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Lightweight Named Object: an ICN-based
Abstraction for IoT Device Programming and
Management

Lorenzo Bracciale, Pierpaolo Loreti, Andrea Detti, Riccardo Paolillo and Nicola Blefari Melazzi

Abstract—The expected dramatic growth of connected things
raises the issue of how to efficiently organize them, in order
to monitor and manage functions and interactions. Information
Centric Networking (ICN) is a communication paradigm that
provides content-oriented functionality in the network and at
the network level, including content routing, caching, multicast,
mobility, data-centric security and a flexible namespace. Thus,
it is a viable solution for supporting IoT services without
requiring any centralized entity. In this work we introduce the
Lightweight Named Object solution: a convenient way to represent
physical IoT objects in a derived name space, exploiting ICN.
We show that this abstraction can: i) increase the programming
simplicity; ii) offer extended functionality, such as augmentation
and upgrading, to cope with the “software erosion”, and iii)
implement a common interaction logic involving mutual function
invocation. We present some proof-of-concept implementations
of the proposed abstraction dealing with challenging IoT test
cases; we also carry out a performance evaluation in a simulated
network scenario.

Index Terms—IoT, ICN, NDN, Distributed Objects, Naming,
Augmentation, Programming Language, Data-Centric Security

I. INTRODUCTION

The Internet of Things (IoT) concept is transforming many
businesses, driving the digital transformation of industries
and creating an immeasurable social value. As digital things
become increasingly cheaper, more and more devices are con-
nected to the global network, moving the number of connected
hosts up of one order of magnitude. Sensors and actuators
are widespread in a myriad of different and heterogeneous
environments, from homes (smart homes) to whole cities
(smart cities), enabling pervasive smart services and deeply
transforming the way we perceive, access and manage the
environment around us [1].

A necessary condition for building such smart environ-
ments is that “things” communicate and interact with each
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other according to a specific application logic, which can
be provided both by system designers and by final users.
Nowadays this task is often entirely entrusted to cloud IoT
platforms that collect and distribute data at a large scale,
offering sophisticated tools for IoT system programming and
data analytics [2], [3].

Cloud platforms typically work at the application level;
however, a more efficient and higher-performance solution
would be to address at the network level many challenging
tasks that need to be accomplished (also) with physical/local
support, such as device discovery, software/firmware update,
local device composition, local programmability and build-in
data security and access management [4].

While standardization bodies offer several protocol solutions
[3] for device communication (e.g. MQTT, CoAP, AMQP) dis-
covery (e.g. Physical Web, mDNYS) identification (e.g. uCode)
and infrastructure building (e.g. 6LowPan), maintainability and
business issues arose, demanding new ways for troubleshoot-
ing local problems as well as upgrading an already deployed
infrastructure to support either software or hardware changes.

Information Centric Networking (ICN) is a paradigm
emerged to overcome some intrinsic limitations of the IP
protocol. In ICN, the network provides users with access
to content by names, instead of providing communication
channels between hosts. The idea is to provide access to named
data as the fundamental network service. This means that all
content (e.g. a document, a picture) is given a name that does
not include references to its location; then, users requests for
a specific content are routed toward the closest copy of such a
content, which could be stored in a server, in a cache contained
in a network node or even in another users device; finally the
content is delivered to the requesting user by the network. As
a consequence, applications can refer to data through a name
that can potentially contains semantic. In this way network
and applications are allowed to share the same namespace,
enabling simpler edge networking and boosting innovative
IoT architectures, for instance through appropriate naming
conventions. Moreover, ICN uses data centric security rather
than secure communication channels (e.g. HTTPS), defining
a name-based trust schema for distributed authentication and
authorization [5].

ICN has been already proposed to cope with IoT challenges,
contributing to simplify the IoT landscape, particularly provid-
ing solutions to devices organization [6], [7], [8], in-network
data processing [6], location-based routing [9], improvement
of system performance [10] and embedding of authorization
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and data security in the network, [11], [12]; ICN solutions
have also been the object of standardization work [13].

