCN Interest and Data 

messages sent by the peer. We measured the amount of bit rate related to the video traffic and to the 

CCN-oriented signalling, which is due to the exchange of PSI and PRI signalling messages. The 

VTI (Video Timing Information) signalling message exchange occurs only at the peer joining, thus 

its traffic impact is negligible. The bit rate related to the PSI signalling linearly increases with the 

number of peers. Indeed, at the end of each pre-fetch round a peer sends a PSI message to all other 



peers through a unicast CCN Interest-Data interaction. The bit rate related to the PRI signalling 

decreases with the number of peers. Indeed, at the start of a pre-fetch round, each peer sends a 

number of multicast PRI Interests equal to the number of video parts of the round. During the pre-

fetch round, a peer replies with a multicast PRI Data message if the peer has fetched the related 

video part from the server. Increasing the number of peers implies that each peer fetches fewer 

video parts from the server and so the peer generates fewer PRI Data messages per round, while the 

number of PRI Interest messages per round remains constant. 

Fig. 17 reports the PSI (PRI) control overhead, measured as the ratio between the PSI (PRI) and the 

video bit rate of a peer (see Tab. 2). We observe that both PRI and PSI control overheads are rather 

limited, up to 4.25% and they decrease when the number of peers increase. 

Fig. 18 shows the dynamic behaviour of the PPS application when peers join and leave, in case of 

five peers with gross cellular capacities per peer R = 500 kbps. As expected, when a peer joins or 

leaves, the video coding rate BW promptly increases or decreases, respectively.  

Fig. 18 – Cumulative net cellular capacity Ctot and 
video coding rate BW during video playback in 
case of 5 peers with gross cellular capacity per 

peer R = 500 kbps 

Fig. 19 – Number of segments downloaded from 
cellular and Wi-Fi interface in case of 3 peers 

(P1,P2,P3) with different gross cellular capacity 
per peer R, reported in parentheses 

 



Fig. 19 reports the number of segments downloaded from the cellular interface and from the 

proximity link (Wi-Fi) in case of three peers (P1, P2 and P3) with three different configurations of 

their gross cellular capacity. The figure shows that the consumption of cellular capacity is greater 

for peers with higher capacity. Indeed, the application tends to exploit all the available cellular 

capacity to improve video quality. For instance, in the lower plot, the third peer, P3, has a gross 

cellular capacity equal to 800 kbps and its cellular capacity consumption is about twice the one of 

P1, which has a gross cellular capacity equal to 400 kbps. 

5.4 Tests with real HSDPA connections 

Fig. 20 reports the video coding rate (BW) in case of five collaborating peers connected to the video 

server with real HSDPA connections (Fig. 15), provided by the Telecom Italia Mobile operator. The 

figure reports also a sampling of the cumulative net cellular capacity Ctot measured by the peers. 

The streaming starts with just one video peer; the other four peers join one by one and then leave in 

the opposite order. 



Fig. 20 - Cumulative net cellular capacity Ctot 
and video coding rate BW during video playback 
in case of 5 peers with real HSDPA connections  

Fig. 21 - Cellular (HSDPA) and proximity (Wi-Fi) 
received gross traffic 

 

 
Measurements are gathered from peer 1 (a Samsung Galaxy S II), which is the video peer present 

for the whole duration of the test. We can observe that, along with the insertions of video peer 2 (a 

Samsung Galaxy S3 Mini), of video peer 3 (a Google Nexus 5), of video peer four (an HTC One) 

and of video peer five (a Motorola Moto G) at seconds 70, 130, 190 and 240, respectively, both the 

cumulative net cellular capacity Ctot and the video coding rate BW follow the same behaviour. The 

same happens when video peers 5, 4, 3 and 2 leave the streaming, at seconds 360, 410, 480 and 500, 

respectively. Fig. 21 reports the measurement of gross traffic (including CCN/UDP/IP protocol 

overhead) received on both the HSDPA and Wi-Fi interfaces by all five video peers. All video peers 

exploit the cellular interfaces almost continuously. The “pulsing” behaviour is due to the round 

structure. The selected video coding rate is lower than the net cellular capacity (Fig. 20), thus the 



download of the segments of the round finishes a little before the round end and the use of HSDPA 

bandwidth drops to zero until the start of the next round.  

