
III. The Network Level (CONET)

Andrea Detti, Stefano Salsano and Nicola Blefari Melazzi

Electronic Engineering Department, University of Rome “Tor Vergata”, Rome, Italy

Abstract

CONET (Convergence Network) is the network-layer of the CONVERGENCE
project. It is an Information Centric Network, which extends the CCNx one in
several aspects, including routing scalability, transport mechanisms, security han-
dling, integration with IP, etc. This section describes services and functionalities
of CONET and reports some performance evaluations, carried out through labora-
tory and PlanetLab test-beds.

3.1 Introduction

Network level functionalities of the CONVERGENCE system are provided by
an Information-Centric Network (ICN), named CONET (Convergence Network).

The ICN paradigm envisages a network-layer thoroughly meant for information
dissemination, rather than for point-to-point transfers of raw bits (Cheriton & Grit-
ter, 2010; Koponen et al., 2007; Jacobson, et al., 2009; Smetters & Jacobson,
2009; Trossen et al., 2010; Detti et al. 2011). In ICN, the network layer provides
users with named content, instead of communication channels between hosts. The
basic functions of an ICN infrastructure are to: i) address content by adopting an
addressing framework based on names, without a reference to the current content
location (i.e., location-independent names); ii) route a user request, based only on
the content-name, towards the “closest” location containing the required content;
potential locations include not only the origin server of that content but also net-
work caches or even devices of other users that downloaded the same content be-
forehand; iii) deliver the content back to the requesting host.

The main ICN benefit is a simplification of design, deployment and manage-
ment of content distribution services. In this sense, an ICN does not extend the set
of end-user services that an IP stack could provide; rather simplifies the business
of content and service providers.

Currently, major content and service providers “patch” the inefficiency of IP
data dissemination, by using dozens of custom extra-IP functionalities, e.g. HTTP

2

proxies, Content Delivery Networks, multi-homing, multicast delivery, etc. The
drawback of such heterogeneous deployment is the burden of achieving an effi-
cient interplay among several functionalities, in case offered by different com-
pany. This tune up is critical and complex, not only from a technical point of view
but also from a management one.

An ICN is directly meant for information dissemination. Consequently, an ICN
relieves providers from arranging extra-ICN functionalities. For instance data rep-
lication, caching, multi-homing and multicast delivery are inner ICN functional-
ities, directly handled by the network layer, so simplifying network design, de-
ployment and management.

Through an ICN Application Programing Interface (API), a user may request
by-name an information item and the ICN network-layer provides the user with
the item, fetching it from a serving device that the network-layer has autono-
mously selected. Serving device could be the original server publishing the infor-
mation, a replica of the original server or a cache of a network device or even a
device of another user that downloaded the same information item beforehand.

Through an ICN API a content-provider may publish by-name an information
item and the ICN network-layer properly configures its routing plane so that re-
quests of the published item will be served.

An ICN is aware of distributed information, since the network-layer identifies
each information item with a unique name-based identifier, and uses data units
that include such name-based identifiers. ICN data-units may also convey request
of information items. In both cases, a node is aware of “what” a data-unit refers to.
This awareness is the enabler of content-based functionalities such as: i) routing-
by-name, ii) caching; iii) support for mobile, multicast and peer-to-peer communi-
cations; iv) support for time/space-decoupled model of communications; v) con-
tent-oriented security model; vi) content-oriented quality of service, access control
and traffic engineering.

From theory to practice, the design of an ICN architecture sets up several
technical challenges, as for instance:

Primitives & interfaces - define the relationship of the ICN protocols with the
overall architecture, including their positions and connections with IP and current
protocols; for instance, will ICN be the new narrow waist of the Internet (i.e. the
lowest-level global network primitive, the only way to establish global communi-
cation) or will it sits over IP? Other important issues of this component include the
basic primitives and interfaces, e.g., does the ICN layer offer a publish/subscribe
primitive or is this functionality delegated to upper layers? How can we
change/extend the socket API, which is one of the main responsible of the current
“ossification” of the Internet?

3

naming scheme – the naming-scheme specifies the identifiers for the informa-
tion addressed by the ICN. The choice of a naming-scheme impacts different as-
pects an ICN, including the handling of name uniqueness and trademarking, rout-
ing scalability, flexibility of supporting different applications, usability, security.
For instance, human-readable flat-names improve usability; hierarchical names
foster aggregation of names in name-based forwarding tables; names containing
the public key of the owner of the content simplify security.

name resolution – a node routes by-name a request of an information item
towards a selected serving device. Hence, the ICN node should resolve the name
of requested items in the “physical” address of next ICN node towards the selected
serving device. Several name-resolution approaches are possible, ranging from an
off-path resolution, e.g. based on DHT, to an en-route hop-by-hop resolution
exploiting name-based routing tables.

routing scalability - with respect to IP, the routing plane of an ICN has to
handle a number of information items and corresponding names that is much
bigger than the number of IP network prefixes. This has implications on the size
of ICN routing tables, on the complexity of lookup functions and on the
distribution of ICN routing information and is one of the main concerns of ICN.

information delivery – an ICN addresses information items rather than hosts, so
it needs a technique to route back the requested information item from the serving
device to the requesting device. Some architectures propose to use plain IP means,
other ones propose to face the issue through ICN’s own means.

segmentation mechanisms – these mechanisms are needed to split an
information item or a content in different chunks (each chunk is an autonomous
data unit with embedded security and addressable by the routing plane). Content
to be transported over an ICN can be very variable in size, from few bytes to
hundreds of Gigabytes. Therefore it needs to be segmented in smaller size data
units, typically called chunks, in order to be handled by ICN nodes. A chunk is the
basic data unit to which caching and security is applied.

transport mechanisms – as regards the transport protocol, we favour a receiver-
driven approach: in ICN the transport of an information item does not exploit an
end-to-end session and while the requesting device remains the same, the serving
device may change also on a chunk-by-chunk basis. This requires a complete
rethinking of actual Internet transport mechanisms towards a receiver-driven
approach, where the whole transport logic is on the receiver side. Serving
applications split information items in chunks and assign unique names to chunks.
On the other side, application clients fetch sequentially these chunks, according to
a receiver-driven transport algorithm. As in IP, transport mechanisms should be
tailored to application characteristic, e.g. file download, video streaming, voice
over ICN, etc.

