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Abstract

To support content-oriented services, the routers in Information Centric Net-

works (ICN) have to provide packet processing functions that are more complex

with respect to IP standards, making harder to attain high forwarding rates.

The ICN community is working to overcome this issue, designing new software

and hardware routers, for setting higher the throughput bar.

In this work, we propose to distribute the workload of a router over several

physical machines, resulting in a faster, Cluster-based, Scalable ICN router

(CSR), able to operate with any current software/hardware ICN solution. We

also present the specific challenges that the ICN paradigm poses to the design

of a cluster router, and show how our proposed CSR deals with them.

The overall forwarding rate can be increased or decreased by suitably dimen-

sioning the number of cluster resources (horizontal scaling) or the performance

of individual cluster resources (vertical scaling). When deployed in a cloud en-

vironment, the amount of cluster resources can follow the traffic demand, so

implementing an elastic ICN router. To assess the feasibility of our approach,

we developed a real CSR, based on a new kernel-based ICN load-balancer. The

paper includes an extensive set of measurements devised to assess the capabili-

ties and performance of the proposed solution.
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1. Introduction

Information Centric Networking is a communication paradigm that provides

content-oriented functionality and services within the network and at the net-

work layer, rather than relying on overlays or end-systems [1]. Content routing,

caching, multicast, mobility, data-centric security, etc. are examples of func-5

tionality that Information Centric Networks (ICNs) natively offer through their

routers and that, on the contrary, IP networks delegate to hosts, middle-boxes

or overlay infrastructures.

Providing content-oriented services at the network layer improves the net-

work efficiency but increases the complexity of packet processing in routers, thus10

making a challenge the achievement of high forwarding rates. Indeed, an ICN

router is a stateful forwarder, carrying out a sequence of complex prefix match

operations based on variable length names.

To improve the forwarding rate of ICN routers, researchers focused on soft-

ware and hardware optimizations [2] [3] [4], such as the recent integration of15

CCNx (a specific implementation of ICN) with the Vector Packet Processing

(VPP) technology [5]. In this paper we explore a complementary approach:

rather than optimizing the single ICN router, we distribute its processing bur-

den on more machines. We devise an ICN Cluster-based Scalable Router (CSR),

externally exposed as a single node, but internally composed of a group of ICN20

routers connected to a load-balancer (figure 2). We will show in the paper that

the resulting forwarding rate is close to the sum of the internal-router ones.

The CSR architecture is agnostic as to the specific technology used by

internal-routers, with the only obvious constraint of using the same packet for-

mat. The whole cluster logic runs on the load-balancer, while un-modified ICN25

routers can be used within it.

The CSR is able to scale with respect to the forwarding rate, either horizon-

tally by adding more internal-routers or vertically by improving the forwarding

rate of individual internal-routers, e.g., using a faster forwarding implementa-

tion or more powerful hardware.30
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The CSR components can use real or virtual hardware, e.g. virtual machines

(VMs) offered by a cloud. In this case, the number of internal-routers/VMs can

be dynamically extended or shrunk to follow traffic demand, without service

interruption, making it possible to provide elastic ICN routers as-a-service.

Clustered systems are used for several applications, such as databases, server35

farms, distributed processing, etc., but to the best of our knowledge this is the

first paper that explores them for designing scalable ICN routers. And although

at a first glance the cluster design of the CSR router may appear as very simple,

we found out, while carrying out its practical implementation, that the stateful

and complex processing of an ICN router poses several new challenges, which we40

are going to discuss and face in the rest of the paper. The main contributions

of this work are:

• the innovative proposal of a cluster-based scalable ICN router architec-

ture, improving ICN forwarding performance, while preserving in-network

caching and multicast functionality and related advantages;45

• an open-source Linux implementation, based on NDN (Named Data Net-

working, a specific ICN solution [6]);

• an experimental campaign aimed at showing the capability and perfor-

mance of the cluster-based scalable router in static and dynamic (elastic)

configurations.50

2. Related Work

2.1. Information Centric Networks

An ICN is a communication architecture providing users with data items

rather than end-to-end communication pipes. The network addresses of an ICN

are hierarchical names (e.g. video/foo/s1) that do not identify an end host55

but a data item.