In this work we present an ICN framework designed to
enable a more flexible and easier management of IoT devices.
To this aim, we introduce the Lightweight Named Object
(LNO) solution, an ICN-based abstraction able to provide
a convenient “things” interface for IoT management and
programmability. LNO does not require any “bindings” (logic
connections supported by persistent communication channels)
among all the remote parts composing an object, making it
suitable for dynamic IoT environment. A lightweight object
is identified by a simple, shared name prefix on the global
namespace natively provided by ICN technology.

We also show how the introduction of this abstraction
brings about several advantages for programming patterns, ser-
vice composition, device upgrading and object augmentation,
which can be used for device-to-device interactions and/or
exploited by existing IoT cloud platforms.

It is a matter of fact that several IoT programming so-
lutions, including IBM Flow Programming and the Micro
Service architecture, are pushing towards a new service/data
organization to cope with the dynamic and complex nature of
IoT scenarios. LNO uses the ICN namespace organization to
express the semantic of the new network interface, reproducing
the effectiveness of the Object Oriented Programming.

In what follows we describe the LNO concept and present
several examples to see how it makes more easy to program
IoT. The paper is organized as follows. Section II intro-
duces the Lightweight Named Object, presenting the main
motivations and advantages of the proposed architecture. In
sections III and IV we present how the LNO and its security
mechanisms can be implemented by using ICN. In section
V we show some examples of service implementation and
how these services can be programmed using LNO. In section
VI we report a preliminary performance evaluation. Finally,
we review the related work in the field and we draw the
conclusions.

II. LNO CONCEPT

The Lightweight Named Object (LNO) concept consists
in using ICN hierarchical names and their inherent security,
organizing the namespaces provided by the network with aim
of addressing specific IoT tasks. In this section we give a
definition as well as practical examples on how is possible by
using LNO to achieve an easier and more clear programming
of intelligent functionality in smart environments (building,
houses, cities, etc.).

Definition: a Lightweight Named Object is a set of named
data and functions published by the ICN network under the
same network prefix, with the goal of exposing a management
interface for real “things”.

To clarify the concept we use the example of a video
camera, model MG21 and Serial Number 12345, exploiting
ICN communication and deployed in a smart environment.
The manufacturer or the installer has to assign to the cam-
era a unique ICN name prefix such as /videocamera,

/VC/MG21/12345, /SN12345. ICN security rules allow
to reserve a name prefix, allowing only authorized entities to
publish a name, as explained in section IV. In the following,
for the sake of simplicity, we use the simple name prefix
/cameral and some named functions and data published
under the prefix as reported in figure 1.

Assuming that the camera adopts the LNO concept, it
exposes some interfaces under the prefix /cameral: these
interfaces allow to access data (e.g. status, stream) or to
execute functions (e.g. on, off, detect). All interfaces occupy
a place in the namespace such as /cameral/on.

The LNO semantically associates all functions and data to
the “cameral” object, by sharing the same name prefix, even if
they are not directly implemented by the camera object and are
exposed by other network nodes; in fact ICN “hides” how and
where the interface is implemented: for instance the detection
function can be provided by an external controller that uses the
video stream coming from the camera. The LNO defines an
object-level namespace that offers a semantic link for all the
functions that refer to the same objects. The link is provided
at the network layer by ICN, given that all the functions are
published under the same name prefix and thus preventing
the so called namespace pollution, a typical problem of many
programming languages. As an example, the detect function
may assume different meanings if applied to a camera or to
an anti-intrusion alarm and the detection functionality can
also be physically implemented on different nodes such as
the camera controller and the alarm central device. This is a
fundamental difference between our solution and the Named
Function Networking (NFN) approach (see section VII for a
more detailed analysis).

*on() >
* off{() > } Power plug
* status —_—
* detect(face, actions) —— ‘@t}v’ Controller
* stream —_

Fig. 1. Camera methods can be implemented by different networking elements

With reference to an IoT service scenario, the usage of
LNO can lead to several advantages for managing things and
programming their relations, which we are going to briefly
describe hereafter.