4

in-network caching – ICN nodes may cache chunks of information. Differently
from traditional HTTP caching, an ICN is a cache network; this implies the need
of properly devising a replication strategy that optimizes the caching space, e.g. by
avoiding excessive duplication of content in the network caches.

security and privacy challenges - security and privacy issues in ICN tackle
several aspects: i) integrity: received content has not been modified, i.e. it is the
originally published one; ii) provenance: source of the content is authentic, i.e. the
data is provided by the original creator; iii) relevance: received content is really
the content requested by the user. The verification of these criteria should be done
not only at the receiver side, but also in network nodes, as it is important that the
network be protected from pollution of content-caches with fake information
items. In addition, the network should protect information consumers from
profiling or censorship of their requests. These issues, extensively addressed in
traditional networks, require a significant rethinking when challenged against the
unique distinguishing characteristics of ICNs. Traditional network security
protocols such as IPsec or TLS focus on protecting the communication between an
information consumer and a content server, and do this by deploying trustworthy
infrastructures devised to enforce authentication and access control primitives on
dedicated servers. In ICN, the requested content is not anymore associated to a
trusted server or an endpoint location, but it can be retrieved from, say, a network
cache managed by an hardly trusted administrative domain. This calls for data-
centric security and privacy solutions, being hardly viable a secure infrastructure
which involves storage servers and network caches in heterogeneous non-
collaborative domains. The data-centric security model increases the
communications overhead with respect to traditional IP-based solutions, where
security related information are exchanged only one time per information transfer,
i.e. at the start of the end-to-end session. Furthermore, the architectural binding of
security and network layer functionality has to be carefully designed. In fact, it
may impose severe deployment limitations. For instance, an ICN architecture
based on digital certificate may not properly operate without a PKI, thus making
difficult to realize self-forming ICN networks. Another example regards the denial
of service due to the presence of fake content in the cache, caching should be
secure, i.e. node must verify the validity of cached contents. This operation should
be carefully devised to operate as much as possible with a time scale close to the
line rate of nodes. Otherwise only a limited set of forwarded information items can
be cached by a node.

push services – an ICN is primarily meant to enable clients to “pull”
information items. However, today, several Internet services are customized to the
user and these services require that client “pushes” information to server. For
instance home banking, trading on-line, dynamic web servers, belong to this class
of services. Therefore, an ICN architecture aiming at being the narrow waist of the
Future Internet has to support also a push service model.

5

smooth migration path – an ICN architecture should be usable and deployable
in a scalable way, i.e. should support a smooth migration path from current
applications and networks technology based on TCP/IP, to ICN applications and
networks.

In this section, we describe the Information Centric Network of the

Convergence project, namely CONET (Detti et al., 2011, Detti et al., 2012). In
short, we can say that CONET:

1. uses a hierarchical naming scheme;
2. performs name-resolution on-path, by using name-based routing table;
3. copes with the routing scalability issue by using our proposed Lookup and

Cache routing architecture;
4. delivers information to requesting user either by means of control data tempo-

rary left in network nodes, or inserted in network data units;
5. implements an efficient receiver driven TCP-like transport algorithm for infor-

mation delivery services;
6. uses Identity Base Signature and/or self-certifying names to carry out security

related operations;
7. provides in-network secure caching;
8. supports push services by our proposed named-sap concept;
9. can be deployed with an IP overlay or a clean slate approach or with our pro-

posed integration approach (see Detti et al. 2011, Detti et al. 2011b).

Some of these features (1, 2, and 4) are derived from the CCNx architecture
(Jacobson et al., 2009); the remaining ones are CONET’s own. In what follows,
we describe CONET in details.

3.2 Integration of the CONET network layer in the
CONVERGENCE system

Figure 1 describes the architecture of the CONVERGENCE system. We have
publishers that wish to provide customers with their information or services (e.g.
text, picture, movie, home bank access, etc.). Information or services are described
by a set of metadata that are embedded in the middleware data-unit, namely the
VDI. The VDI can either contain also the actual information item or contain only
a reference to it, where the reference is a network-layer identifier.

VDIs are exploited by middleware engines for different aims; engines are
middleware technologies/protocols carrying out specific tasks. For instance, the
middleware can exploit VDIs to offer content-based publish-subscribe services

6

(Chiariglione et al., 2012; Eugster et al., 2003) as follows: applications express
their interests; the interest is stored by the middleware and when a corresponding
information item or service is published, the middleware returns the matching
VDIs; at this point, the application can exploit the CONET to either fetch the
desired information item or interact with a server providing the desired service;
this is possible since the VDI contains the network-layer reference to the
information item or to the service.

However, publish-subscribe is not the only possible interaction model. For
instance, an application could also use a request-response model in which a search
engine provides the user with the VDI matching her request.

Figure 1: Integration of CONET within the CONVERGENCE system

The VDI and the related information item or service are accessed through the
CONET as named-resources. A named-resource can either be an information item
or a service, addressed by the CONET by means of a NEtwork Identidier (NID),
which is a name.

Named-resources that refer to information items are called named-data. Figure
1 reports a case where a text file and its associated VDI are disseminated in the
CONET as two named-data items. The named-data item related to the text file has
the name (i.e., a NID) “foo.com/text1”, and the named-data item related to the
VDI has the name “foo.com/VDI/text1”.