A data item and its unique name form the so called named object. A named

object is actually a small data unit (e.g. 4kB long) and may contain an entire
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Figure 1: ICN forwarding engine model and packets

content (e.g. a document, a video, etc.), or a chunk of it. The names used for ad-

dressing the chunks of the same content have a common prefix (e.g. video/foo)60

followed by a sequence number identifier (e.g. s1, s2, s3, etc.).

An ICN is formed by nodes that can be logically classified as consumers,

producers and routers. Consumers pull named objects provided by producers,

possibly going through intermediate routers.

Any node uses the forwarding engine shown in figure 1 and is connected65

to other nodes through channels, called faces, which can be based on different

transport technologies such as Ethernet, TCP/IP sockets, etc.

Data units exchanged in ICN are called Interest packets and Data pack-

ets. To download a named object, a consumer issues an Interest packet, which

contains the object name, and that is forwarded towards the producer. The70

forwarding process is called routing-by-name since the output face is selected

through a name-based prefix matching based on a Forwarding Information Base

(FIB) containing name prefixes (such as video/foo and a in figure 1) and the

corresponding output faces (or upstream faces). The FIB is usually configured

by routing protocols, which advertise name prefixes rather than IP subnetworks75

[7]. During the Interest forwarding process, the node temporarily keeps track

of the forwarded Interest packets in a Pending Information Table (PIT), which
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stores the name of the requested object and the identifier of the face from which

the Interest came from (downstream face).

When an Interest reaches a node (producer or intermediate router) having80

the requested named object, the node sends back the object within a Data

packet, whose header includes the object name. The Data packet is forwarded

downstream to the consumer by consuming (i.e. deleting) the information pre-

viously left in the PITs, as bread crumbs.

Each forwarding engine can cache (in-network) the forwarded Data packet85

to serve subsequent requests of the same object. Usually the data freshness

is loosely controlled by an expiry approach. Indeed any Data packet includes

a metadata reporting the freshness period specified by the producer, which

indicates how long the Data can be stored in the cache.

The forwarding engine also supports multicast distribution: if a node receives90

multiple Interests for the same object, the engine forwards the first packet and

discards the subsequent ones appending the identifier of the arrival downstream

faces in the PIT, if necessary. When a Data packet arrives, the node forwards

a copy of it towards each related downstream face in the PIT.

The ICN security is built on the notion of data-centric security : the content95

itself is made secure, rather than the connections over which it travels. The

ICN security framework provides each user with a private key and an ICN

digital certificate, signed by a trust anchor, and uniquely identified by a name

called key-locator [8]. Each Data packet is digitally signed by the content owner

and includes the key-locator of the digital certificate to be used for signature100

verification. For access control purposes, Interest packets can be signed too.

An ICN uses receiver-driven flow/congestion control. To download a content

formed by many chunks, the consumer sends a flow of Interest packets, one per

chunk, and receives the related flow of Data packets. Flow and/or congestion

control are implemented on the receiver side by limiting the number of in-flight105

Interest packets to a given amount (aka pipeline-size), which can be a constant

value or a variable one, e.g. controlled by an AIMD scheme [9]. In an ICN we

have end points that exchange Interest-Data sequences and the packet flow is
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regulated by the receiver. Dually, in TCP/IP the end points exchange Segment-

Ack sequences and the packet flow is regulated by the sender.110

2.2. ICN forwarding performances

Since ICN routers have to perform more complex forwarding operations with

respect to IP routers, many research papers focused on forwarding architectures

and technical solutions to improve their performance.

For example, in [2], the authors studied the forwarding performance of var-115

ious ICN prototypes (CCNx [10], CCN-lite [11] and NDN [6]) and presented

CCN-par: an enhanced version of CCN-lite, which includes optimized packet

queuing disciplines and substitutes all the critical data structures with more

efficient hash tables. Conversely in [5], the author proposes the integration of

CCNx with Vector Packet Processing (VPP) technology to improve the effi-120

ciency of the forwarders.