6 Conclusions 

We presented an ICN-enabled peer-to-peer application for the adaptive live streaming of videos 

encoded at multiple bit rates to a small set of neighbouring mobile cellular devices. We used the 

CCN architecture, in combination with the MPEG-DASH (Dynamic Adaptive Streaming over 

HTTP) streaming standard. We showed how video peers can cooperatively download a video 

stream and share it on a proximity channel, thus improving the video stream quality. We 

implemented a prototype of the application using the CCNx tool and Java. The open-source code 

and more detailed explanation on how to reproduce out test can be found in [24]. 
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Appendix I: analysis of the control efficiency 

The transport of a video segment over CCN implies an IP/UDP/CCN control overhead, and 

fragmenting a video segment in F parts tends to increase the amount of overhead. To analyse 

this effect, we consider a video with constant coding rate BWh. In this case, the bit length Lh of each 

part can be written as 

௛ܮ ൌ
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ܨ
ሺ6ሻ 

where Ts is the time duration of a segment. The number of CCN Data messages required to 

transport a part can be written as: 
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where Ds is the payload size of the CCN Data message, e.g. 4096 bytes. Each Data packet has: a 

CCN control information, whose size CCNh is in the order of 630 bytes (measured from CCNx 

traces and mostly due to security data); an UDP header of 8 bytes; a number of 20 byte IP headers 

equal to the number of involved IP packets that, for simplicity, we approximate equal to 4, 

independently of the Data packet payload length. Thus, the number of control bytes per part is equal 

to 718 Nh bytes and the control efficiency V can be written as: 
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Fig. 22 reports the control efficiency V versus the number of segment per parts F, for different 

values of the video rate BW. The upper bound of the control efficiency, namely 0.8509, is achieved 

when a part can be transported by Data messages having maximum payload length (e.g. 4096), i.e. 

when the ceil operation in eq. 7 is not influent. Conversely, the higher the percentage of Data 

messages not completely full, the higher the control overhead and the lower the control efficiency.  



For a given value of F, in case of a stream with high bit rate (e.g. BW = 3Mbps), a part is so long 

that the percentage of Data messages not completely full is rather limited; thus, the control 

efficiency is quite close to its upper bound. In case of low bit rates (e.g. BW = 200kbps), a part is 

composed by few bytes, thus the percentage of Data messages not completely full can be greater 

and the control efficiency decreases.  

For a given video coding rate BW, increasing the number of parts per segment F, may initially 

increase or decrease the control efficiency V, depending on the impact of F in the ceil operation of 

eq. 7. However, by increasing F above BW Ts / Ds, the length of a part becomes lower than the Data 

message maximum payload length Ds and thus the control efficiency starts to monotonically 

decrease. For instance, in case of BW=200 kbps this occurs for F>12.  

 

Fig. 22 – Control efficiency V versus number of segment per parts F 

for different video rate BW, Ts = 2s 

  



Appendix II: analysis of the rate selection efficiency 

In this section we evaluate the function T(A) in case of M peers. The jth peer has a cellular net 

capacity Cj constant over time and equal to C+jC, where C is a constant rate (e.g. 2 Mbit/s) 

independent of j, while jis a sample of a random variable. This configuration represents a scenario 

in which participating peers have values of downlink cellular capacity distributed around a central 

value C. For instance if follows a uniform distribution in the interval the net cellular 

capacities of involved peers can vary up to the 80% with respect to a central value C. 

To derive the function T(A) we use a Matlab simulator that for each value of A: randomly generates 

the cellular net capacity Cj of peers; sets BWh = T Ctot in the eq. 1; and searches for the highest value 

of T satisfying the following condition:  
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We observe that since Cj = C+jC, the random variable ܬ௜,௛ is equal to ܣ ሺ1 ൅ δ௜ሻ ܶ ∑ δ௝௝  ⁄ and thus 

the maximization of eq. 9 is independent from the constant rate C. 

For each value of A, the simulator performs 2000 trials. At the end of the simulation, the final value 

of T is computed as the mean of the 2000 T values of the single trials. The size of the 95% 

confidence interval resulted to be below the 1% of the mean value. 