7

Named-resources that refer to services are called named-service-access-point,
briefly named-sap. A named-sap is merely a “port” towards an upper layer entity
addressed by the CONET through a name. The use of named-saps enables
CONET to support interactive services, i.e. services that require a custom
client/server interaction to provide personalized contents or actions. Examples of
this interactive service class include: services offered by Protocol Engines (PEs)
of the CONVERGENCE middleware (COMID), HTTP servers of dynamic Web
pages, home banking or trading on-line HTTP servers and SMTP servers.

Figure 1 reports also a case where a home banking service and its associated
VDI are disseminated in the CONET as a named-sap and a named-data item,
respectively. The named-sap of the home banking service has the name
“foo.com/bank”, and the named-data of the VDI has the name
“foo.com/VDI/bank”. The figure reports a named-sap associated with a COMID
IdentifyContent PE, which is addressed by the CONET through the
“foo.com/IdentifyContentPE” named-sap.

3.3 CONET services

3.3.1 Publication of named-resources

The CONET enables users to publish and to revoke named-resources. A re-
source can be replicated in different geographical locations by using the same
name.

Figure 2 reports the case of a user that publishes both a named-data item and a
named-sap. The named-data of Figure 2 is a text file identified by the CONET with
the name “foo.com/text1”. To publish the named-data, the user exploits the API
provided by a CONET Serving Node (SN) to store the named-data item in a local
Repository, and to advertise the presence of “foo.com/text1” on the CONET rout-
ing plane.

The named-sap of Figure 2 is a home banking service provided by a Server and
identified by the CONET with the name “foo.com/bank”. To publish the named-
sap, the user exploits the API of the Serving Node to advertise the reachability of
the service “foo.com/bank” on the CONET routing plane.

Albeit not reported in Figure 2, the user may exploit the CONET API to remove
the text file from the repository and to withdraw the identifier “foo.com/text1”
from the CONET routing plane. A similar action may occur in case of revocation
of the home banking named-sap.

8

Figure 2: Publication of named-resources

3.3.2 Access to named-resources

CONET provides users with the possibility of accessing named-resources by
using their network identifiers (NIDs), i.e. their names. When a named-resource is
a named-data item, the CONET delivers it to intended recipients. When a named-
resource is a named-sap, the CONET provides the means to exchange information
between a requesting upper layer entity and the upper layer entity addressed by the
named-sap.

Figure 3 depicts the access to named-resources provided by the CONET. In case
of the named-data item “foo.com/text1”, the network routes-by-name the request
of “foo.com/text1” towards the best Serving Node that has the item. The Serving
Node provides the named-data item, and the CONET sends it to the recipient. As
we will see in the next section, a CONET node may cache named-data items,
therefore the named-data “foo.com/text1” item could also be sent to the recipient
by an en-route node, rather than from the original Server.

Figure 3 also reports the access to a named-sap. In this example, the user sends
her credential (“usr:pwd”) towards a remote named-sap, whose name is
“foo.com/bank” and gets back a response from the Server.

9

Figure 3: Access to named-data and named-sap

3.4 Naming model

To identify named-resources, the CONET uses a hierarchical naming scheme,
formed by a PrincipalId and a Label, i.e. PrincipalId/Label. PrincipalId is a string,
e.g. “foo.com”, that uniquely identifies the principal of the resource. Label, e.g.
“text1”, is an identifier that uniquely identifies a resource among those published
by a principal. To make a comparison with Internet URL, the PrincipalId is the
domain-name and the Label is the Path.

In general, both the PrincipalId and the Label are formed by name-components
that are strings separated by the “/” character. For instance, the identifier
“foo.com/content/doc/text1” is formed by foo.com as PrincipalId and “con-
tent/text/text1.txt” as Label, and this Label has three components: “content”,
“doc”, and “text1”.

A PrincipalId could be a human-readable name or the public key of the princi-
pal. In the latter case, we have a so called self-certifying name (Koponen et al.,
2007). Therefore CONET supports both human-readable and self-certifying
names.

10

3.5 Data Model

3.5.1 Data model for named-data related services

Figure 4 reports the data model used by the CONET for named-data. An infor-
mation item is linked with a unique network identifier, e.g. “foo.com/text1”, so as
to form a named-data.

Figure 4: Data model for named-data services

A named-data is segmented in different chunks and each chunk is packaged in
a data unit called named-data Content Information Unit (CIU). A named-data CIU
is uniquely identified by the network with the name of the whole named-data item
and an identifier of the chunk number. The identifier of the chunk number can ei-
ther be included in the name, e.g. “foo.com/text1.txt/chunk1”, or included in a
suitable field of the CIU header (Detti et al., 2011). A named-data CIU contains
security information (Smetters & Jacobson, 2009), so that traversed nodes may se-
curely cache it, by avoiding denial of services attacks due to caching of fake con-
tents. Thus, the named-data CIU is the caching data-unit of the CONET.

To reduce the security overhead and the rate of security checks performed by
caching nodes, the size of the named-data CIU should be greater than the usual
payload transported by IP packets. For instance, reasonable size of the named-data
CIU could be in the order of tens or hundreds of IP packets / Ethernet frames. For
this reason, a named-data CIU is further segmented into so-called named-data car-
rier packets (CP), whose size fits the end-to-end maximum transfer unit. A
named-data CP is uniquely identified by the network with the name of the named-

11

data CIU plus a segment number; also in this case, segment number can either be
included in the name, e.g. “foo.com/text1.txt/chunk1/sn1”, or included in a suit-
able field of the CP header (Detti et al., 2011).

As we will see in the next section, applications download a named-data by se-
quentially downloading all CIUs and, hence, all CPs. To request a named-data CP,
a user issues a named-data Interest CP1, which includes the identifier of the de-
sired carrier packet (see Figure 4).