Other works address a specific issue: ICN routers have to work with variable

length names, differently from IP routers that deal with the fixed length IP

addresses; thus, the lookup in the tables (PIT and FIB) could become critical

from the computational point of view. Moreover ICN routing tables are expected125

to be much larger than IP ones. In this context, in [3] Yuan et al. studied

an optimized system lookup for names, focusing on the optimization of three

critical functions: i) exact string matching with fast updates, ii) longest prefix

matching for variable-length and unbounded names, and iii) large-scale flow

maintenance. In [12], So et al. designed an NDN [6] packet forwarder using a130

hash-based algorithm for name lookup and a PIT partitioning technique that can

efficiently exploit multicore processors. A special attention has been paid to hash

functions to ensure good lookup performance but also protection against DDOS

attacks. A different approach has been pursued in [4], where authors present a

hardware implementation of the PIT that reduces the overall processing time135

and in particular the I/O communications with the software control unit.

All these studies aim to design an optimized ICN router by improving the

software component, the hardware component or both. The clustered (and
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potentially cloud-based) router architecture presented in this work is comple-

mentary to those solutions, since it builds on top of them, allowing ICN routers140

to scale horizontally by sharing the computational burden on multiple machines

in an elastic way. Another advantage is that the proposed approach is also

useful to save energy, as under-used resources can be released, powering them

off; indeed, as pointed out by [13], ICN routers power consumption is far from

being negligible.145

2.3. Cluster-based routers

The idea of a cluster-based router is anything but new; one of the first work

in this field dates back to 2001 when in [14] authors studied how to improve

the reliability and scalability of IP routers. Usually cluster-based routers are

hierarchical machines arranged and connected to each other to offer different150

paths between the input and output ports. The cluster router concept has been

more recently integrated into the NFV philosophy thanks to the SDN technology

and to the availability of software routers. In this context, IP software routers

are commercial reality in NFV systems such as the Ericsson virtual router [15]

or the Juniper NFV router [16]. In [17] authors used NFV and SDN to design155

an elastic IP router for a VPN and built a demonstrator based on Open Virtual

Switch and Mininet.

To the best of our knowledge, this is the first work that brings these concepts

to the ICN world, presenting an architecture and an implementation of an elastic

ICN router, and facing the specific issues and requirements of ICN.160

3. Cluster Design

The primary goal of this work is to design a Cluster-based Scalable router

(CSR) that is externally seen as a single ICN router while internally distributing

the work load on a set of internal-routers, by means of a load-balancer. We chose

to exploit a fast load-balancer, which performs simple and state-less (from an165

ICN point of view) operations to distribute the traffic on normal ICN routers,
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Figure 2: Cluster-Based Scalable Router

employed as internal-routers. The main constraint of the proposed architecture

is to rely on connection-less faces: for convenience, in this paper we devised the

CSR using connection-less UDP faces even though the extension to Ethernet

faces is feasible, as discussed later on.170

The figure 3 presents an high-level view of the system operations: when the

load-balancer receives an external Interest (I) or Data (D) packet, it dispatches

the packet to an internal-router. Internal-routers have the full FIB1 and can

carry out the actual ICN processing, eventually generating a new ICN/UDP/IP

packet addressed to the next ICN node of the path. This packet traverses again175

the load-balancer before leaving the cluster. Being a possible single point of

failure, the load-balancer can be deployed with an high availability configuration

e.g. using the VRRP protocol (RFC 5798). In what follows we present the

logic of the cluster-based scalable router, discussing design principles and the

operation flow.180

1How to handle the routing plane is outside of the scope of this work. Anyway, a possible

SDN-like approach is to use a centralized routing entity connected to external routing peers

for building the full FIB. Then the full FIB is pushed to the internal-routers.
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Figure 3: CSR operations

3.1. Design principles

Logic wholly located in the load-balancer - ICN routers are rapidly evolv-

ing both in terms of functionality and performance and their implementation

is currently under significant development. Our cluster-based router is com-185

plementary to this evolution as it is able to accommodate current and future

releases of ICN routers without any modification to the forwarders’ source

codes. The whole cluster logic (figure 4) runs on the load-balancer, which ac-

cepts incoming faces on a well-known UDP port, e.g. 6363 for a NDN cluster.