Fig. 23 – Rate selection efficiency T vs normalized 
pre-fetch window, uniform distribution± 0.2 

and ± 0.8 

 Fig. 24 – Rate selection efficiency T vs 
normalized pre-fetch window, Gaussian 

distributionwith mean 0, 2=0.2 and 2=0.8 
 

Fig. 23 reports the rate selection efficiency T versus the length of the pre-fetch window A 

normalized to the number of peers M, in case of with uniform distribution ranging in the interval 

[-0.2, 0.2] and in the interval [-0.8, 0.8]. We observe that to achieve a higher rate selection 

efficiency, a greater value of A/M is required. This means that the more we want to exploit the 

cellular resources, the longer the pre-fetch window has to be. We also point out that an increase of 

the number of peers M requires a linearly proportional increase of the pre-fetch window length, to 

achieve the same rate selection efficiency T. For instance, Fig. 23 shows that to achieve T close to  

0.9 we need A/M equal to about 4, thus A=12 in case of 3 peers and A=24 in case of 8 peers. This 

implies that for a given value of A the rate selection efficiency decreases by increasing the number 

of peers M. 

Fig. 23 also shows that for a fixed value of A, an increase in the variation range of random variable 

 from 0.2 to 0.8 decreases the rate selection efficiency T; i.e. increasing the heterogeneity among 

peer cellular capacities worsen the rate selection efficiency T. 



Fig. 24 show results in case of following a Gaussian distribution with zero mean and 2 equal to 

0.2 and 0.8, respectively. We do not observe significant differences with respect to the performance 

results obtained with a uniform distribution of   

  



Appendix III: definition of parameters 

Parameter Definition 

A Number of video parts of a pre-fetch window 

BWh Available hth coding rate of a DASH video stream 

BW Video coding rate selected by the rate selection algorithm 

Ci Net cellular capacity of peer i, i.e. cellular bit rate available above the CCN API 

Ctot Cumulative net cellular capacity, i.e. sum of the net cellular capacities of the peers 

CCNh Size of the CCN header of a Data message 

Ds Size of the payload of a Data message 

E Efficiency of the PPS application, i.e. ratio between the maximum achievable video 

coding rate BW and the overall gross cellular capacity Rtot 

F Number of parts per segment 

Lh Length of a part encoded at the BWh coding rate 

M Number of mobile video peers 

Nh Number of CCN Data messages required to transport a video part encoded at the BWh 

coding rate 

P Number of video segments of a the pre-fetch window 

Ri Gross cellular capacity of peer i, i.e. cellular bit rate available below the IP layer and 

used to transport the IP/UDP/CCN payloads and headers 

Rtot Cumulative gross cellular capacity, i.e. sum of the gross cellular capacities of the peers 

T Rate selection efficiency, i.e. ratio between the maximum achievable video coding rate 

BW and the overall net cellular capacity Ctot 

Ts Playback duration of a segment 

V Control efficiency, i.e. ratio between net and gross cumulative cellular capacities 



Appendix IV: glossary 

Term Definition 

CCN Content Centric Network, an ICN architecture  

CCNx The software implementation of CCN 

Cellular route A CCN FIB entry pointing to the repository public IP address 

Chunk A part of a large content transported by a Data message 

Content Store A data cache of a CCN node 

DASH Dynamic Adaptive Streaming over HTTP 

Data CCN message used to transport a generic data item 

Face A logical/physical interface available to a CCN node for sending and receiving CCN 

messages 

FIB Forwarding Information Base, i.e. the CCN data structure used for routing-by-name 

Interest messages 

ICN Information Centric Networking 

Interest CCN message used to request a generic data item 

MPD Media Presentation Descriptor, i.e. the DASH manifest file that describes the video 

segments forming the video streams  

Peer or video peer A mobile CCN device interested in watching a given video and connected with 

other peer using a local one-hop full mesh wireless network 

PIT Pending Interest Table, i.e. the CCN data structure used to forward back the Data 

messages 

Playout delay Delay between the production of a video segment by the source and its playback by 

the peer 

PPS Peer-to-Peer video Streaming 

Pre-fetch round Download phase that lasts for a period equal to P video segments 

Pre-fetch window A sequence of P video segments  



PRI Proximity Route Information, i.e. a signaling content published by a peer to 

announce the availability of a video part 

Proximity network A local one-hop full mesh network to which all the peers are connected 

Proximity route A CCN FIB entry steering Interests to a peer in the proximity network 

Proximity route 

discovery 

Process ran by each peer to discover the availability of a part on neighboring peers 

PSI Pre-fetch Status Information, i.e. a signaling content published by a peer to 

announce its net cellular capacity 

Segment A portion of a DASH video, usually represented as a M4S file 

Server A fixed CCN device available on the public Internet which stores all the video parts 

in a CCN repository 

Video source A functionality producing the video parts stored in the server 

Video part A fragment of a video segment 

VTI Video Timing Information, i.e. a signaling information published by the video 

source to indicate the current production time of the stream 

 