3.5.2 Data model for named-sap related services

Figure 5 reports the data model used by the CONET for named-sap related ser-
vices.

Figure 5. Data model for named-sap services

A named-sap is the coupling between a server upper layer entity and a network
identifier, i.e. a name. For instance Foo’s server for home banking could be ad-
dressed by the CONET through the named-sap “foo.com/bank”.

A client upper layer entity interacts with a server upper-layer entity by ex-
changing data that are of exclusive interest of such client-server interaction and,
hence, are un-cacheable for further re-use. For this reason, we refer to this type of
data as un-named-data.

Client data (e.g., “usr:pwd”) are sent to server through data units called un-
named-data Interest CPs. These messages include the network identifier of the
named-sap and a nonce, used to identify the specific request-response interaction;
e.g. “foo.com/bank/0x0123”, where “foo.com/bank” is the identifier of the named-
sap and “0x0123” is the nonce.

1 We note that in [6], we denoted this named-data Interest CPs with another name: Interest CIU.
We changed the name because an Interest CIU is directly mapped in an underlying carrier-packet.

ok

under-CONET data-unit
(e.g. IP packets, UDP/IP datagram, Ethernet frame, etc.)

un-named-data CP usr:pwdun-named-data
Interest CP

Response from named-sap Send to named-sap

(foo.com/bank/0x0123)

(foo.com/bank/0x0123)

12

Server responses are sent back within un-named-data CP, which includes the
network identifier of the named-sap and the nonce of the Interest CP.

3.6 Service interaction model

This section describes the CONET service interaction model for named-data
and named-sap related services, respectively.

3.6.1 Interaction model for named-data pull services

Figure 6 (left) depicts the end-to-end interaction for the fetching of a named-
data. An end-node downloads a named data by retrieving all its named-data CIUs
and, hence, CPs. To download a named-data CPs, a client sends out a named-data
Interest CP (briefly, ‘data CP’ in the figure), which contains the identifier of the
desired named-data CP, e.g. “foo.com/text1/chunk1/sn1”. The CONET routes-by-
name the Interest message toward the Serving Node, which sends back the re-
quested data within a named-data CP (briefly, ‘data CP’ in the figure). To
download the whole set of named-data CPs, the client may adopt a TCP-like re-
ceiver-driven approach (Salsano et al., 2012; Kuzmanovic & Knightly, 2007),
working as follows: i) TCP ACKs are replaced by Interest CPs; ii) TCP segments
are replaced by named-data CPs; iii) traffic control operation is carried out at the
receiver side, by using a TCP-like congestion window (cwnd) control, applied on
the number of in-flight Interest CP messages.

13

Figure 6: End-to-end interaction models for named-data (left) and named-sap (right)

services

We observe that the use of a receiver-driven TCP-like transport algorithm is
suitable for download services, while in the case of e.g. live streaming (A. Detti, et
al., 2012c) or voice (Jacobson et al., 2009b), different receiver-driven flow control
mechanisms should be designed, according to the specific application require-
ments.

3.6.2 Interaction model for named-sap push services

Figure 6 (right) depicts the end-to-end interaction between an end-node and a
remote server behind a named-sap. In this case the interaction model is a request-
response, as previously described in section 3.5.2.

3.7 Architecture and functions

Figure 7 reports the CONET network architecture. CONET nodes are intercon-
nected by “sub-systems” that can be implemented in several different ways. For
instance, a sub-system could be a public or private IP network, an overlay UDP/IP

14

link, a layer-2 network, a PPP link, etc. This is the same concept used in current IP
networks, in which IP hosts and routers can be connected via different layer 2
technologies. A CONET sub-system may include: i) CONET end-nodes that ac-
cess named-resources; ii) CONET Serving-nodes that provide named-resources
and iii) CONET nodes that relay carrier-packets between sub-systems and option-
ally cache named-data CIUs.

Figure 7 – Network architecture

Routing (by-name) of Interest - To route an Interest CP, a generic CONET
node uses a name-based Forwarding Information Base (FIB), whose entries are in
the form <name-prefix, next hops>. A longest matching algorithm, based on char-
acters, selects the best entry of the FIB. For instance, in case of Figure 7, when
node N1 receives an Interest CP for “foo.com/text1/chunk1/sn1”, then the longest
match selects the FIB entry “foo.com” (see the FIB reported in the top of the fig-
ure). Then node N1 forwards the Interest CP towards the next CONET interface of
the path, i.e. interface #C of N2.

The whole set of possible name-prefixes could be too large to be stored in the
“fast” FIB memory, e.g. based on SRAM or TCAM technology. To overcome this
aspect of routing scalability, we propose that (A. Detti et al., 2012; N. Blefari Me-
lazzi et al. 2012b):

• the PrincipalId is the longest routing prefix; i.e. name-prefixes contained in the
routing table distributed at the inter-domain level either are PrincipalIds or are

sub-systemsub-system N2#B #C

SN

Interest-forwarding

foo.com/text1.txt/chunk1/sn1

N1

Data-forwarding & caching

foo.com/text1.txt/chunk1/sn1
Named-data CP

End-node

Name prefix Next Hops

foo.com #C

alice.com #C

Name prefix Previous Hops

foo.com/text1.txt/chunk1/sn1 #A

Pending Interest Table (PIT) of N1

#A

ICN route

Interest CP

15

shorten than PrincipalId, in order to aggregate more PrincipalIds in a same
routing entry. This rule has to be applied at least at the inter-subsystems (or in-
ter-domain) level;

• the FIB is used as a route cache (Changhoon et al., 2009), to temporarily store
the limited set of routes necessary to support the on-going end-to-end interac-
tions. We call these routes active routes.