190

State-less and kernel-based load-balancer - The load-balancer must not be a

bottleneck for the CSR, so its logic must be very simple and fast, to sustain

the aggregate throughput of possibly many ICN internal-routers. This led us to

design a state-less load-balancer, which dispatches ICN packets by changing

on-the-fly their UDP/IP headers (SNAT/DNAT blocks in figure 4), without any195

decapsulation/encapsulation work, and never leaving the OS kernel space.

Cross-layer implicit-identifiers of internal-routers - The ICN forwarding model

is state-full. Indeed, Data packets are sent back consuming the PIT entry built

by the related preceding Interest. In a cluster framework, this implies that the

load-balancer must dispatch a Data packet towards the same internal-router200
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that previously served the related Interest packet, otherwise a PIT miss would

occur, disrupting the communication.

This need is in apparent contrast with the state-less nature of the load-balancer.

At the arrival of a Data packet, a state-less balancer can not remember which

is the internal-router that previously served the Interest, but at the same time205

has to necessarily send this packet to such an internal-router.

To cope with this impasse, our idea is to insert in an outgoing Interest packet

an identifier of the serving internal-router and to piggyback this identifier in

the returning Data packet, thus enabling proper dispatching. Since we do not

want to change neither ICN packets nor the ICN router software, we exploit210

as implicit-identifier values of the UDP or Ethernet headers that are naturally

piggybacked in the Data packets [1], namely: the UDP source port in case

of UDP faces, or the source MAC address in case of Ethernet faces. Indeed,

these values are memorized in the PIT of external ICN routers and come back

in the returning Data packet within the UDP destination port or destination215

MAC address fields, enabling the correct dispatching to the right internal-router

(PORT MAP block in figure 4, for routers with UDP faces).

This solution does not require any change in the ICN protocol/router,

but only a configuration of the router UDP ports; it has no impact on exter-

nal nodes, since incoming faces are bound to the single well-known UDP port220

(6363) or MAC address of the load-balancer; and finally it also works in case

of not-perfect-matching between Interest and Data names, e.g. those im-

plemented in NDN by MinSuffix/MaxSuffix Interest Selectors, which are often

used for content/version discovery purposes.

In the considered implementation of a router with UDP faces reported in figure225

4, we bound each internal-router to a specific UDP port, namely: the internal-

router n. x uses the port 637x 2.

Hash-based dispatching - The load-balancer evenly distributes the incoming

2In case of Ethernet faces, we do not need such a bounding, since each router already has

a different MAC address.
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Figure 4: Functional block diagram of the CSR with UDP faces

Interest packets to all internal-routers by using a hash function (NAME HASH

block in figure 4), whose input is the Interest name including all the generic230

name components but not the Nonce (if present). In so doing, the CSR oper-

ates in a work-conserving way since all internal-routers are involved during

the download of different contents, but also during the download of the same

content, as chunk names include a different sequence number.

Furthermore, since the same chunk is always served by the same internal-router,235

the effectiveness of caching and Interest aggregation (multicast) is

preserved, excepting limited cases of Interest/Data exchanges involving not

perfect matching, e.g. for initial version discovery.

We finally observe that our hash-based dispatching requires the full FIB on

each internal-router and this may appear as a drawback with respect to ap-240

proaches based on the partitioning of the name space. By using these alterna-

tive approaches, the FIB of an internal-router would contain only the subset of

names of the partition assigned to that router. Nevertheless, in so doing a given

download would exploit only a single router and, moreover, the internal-router

handling popular names (e.g. YouTube) would be overloaded. With our hash-245
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based dispatching all internal-routers are uniformly loaded, even during a single

download. Moreover, the FIB is usually implemented by means of Hash tables,

thus the number of entries does not have a relevant impact on the complexity

of the forwarding lookup.