On the base of real Internet traces and in a case where PrincipalIds are the ac-
tual 2 108 Web domain-names, in (Detti et al., 2012) we show that the set of active
routes is relatively small (104), both with respect to the whole set of possible
routes (2 108), and also with respect to the current storage capacity of SRAM
memory technology (106 name prefixes) (Zhao et al., 2010; Perino & Varvello,
2011).

In case the FIB does not contain an entry to route-by-name an incoming Inter-
est CP, the node lookups the routing entry in a Routing Information Base (RIB),
deployed in a centralized Name Routing System (NRS) node, which hosts the
CONET Routing Engine. A RIB may be implemented through a bank of “slow”
DRAM memories, whose overall memory space is able to store the whole set of
possible name-prefixes. We call such routing-by-name architecture Lookup-and-
Cache.

Figure 8 depicts an example of Lookup and Cache operations during the for-
warding of an Interest CP. When node N1 receives the Interest CP for
“foo.com/text1/chunk1/sn1”, the node does not have a valid routing entry in the
FIB, hence lookups the entry in the remote RIB. Then it inserts the routing entry
(“foo.com”) in the FIB and forwards the Interest CP.

Figure 8: Lookup and Cache routing-by-name architecture, Interest forwarding

We observe that the Lookup and Cache architecture is perfectly in line with the
Software Defined Network paradigm: the NRS node functionality could be im-

16

plemented in the central network controller (McKeown et al., 2008; Blefari-
Melazzi et al., 2012).

Routing (by-name) of Data– To support information delivery, i.e. to route
data from serving node to the requesting device, a possible, state-full, approach is
that a node temporarily stores the couple <CP identifier, previous-hop interface
list> in a Pending Information Table (PIT), during the forwarding of an Interest
CP. The PIT contains information about the set of Interest CPs received by a node
and not yet served, i.e. messages for which the node has not yet sent back the re-
lated named or un-named CPs. PIT entries are grouped by name and an interface
list field contains the addresses of the previous-hop interfaces that forwarded the
related Interest messages. For instance, in the case of Figure 7, when node N1 re-
ceives the Interest “foo.com/text1/chunk1/sn1” forwarded by the previous end-
node, then node N1 inserts in the PIT the entry <“foo.com/text1/chunk1/sn1”,
#A>, where #A is the physical address (e.g. IP or Ethernet address) of the end-
node interface.

When a node receives a named/un-named data CP, it lookups the enclosed
name in the PIT, forwards the CP towards all the interfaces contained in the inter-
face list and deletes the PIT entry. In this example, when node 1 receives a named-
data CP for “foo.com/text1/chunk1/sn1”, then it lookups the entry in the PIT, for-
wards the message towards the #A interface and deletes the PIT entry.

In-network, en-route, caching – A CONET node may cache received named-
data CIUs in a local memory. Since a named-data CIU is an aggregation of
named-data CPs, then caching involves a reassembly operation. Moreover, a CIU
is inserted in the cache only if the enclosed security information confirms its
proper validity. When an en-route node receives a named-data Interest CP, the
node first checks the presence of the related named-data CP in its cache. If a cache
hit occurs, the node directly sends back the named-data CP. In case of cache miss,
the node executes the forwarding and PIT operations previously described.

In addition to en-route caching, other caching approach could be used, depend-
ing on the specific environment. For instance, in (Gallucio et al., 2012; Detti et al.,
2012b) authors propose a caching approach based on overhearing, for satellite
networks.

Routing protocol – The lookup and cache routing architecture requires a rout-
ing protocol to distribute name-prefixes and setup the RIBs of NRS nodes. The
Lookup-and-Cache architecture is independent from the specific routing protocol
implementation. To show an example, we implemented a simple routing protocol
based on the REGISTER and UNREGISTER functions proposed by the DONA
architecture (Koponen et al., 2007), adapted to our specific network model.

As show in Figure 9, a Serving Node (SN) REGISTERs and UNREGISTERs
the name-prefixes (e.g., “foo.com”) of “its” named-data items in the local NRS
node. The local NRS node and the next ones forward the

17

REGISTER/UNREGISTER messages toward their parents and peers neighbours
up to a NRS of the tier-1 level. As in the case of an Interest message, the routing
of REGISTER/UNREGISTER messages is by-name. Indeed, each NRS node has
a named-sap used to receive routing messages, e.g. “ss1.org/routing.sap”. Recep-
tion of REGISTER and UNREGISTER messages enables an NRS node to prop-
erly setup its RIB. We observe that the same NRS may serve more than one sub-
systems or nodes and even a whole autonomous system (i.e. a collection of sub-
systems administered by the same entity, as in the Internet). In this case, the NRS
would have a RIB for each served node.

Figure 9: Lookup and Cache architecture: inter-domain distribution of name-prefixes

3.8 Security support

CONET security refers to the ability of a node to verify the validity (integrity,
provenance and relevance, see Section 3.1) of named-data CIUs. The way security
functionality is designed and implemented depends on the adopted naming
scheme: human-readable or self-certifying names (see Section 3.4). Moreover, in
order to support in-network secure caching (Ghodsi et al., 2011), named-data CIU
should contain all the security information needed to verify its validity, i.e. the
signature and the means to verify the signature, such as the public key of the sign-
ing principal (Detti et al., 2013).

In case of human-readable names, the CONET needs a centralized authority to
control PrincipalId uniqueness. Moreover, the CONET needs a PKI infrastructure
to control validity of principal’s public key. To reduce the bandwidth overhead of
security, we propose to use Identity Based Signature approach, where the public
key is just the PrincipalId, already contained in the name of the named-data CIU.

In case of self-certifying names, PrincipalId is the principal public key that
could be randomly generated by the principal. Moreover, in this case, security re-

18

lated verifications do not require a PKI, as discussed in (Ghodsi et al., 2011; Detti
et al., 2013). Therefore, we argue that self-certifying names are a good choice for
self-forming ICNs, where the presence of a PKI may be impractical.

3.9 Migration path

The migration from services based on the TCP/IP API to services based on the
CONET API requires, on the one hand, to have applications able to operate on the
new API and, on the other hand, to deploy the CONET.

Regarding applications, we observe that the CONET API is quite similar to the
HTTP API, which is the most used API by Web applications (Popa et al., 2010).
This similarity eases the development of HTTP/CONET (or generally ICN) trans-
parent proxies, which can be used during the migration from HTTP based applica-
tion to CONET based applications. For instance, we followed this approach to de-
sign a video streaming application (Detti et al., 2012c), in which the video client
(VLC) is a plain HTTP application connected to a HTTP-to-CONET proxy.

Regarding the deployment of the network, we envisage a possible migration
path which starts from a first overlay deployment (similar to CCNx (CCNx,
2012)) where CONET uses IP as carrier and adopts dedicated hardware; to a sec-
ond, more integrated, scenario where CONET and IP use the same data-units, and
hence the same hardware.

Technically, in the first deployment scenario, CONET carrier-packets could be
transported in the payload of UDP/IP packets, thus the connections among
CONET nodes would be overlay links and CONET nodes would use specific
hardware. In the second deployment scenario, control information of carrier-
packets is integrated in the IP header, as an IPv4 options or IPv6 extension header
(Detti et al. 2011, Detti et al. 2011b); in doing so, CONET nodes and IP routers
could be integrated in a same hardware.

3.10 Performance analysis

In this section, we report a brief survey of the performance analysis of some
CONET aspects, namely routing and transport issues. A more detailed descrip-
tions of measurements and performance figures are contained in referenced pa-
pers.

19

3.10.1 Routing

In (Detti et al., 2012; Blefari-Melazzi et al., 2012b) we use real Internet traces
to assess the feasibility of using the FIB as a cache of routes. We considered a de-
ployment scenario where CONET is used to fetch current Web contents. In this
case the name-prefixes handled by the CONET routing plane are the domain-
names, which nowadays are in the order of 108. This amount is two orders of
magnitude greater than the storage capacity provided by current FIBs; indeed, a
SRAM memory may store a number of name-prefixes in the order of 106.

CONET copes with such storage limitation by using the FIB as a cache of ac-
tive routes, i.e. of those name-based routing entries currently needed by a node to
forward traffic. To prove that this approach is feasible we must show that the
number of active routes is lower than the FIB storage capacity.

To verify this feasibility, we use a real Internet trace of a tier-1 Internet link
(Equinix-sanjose-dirA) from which we derive a hypothetical CONET trace of a
tier-1 node, as shown in (Blefari-Melazzi et al., 2012b). Then, we use the hypo-
thetical trace to compute the number of CONET active-routes that a tier-1 node
would have. Figure 10 reports the number of active-routes versus time and we ob-
serve that this number is in the order of 5x103, so much lower than the FIB capac-
ity. Therefore we can state the using the FIB as a route-cache is feasible in the as-
sumed scenario in which COINET is used to fetch current Web contents.

Figure 10: Number of active-routes for the Equinix-sanjose-dirA trace

In (Detti et al., 2012) we evaluate the possible performance degradation intro-
duced by the lookup and cache routing operation, in the laboratory scenario de-
picted in Figure 11. We have an ICN node between two subsystems. Within sub-

20

system A, we have end-nodes (clients) that fetch named-data items from a serving
node, located in subsystem B. The serving node publishes 10,000 named-data
items and each named-data item has a different, random, name-prefix. Conse-
quently, in this scenario a full FIB would contain such 10,000 name-prefixes. On
each node, we disabled in-network caching of named-data CIUs, to avoid the in-
fluence of data caching during the routing performance assessment.

Figure 11: Lookup and Cache Testbed setup

Figure 12 reports the average download time of a named-data item versus the
number of active routes. We consider three cases: in the first case we consider
node N with a FIB of size100 entries, which uses the LRU replacement policy to
replace cached routes; in the second case we use another replacement policy based
on a Inactivity Time Out (ITO) estimator (Detti et al., 2012); in the third case we
assume that node N has an unlimited FIB space, properly preloaded with the
whole routing set (i.e. 10,000 routes). Results show that, as expected, when the
number of active-routes is lower than the available FIB space, performance degra-
dation introduced by a limited FIB is practically negligible, with respect to the
case of unlimited FIB. Conversely, when the FIB is overloaded, i.e. the number of
active-routes is greater than the FIB space, then performance degradation shows
up and the ITO policy outperforms the simpler LRU.

21

Figure 12: Average download time versus number of active-routes in laboratory test-bed

In (Blefari-Melazzi et al. 2012b), we repeated the same download delay meas-
urement on the PlaneLab overlay CONET deployment shown in Figure 13, where
links are UDP/IP sockets that transfer CONET carrier-packets. This scenario
represents the case of a CONET Autonomous System, which is an aggregation of
CONET subsystems under the control of the same network operator. The topology
graph is generated so as to resemble the European GEANT research network.
Each node is labelled with the country code name of its actual location, and serves
a CONET subsystem, formed by a serving-node and an end-node (the latter is
shown in the figure only in the case of the IE node). Serving-nodes publish a wide
set of named-data items, whose popularity follows a Zipf distribution. End-nodes
fetch named-data items, with exponential negative distributed inter-arrival times
between two consecutive fetches. Lookup and Cache routing is supported by a
single NRS node, which serves all nodes of the Autonomous System. Each node is
connected to the NRS with a best-effort UDP/IP socket, used to perform routing
lookup operations. This path is not drawn in Figure 13.