Live horizontal scaling - The number of internal-routers can change, es-250

pecially in the case of cloud deployments, so that the cluster can self-adapt

its allotted resources to respond to the variation of traffic demand. The CSR

supports live horizontal scaling: the addition or removal of an internal-router

happens with zero downtime, i.e., without any service interruption and packet

loss. The insertion of a new internal-router (scale-out) only requires the acti-255

vation of the new router machine and then a simple hot reconfiguration of the

NAME HASH and PORT MAP modules of the load-balancer. After the scaling

operation, new Interest/Data packets will use the new set of internal-routers.

Data packets that were in-flight at the scaling time will be properly served con-

suming the PIT entries of the old set of internal-routers, thanks to the usage of260

the UDP port as internal-router identifiers.

Conversely, the removal of an internal-router happens in two stages: in a first

stage, the NAME HASH must be reconfigured to restrict the set of internal-

nodes, excluding the router label IRx from receiving new Interest packets;

then, in a second stage (typically after a max-network-RTT), router IRx can265

be switched off. In this way any pending Data can be properly served before

shutting down the involved machine.

3.2. Sample operation flow

Let us now discuss a simple exemplary Interest/Data exchange by comment-

ing figure 4. The figure reports also source and destination UDP ports (s:d) used270

by Interest and Data packets. Without lack of generality, we assume that the

CSR is located between a consumer and a producer, whose receiving UDP ports

are the NDN default ones (6363).

The Consumer has a UDP face connected to the IP address and port (6363)

of the load-balancer and sends an Interest through that face (step 1). The275
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Interest is received by the load-balancer and traverses a hash function (NAME

HASH) that, on the base of the Interest name, selects the internal-router n.2 to

serve the packet (step 2). Using a DNAT operation, the Interest is forwarded,

by replacing the destination IP address and the destination UDP port with the

ones of the selected internal-router (6372).280

The internal-router n.2 forwards the Interest towards the producer within

a new UDP/IP packet, whose source port is 6372 and destination port is 6363

(step 3). The UDP/IP packet traverses again the load-balancer that only has to

change the source IP address with its own IP address (SNAT), before sending

out the packet to the Producer (step 4).285

When the Producer receives the Interest, it sends back the Data packet to-

wards the load-balancer within a UDP/IP packet whose source port is 6363 and

destination port is 6372 (step 5). The Data packet enters the load-balancer and

is processed by the PORT MAP module which, on the basis of the destina-

tion UDP port, forwards the packet to the internal-router n.2, which previously290

served the related Interest packet (step 6).

The internal-router n.2 receives the Data, consumes the PIT entry left by

the previous Interest and forwards the Data back to the consumer within a new

UDP packet that traverses the load-balancer (step 7). The balancer changes the

IP source address with its IP address (SNAT) and the source UDP port with295

the default one that in this case is 6363 (step 8). Finally the Data is properly

received by the Consumer.

4. Performance assessment

In this section, we report a set of experiments to illustrate the capabilities

of the proposed architecture, as well as the performance gain made possible by300

our solution.

4.1. Experimental setup

We ran our experiments in a controlled virtualized environment composed of

Linux-based virtual machines (Ubuntu 16.04, kernel 4.4.0) and Linux bridges.
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The hosting server has 16 cores (32 CPUs, hyper threading 2) and 64GB of305

RAM, and uses a KVM hypervisor with paravirtualized network drivers (Virtio)

and hardware acceleration.

The testbed architecture is shown in figure 5. We have a set of consumers and

producers on two different networks, which are interconnected by a cluster-based

scalable router. The networks between the consumers and the CSR, the CSR310

and the producers, the load-balancer and the internal-routers are implemented

by Linux bridges, each one providing a raw throughput close to 30 Gbit/s. All

virtual machines run an NFD ICN forwarder implementing the 0.6.0 version

of the NDN platform [6], except the load-balancer, which runs only our ICN

kernel-based software3.315

Each producer has 1 virtual CPU. It uses the utility ndnputchunks to publish

a content of 300MB fragmented in chunks with a size of 4400 bytes and identified

by a unique name prefix; producer #1 publishes a content named a, producer

#2 a content named b, and so forth. Each consumer has 2 virtual CPUs and its

ICN FIB is configured with the default entry (“/”) pointing to the load-balancer320