22

Figure 13: PlanetLab CONET overlay deployment

Figure 14 shows the average download time versus the FIB size (number of
entries), comparing the case of nodes without content (named-data) cache and the
case of nodes with a content cache; the content cache size (number of entries) is
equal to 10% of the total number of published named-data items. The x-axis
includes also an out-of-scale point, representative of a full preloaded FIB (labelled
“Full-FIB”) where, for each node, we use an unlimited FIB, pre-loaded with all
name-based routes that the node could use. This measurement allows highlighting
the worsening of performance deriving from the use of a limited FIB as a cache of
routes and from the use of a centralized remote RIB, located in the NRS node.

As expected, as the FIB size increases, the performance tends to the full-FIB
case, while caching contents leads to a decrease of the download time, since some
named-data CIUs are delivered by the cache of nearby nodes, rather than from far
away servers.

23

Figure 14: Average download time versus node FIB size in laboratory test-bed, with and
without in-network caching

If we look at the curve representing the no-content cache case, the download
time decreases of about 600 ms, when the FIB size increases from 50 to the full-
FIB case. We argue that this lookup delay penalty is due to the
connectivity/processing delay brought about by the NRS node, which in the worst
case is equal to about 350 ms. This considerable delay penalty was not present in
the laboratory test-bed of Figure 12, since there we had a direct Ethernet
connection between the node and the NRS. Conversely, in the PlanetLab test-bed,
NRS is connected to nodes through a best-effort Internet path, which introduces a
significant delay. We argue that this delay is due to the connectivity/processing
delay brought about by the NRS node. Such delay (in the worst case equal to
about 350 ms) would not occur if the traffic from/to the NRS had priority on the
other user traffic and if the NRS were implemented by using a suitable powerful
hardware.

3.10.2 Transport of named-data

As discussed in Section 3.6.1, the CONET adopts a receiver-driven protocol
where endpoints exchange Interest / Named-Data CPs sequences and the exchange
rate is regulated by the receiver, following principles proposed in (Salsano et al.,
2012). This protocol, which we generically name Information-Centric Transport
Protocol (ICTP), implements the same algorithms of TCP (slow-start, congestion

24

avoidance, fast retransmit, fast recovery), but adapted to the receiver-driven opera-
tion.

In (Salsano et al., 2012), we measured the performance improvement provided
by CONET ICTP with respect to the transport mechanism included in the CCNx
tool.

In short, the main differences between our ICTP and the transport protocol pro-
vided by the CCNx tool can be summarized as follows:

1) Use of carrier-packets: we can say that the data-units of the CCNx trans-
port protocol correspond to the named-data CIUs (aka Data messages),
each of which is relatively large, (e.g. 4 kB). This means they have to be
segmented at the IP level. The use of such a large data-unit decreases the
efficiency and promptness of congestion control. To overcome this prob-
lem, ICTP divides named-data CIUs into segments, each of which is trans-
ported by a carrier-packet, whose size is close to that of a TCP segment. In
other words, the carrier-packet is the ICTP data-unit and no longer the
whole named-data CIU. This suggests that the performance of the transport
layer will be similar to that of the transport layer in TCP.

2) Mimicking TCP congestion control: CNNx implements a simple conges-
tion control algorithm that resembles the traditional Selective-Repeat ARQ
with fixed window size. Conversely, ICTP thoroughly mimics the TCP
Reno congestion control algorithms.

We evaluate the performance of ICTP in a laboratory scenario with a single
sub-system; in the scenario an end-node fetches named-data from a serving node
with a 10Mb/s link. We compared the ICTP performances with the performances
of the congestion control in CCNx. Figure 15 shows the application goodput
measured for CCNx and for ICTP versus the IP packet loss probability and for two
different sizes of the named-data CIUs (4 kB and 32 KB). In the ideal lossless
case, the performance of the current CCNx transport implementation is slightly
better, as it has a smaller overhead (not using carrier-packets). The performance of
ICTP becomes better as soon as packet loss is introduced.

25

Figure 15: CONET vs. CCNx transport of named-data

3.11 Conclusions

Our aim in designing the CONET was to achieve the promised advantages of
ICN (listed in Chapter I), while mitigating its two main cons: 1) ICN requires
changes in the basic network operation, which per se is already a big obstacle to
take-up of this approach; 2) ICN raises scalability concerns, as the number of dif-
ferent contents and corresponding names is much bigger than the number of host
addresses; this has obvious implications on the size of routing tables and on the
complexity of lookup functions; in addition, in some proposed CCN architectures
(V. Jacobson, et al 2009), providing reverse paths (for information delivery) re-
quires maintaining states in network nodes.

As for the first point, we looked for graceful incremental solutions, backward
compatible with the current Internet, as opposed to risky clean slate and flag-day
solutions. As regards the second point, we proposed some specific solutions miti-
gating this problem.

More in details: our routing-by-name architecture is able to support current and
future Internet traffic with off-the-shelf technologies; our transport mechanism has
performance close to those of the current TCP; our API is similar to that of HTTP
facilitating the development of HTTP-to-CONET proxy for the support of legacy
applications; our push-based services allow supporting legacy interactive services.
Thus, we believe that our proposed CONET can allow an advantageous and
smooth migration from the current Internet based on the TCP/IP API, towards a
future Internet based on the ICN API.