through an UDP face. It uses the ndncatchunks utility with pipelinesize=16

to retrieve contents. Each internal-router has 1 virtual CPU and its ICN FIB is

configured with an entry for each content name prefix (a,b,...), properly pointing

to the related producer UDP face. The load-balancer has 1 virtual CPU and

runs our software, which is composed of a set of plain iptables rules supported325

by the new iptables NDN extension carrying out matching and hashing

(Jenkins one-at-a-time) operations on NDN packet fields. To limit as much as

possible the interaction among processes running on different VMs, we pinned

each virtual CPU on a different core. Anyway tests that require more virtual

3In a more realistic scenario, the CSR could be deployed in a cloud, interconnecting related

VMs with a virtual network offered by the cloud, and configuring the load balancer with

necessary public (floating) IP addresses. All the considered ICN faces are supported by

UDP sockets, thus consumers and producers can be located anywhere on Internet, and can

be directly connected to the CSR router or could be served by other ICN routers, in turn

connected to the CSR with UDP faces.
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Figure 5: Network evaluation scenarios. Different consumers concurrently download a content

provided by a) different producers b) a single producer.

CPUs than real cores show slight interaction effects in the performance, as330

discussed later on.

All the technical details relevant to the cluster configuration are presented in

the technical annex [18], including also the open-source version of the iptables

NDN extension.

4.2. Load balancing335

In this section we show the load balancing performance, focusing on the

throughput improvement and work-conserving behavior of the CSR. For the

consumers and producers, the throughput is measured as the sum of their in-

put and output traffics (Interest+Data), including IP/UDP headers. Internal-

routers handle a double amount of consumer/producer traffic since any packet340

enters and exits the system. As a consequence, to make the comparison eas-

ier, the internal-router throughput is measured considering only traffic from/to

consumers.

We consider the scenario depicted in figure 5(a) in which different consumers
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concurrently download contents provided by different producers. Specifically,345

the consumer #x downloads the whole sequence of chunks of the content pro-

vided by the producer #x.

Figure 6: Aggregated consumer throughput vs. number of downloads, for different number of

internal-routers (IR), without caching.

The figure 6 shows the aggregated throughput of all consumers varying

the number of active downloads (Ndown) and the number of available internal-

routers (NIR). ICN caching is disabled.350

We begin by considering a ”No CSR” case in which we replace the whole

CSR of figure 5(a) with a plain NDN router. We achieve an overall consumer

throughput in the order of 300 Mbit/s and we observe that this throughput

limit is due to the ICN forwarding complexity and the current imple-

mentation status that brings the CPU load of the router close to 100%. In355

case of a single download, also the CPUs of the consumer and of the producer
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Figure 7: Aggregated consumer throughput handled by a single internal-router (IR #x) in

case of a CSR with three internal-routers vs. number of downloads, without caching.

are close to 100%, since all involved ICN forwarders support the same packet

forwarding rate. Overall, we conclude that in our configuration there is an in-

herent ICN forwarding rate limitation of about roughly 300 Mbit/s due to a

CPU overload caused by the complexity of the ICN forwarding processing.360

Let us now analyze the performance of the proposed cluster router for the

different configurations (1 IR, 2 IRs, etc.). Since any ICN forwarder is CPU-

limited to 300 Mbit/s, it follows that the expected aggregated throughput of all

consumers is close to 300·min (NIR, Ndown) Mbit/s. Indeed, when NIR > Ndown

the CPUs of end-point nodes limit the overall throughput; conversely when365

NIR < Ndown the CPUs of internal-nodes limit the overall throughput. The

load-balancer does not implement any ICN forwarder, but just a low-complexity

ICN packet dispatcher, based on IP/UDP kernel processing, and thus its CPU

17



Figure 8: Internal-routers and load-balancer CPU load in case of a CSR with three internal-

routers vs. number of downloads, without caching.

is mostly idle compared to the one of other nodes.

In figure 6, we first observe that, for the extreme case of a CSR with a370

single internal-router (1 IR) preceded by the load-balancer, we obtain the same

performances of the NO CSR case, confirming the transparent behavior of

the load-balancer on the system performance.

When we increase the number of internal-routers, we observe that the

throughput increases almost linearly with the number of internal-375

routers, e.g., up to 1150 Mbps with 4 internal-routers4. Moreover, the maxi-

4We observe that interactions between processes take place when the number of involved

virtual CPUs gets close to the number of server cores. For instance, in case of 4 IRs and 4

downloads, we expected a throughput in the order of 1.2 Gbit/s but we actually get a lower

value.
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mum throughput is practically reached with a number of downloads (i.e. con-

sumer/producer couples) greater or equal to the number of internal-routers.

Besides confirming the expected maximum throughput behavior, these re-

sults show also that having several internal-routers is not always necessary, since380

the bottleneck may be elsewhere. For instance, in case of two downloads, the

throughput does not significantly change by increasing the number of internal-

routers beyond 2 because, over this threshold, the bottleneck moves from the

CSR CPUs to the consumer/producer CPUs. This further motivates the de-

ployment of the CSR in a cloud environment, to dynamically adapt the cluster385

size, and taking into account also this phenomenon.

In figures 7 and 8 we consider 3 internal-routers and we vary the number

of downloads, to show the load-balancing work-conserving behavior. The

figure 7 shows the portion of the aggregated consumer throughput handled by

each internal-router, while figure 8 shows the related CPU load in percentage.390

The traffic is fairly distributed on all available internal-routers, corresponding

to a load equally balanced on all the computational resources available in the

cluster. This also happens in case of a single download, because dispatching

is performed on a chunk (Interest/Data) basis and a single download typically

involves many chunks. At the same time, the computational burden of the395

load-balancer, even with five downloads, is sensibly less than that of any one

of the internal routers, showing that our load-balancer is not a processing

bottleneck.

4.3. Heterogeneous internal-nodes

In a real environment, system designers have to cope with heterogeneous400

physical machines, e.g. with different CPUs. In those scenarios the load-

balancer should distribute the ICN network traffic to the different IRs pro-

portionally to their ICN throughput capability, i.e. in a non-uniform way. Since

the load-balancer packet dispatching module uses a hash function to select the

serving IR, a non-uniform traffic distribution can be easily performed though a405

non-uniform mapping of the hash space over the Internal nodes.

19



Figure 9: Aggregated consumer throughput for a uniform and non-uniform traffic distribution

vs. number of downloads in case of a CSR with three internal-routers and by limiting to 170

Mbit/s the network throughput of the LB-IR1 and LB-IR2 links

To assess the effectiveness of a non-uniform dispatching, we consider the sce-

nario of figure 5(a) with three IRs, but now we impose a limit of 170 Mbit/s to

the network throughput of the LB-IR1 and LB-IR2 links by using Linux Traffic

Control tools, to emulate the presence of IRs with different ICN throughput410

capability. In so doing, IR1 and IR2 have nearly half of the ICN throughput ca-

pacity of IR3. In figure 9 we report the aggregated throughput of all consumers

using a uniform and a non-uniform packet dispatching. In the non-uniform case,

the hash space is partitioned so that IR3 handles 50% of the traffic, while both

IR1 and IR2 handles 25% of the traffic, thus matching the throughput hetero-415

geneity. Results show that the non-uniform traffic dispatching allows to achieve

an higher throughput. Indeed, due to the consumer flow control mechanism,
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in the uniform case IR1 and IR2 act as bottlenecks and IR3 is underutilized.

On the contrary, as showed in figure 10, by introducing a proper non-uniform

traffic distribution, all IRs can reach their maximum throughput capability, so420

increasing the total consumer throughput.

Figure 10: Aggregated consumer throughput handled by a single internal-router (IR #x) in

the non-uniform traffic distribution

4.4. Preserving ICN features

In this section we test if caching and multicast ICN features are preserved

by the proposed CSR architecture.