26

References

A. Detti, N. Blefari Melazzi, S. Salsano, M. Pomposini, “CONET: A Content Centric Inter-
Networking Architecture”, ACM SIGCOMM Workshop on Information-Centric
Networking (ICN 2011), August 19, 2011, Toronto, Canada
A. Detti, S. Salsano, N. BlefariMelazzi, “IPv4 and IPv6 Options to support Information
Centric Networking”, Internet Draft, draft-detti-conet-ip-option-02, Work in progress,
October 2011b
A. Detti, M. Pomposini, N. Blefari Melazzi, S. Salsano, “Supporting the Web with an
Information Centric Network that Routes by Name”, Elsevier Computer Networks, vol. 56,
issue 17, 2012, p. 3705–3722
A. Detti, A. Caponi, N. Blefari-Melazzi, ” Exploitation of Information Centric Networking
Principles in Satellite Networks”, IEEE ESTEL 2012, Roma, Italy, 2-5 October 2012b
A. Detti, M. Pomposini, N. Blefari Melazzi, S. Salsano, A. Bragagnini, “Offloading cellular
networks with Information-Centric Networking: the case of video streaming”, IEEE
International Symposium on a World of Wireless, Mobile and Multimedia Networks 2012c
A. Detti, A. Caponi, G. Tropea, N. Blefari-Melazzi, G. Bianchi, “On the Interplay among
Naming, Content Integrity and Caching in Information Centric Networks”, submitted for
publication 2013, available at
http://netgroup.uniroma2.it/Andrea_Detti/papers/conferences/ICN-Naming-Signature-
Caching-Interplay.pdf
A. Ghodsi, T. Koponen, B. Raghavan, S. Shenker, A. Singla, and J. Wilcox , "Information-
Centric Networking: Seeing the Forest for the Trees", in Proc. of the 10th ACM Workshop
on Hot Topics in Networks (HotNets-X), November 14-15, 2011, Cambridge,
MACambridge, Massachusetts.
A. Kuzmanovic, E.W. Knightly. “Receiver-Centric Congestion Control with a Misbehaving
Receiver: Vulnerabilities and End-point Solutions”, Elsevier Computer Networks. 2007,
51, 2717–2737
CCNx project web site: http://www.ccnx.org
D. Cheriton, M. Gritter, “TRIAD: a scalable deployable NAT-based internet architecture”,
Technical Report (2000)
D. Perino, M. Varvello, “A Reality Check for Content Centric Networking”, ACM
SIGCOMM Workshop on Information-Centric Networking (ICN 2011), August 19, 2011,
Toronto, Canada
D. Smetters, V. Jacobson: “Securing Network Content”, PARC technical report, October
2009
D. Trossen, M. Sarela, and K. Sollins: "Arguments for an information-centric
internetworking architecture" SIGCOMM Computer Communication Review, vol. 40, pp.
26-33, 2010
K. Changhoon, M. Caesar, A. Gerber, and J. Rexford. "Revisiting route caching: The world
should be flat." Passive and Active Network Measurement (2009): 3-12.
L. Chiariglione, A. Difino, N. Blefari Melazzi, S. Salsano, A. Detti, G. Tropea, A. C. G.
Anadiotis, A. S. Mousas, I. S. Venieris, C. Z. Patrikakis: “Publish/Subscribe over
Information Centric Networks: a Standardized Approach in CONVERGENCE”, Future
Network & Mobile Summit 2012, 4 - 6 July 2012, Berlin, Germany
L. Galluccio, G. Morabito, S. Palazzo, “Caching in information-centric satellite networks”,
IEEE ICC 2012, June 2012, Ottawa, Canada

http://netgroup.uniroma2.it/Andrea_Detti/papers/conferences/ICN-Naming-Signature-Caching-Interplay.pdf
http://netgroup.uniroma2.it/Andrea_Detti/papers/conferences/ICN-Naming-Signature-Caching-Interplay.pdf
http://netgroup.uniroma2.it/Andrea_Detti/Lookup-and-Cache/

27

L. Popa, A. Ghodsi, and I. Stoica. 2010 “HTTP as the narrow waist of the future internet”,
in Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in Networks (Hot-
nets-IX). ACM, New York, NY, USA
N. Blefari-Melazzi, A. Detti, G. Morabito, S. Salsano, L. Veltri, ” Supporting Information-
Centric Functionality in Software Defined Networks”, IEEE International Conference on
Communications (ICC 2012)
N. Blefari Melazzi, A. Detti, M. Pomposini, S. Salsano: “Route discovery and caching: a
way to improve the scalability of Information-Centric Networking”, IEEE Global
Communications Conference 2012, Anaheim, California, Dec., 3-7 2012b
N. Blefari Melazzi, A. Detti, M. Pomposini, “Scalability Measurements in an Information-
Centric Network”, Measurement-based experimental research: methodology, experiments
and tools”, Springer Lecture Notes in Computer Science (LNCS), vol. 7586, 2012c
N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S.
Shenker, and J. Turner, “OpenFlow: Enabling Innovation in Campus Networks”. White
paper. March 2008 (available at: http://www.openflow.org).
Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Kermarrec. “The
many faces of publish/subscribe”, ACM Comput. Surv. 35, 2 (June 2003), 114-131.
R. Braynard, “VoCCN: voice over content-centric networks”, Proceedings of the 2009
Workshop on Re-architecting the Internet (ReArch 2009); 2009 December 1; Rome, Italy.
NY: ACM; 2009; 1-6.
S. Salsano, A. Detti, M. Cancellieri, M. Pomposini, N. Blefari Melazzi, “Transport-layer
issues in Information Centric Networks”, ACM SIGCOMM Workshop on Information-
Centric Networking (ICN 2012), August 17, 2012, Helsinki, Finland
T. Koponen, M. Chawla, B.G. Chun, A. Ermolinskiy, Kye Hyun Kim, S. Shenker, I. Stoica:
“A data-oriented (and beyond) network architecture”, Proc. of ACM SIGCOMM 2007,
August 27-31, Kyoto, Japan
V. Jacobson, et al., ”Networking named content”, in Proc. of ACM CoNEXT 2009,
December 1-4. Rome, Italy
V Jacobson, et al. “VoCCN: voice over content-centric networks”, Proceedings of the 2009
Workshop on Re-architecting the Internet (ReArch 2009); 2009 December 1-4; Rome,
Italy. NY: ACM; 2009b.
X. Zhao, D. J. Pacella, and J. Schiller, “Routing Scalability: An Operator’s View”, IEEE
Journal on Selected Areas in communications, vol. 28, no. 8, October 2010

http://www.openflow.org/