For what concerns multicast, we consider the scenario depicted in figure 5(b),425

in which 5 consumers concurrently download the same content provided by a

single producer. In figure 11 we show the throughput measured on consumers,

producer and internal-routers (towards consumers). As we can see, the pro-

ducer traffic is equal to the one of a single consumer confirming that the CSR
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Figure 11: Throughput of 5 consumers (C), a producer (P) and 3 internal-nodes towards

consumers (IRx) in case of a multicast test

preserves the ICN multicast functionality. Furthermore, the sum of con-430

sumer throughputs is equal to the sum of internal-router throughputs with the

CSR being the multicast splitting point. We also point out that the internal-

routers achieve in this case a higher throughput performance with respect to

figure 7 because the multicast delivery functionality decreases the number of

forwarded packets between consumers and producers thus reducing the CPU435

load per packet.

To assess the caching functionality, we enable caching on the internal-nodes,

and set up an experiment where a single consumer requests two times the same

content. When the test starts, the caches of the internal-nodes are empty.

In figure 12 we show how the throughput varies on the consumer and on the440

producer versus time. As we can see, content is transmitted only one time from
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Figure 12: Throughput of a consumer and of a producer during the caching test and a CSR

with 3 internal-nodes

the producer, since the second request is served by the caches of internal-routers,

thus demonstrating that the CSR preserves caching functionality. The

figure 13 reports the cache size of all internal-routers. During the first download,

we observe that the occupation of caches is distributed fairly; indeed during445

the download of a single content all the IRs are almost equally involved, because

the load-balancer dispatches the workload on a chunk (i.e. Interest/Data) basis

and thus also the caches of internal-routers will be equally used. During the

second download the cache occupation remains stable since all Data packets are

served by the caches.450

We finally observe that the distributed caching strategy has a drawback in

case of non-perfect-matching ; in this case the CSR may not return a valid cached

data because it is not available in the cache of the internal-router selected by
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Figure 13: Cache size of internal-nodes during the caching test and a CSR with 3 internal-

nodes

the load-balancer for processing the related Interest. However, this inefficiency

should have a limited impact on real systems, since these situations are rare with455

respect to perfect-matching cases and usually occurring for version-discovery

purposes at the start of a new download.

4.5. Live horizontal scalability

In the following experiment we test the ability of the CSR to modify the

number of internal-routers without any service interruption. To this aim, we460

request 5 consumers to execute long lasting downloads of different contents, and

we vary the number of internal-routers during the data transfer (live scaling).

Caching is disabled on all nodes.

The figure 14 shows the aggregated throughput as seen by all the consumers.

In the left-hand part of the figure we perform a scale-out operation by varying465
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Figure 14: Consumer aggregated throughput vs. time when dynamically varying the number

of internal routers.

the number of internal-routers from one to three, making a change every 20 sec-

onds. In the right-hand part of the figure we perform the scale-in procedure by

reducing the number of internal-routers from three back to one. We observe how

the throughput promptly follows the hot cluster re-configurations.

Moreover, to verify the absence of packet loss, in these tests we used a con-470

figuration of ndncatchunks that does not allow retransmissions. Consequently,

if there had been a packet loss then the communication would have been inter-

rupted, but in our tests all transfers have been successfully completed.

5. Conclusion

In this work we presented a Cluster-based Scalable router (CSR), a novel475

architecture that allows ICN routers to scale horizontally and vertically, ex-
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ploiting resources available on different machines to achieve better throughput

performance, while preserving all ICN features. This approach is complemen-

tary with respect to solutions pursued in the literature, which focus on pushing

further the performance of a single ICN router through software/hardware im-480

provements. In addition to a functional architecture, we presented a working

and efficient implementation of the CSR, based on a Linux kernel module. We

also conducted an extensive set of measurements devised to illustrate the ca-

pabilities of the presented solution, and to analyze the achieved performance.

Our approach allows implementing elastic ICN routers able to self-adapt to a485

time varying traffic demand, acquiring and releasing resources, and guarantee-

ing a given performance standard. This is particularly useful when the solution

is used in a cloud environment, where virtual resources (e.g. NFV) can be

provided on demand.
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