An easier way to implement program logic: The ICN
technology has been proved to be an effective solution to
implement network services [14] and network functions [15] to
support Future Internet programming paradigms. Indeed IoT
applications need to express relations among objects in an
easy way, in order to build complex and predictable behaviors.
For instance, it could be needed to implement the automatic
opening of a door when a machine learning software recog-
nizes from a camera that an employee of a company stands
in front of the door. In this case, LNO allows expressing such
complex behavior by simply executing a named function and
passing some data as parameters. In more details, we need to
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invoke cameral.detect) with the following parameters:
i) named data corresponding to the “face” of an employee (e.g.
/faces/alice) and ii) named function corresponding to
the action to perform after confirming the detection (e.g. call
/doorl/open). LNO provides a convenient abstraction to
interact with “things”, resembling intentional programming
[16] but applied to real objects, where we can express our
intent with expressions such as:

cameral.detect (faces.alice, doorl.open)

This expression offers an high-level vision of the program
behavior and a convenient way to express a relation among IoT
services, objects and data, not originally built to work together.
Differently from the use of sophisticated but centralized IoT
cloud platforms, this approach operates at the network level,
offering the extra advantage of easing the management of
network functions (e.g., the setup of a firewall to regulate the
access to IoT appliances).

Network object augmentation: Object augmentation is a
common practice in prototype-based, object-oriented program-
ming languages. Augmentation is an approach consisting in
extending the object functionality without the need to change
the original object implementation.

With LNO it is possible to augment objects by providing an
extended set of functions in addition to the set of “internal”
functions that they are already shipped with. The networking
layer provides the ability to extend objects by simply publish-
ing a name under the object network name prefix. This enable
the re-purposing of existing hardware by adding new software
functionality. Let us consider for instance the case of a surveil-
lance camera that exports only the st ream name to access the
video stream. With object augmentation we can re-purpose this
object for face recognition using suitable algorithms in order
to provide an IAM service (we present the implementation
of this use case in section V-B). Even though this is possible
by simply applying the face recognition function on top of the
video stream (for instance pipelining the stream with the algo-
rithm using lambda calculus [15]), it could be more convenient
from an IoT programmer/maintainer point of view to see it as a
“native feature” of the camera. This enables the programming
of a complex functionality as an easy-to-read operation that
can be expressed as: cameral.detect (faces.alice,
doorl.open).

The detect method enriches the basic set of functionality
originally shipped with the camera by the hardware vendor,
and can be implemented by an extra hardware or through
virtual container-based machines and advertised on the net-
work. As an example, in figure 1 there are several methods of
camera objects implemented by different networking elements.
For instance, the on/off methods can be implemented by smart
plugs, the face detection can be implemented by a controller.
All these methods can be seen as methods of the “cameral”
object but not all of them must be initially shipped with the
original hardware.

Easy-to-update object: Updating things is a challenging
issue for IoT management platforms. It implies software
updates to patch security flaws, correct software bug, improve
performance or add new features. In many cases, performing

periodic software update is vital to keep things efficient and
usable, fighting also the so called software erosion'. Updating
procedures usually require a support by the hardware man-
ufacturer for firmware creation and dissemination, resulting
in a potential risk for the maintainability of large scale
device deployments. With LNO it is possible to update the
object functionality by simply overriding its name on the
network namespace and advertise it with a greater priority. The
network will automatically route any further request for that
function to the new producer, without requiring any software
update released by the hardware vendor and preserving the
same name hence the same service interface. The network
maintainer can therefore manage things and also their upgrade
by orchestrating the name advertising on the routing plane.

Security by design: Un-secure [oT is simply not an option.
Thus, we dedicate a whole section (section IV) to explain how
it is possible to make secure the Lightweight Named Object
solution, by leveraging on the ICN built-in network security
capabilities.

Service discovery through common network names: Pro-
gramming a software (e.g., a mobile application) that interacts
with the surrounding things, requires a way for the application
to automatically discover and call specific methods of the
objects. For instance to turn on the light in the current room,
the application must know both the existence of the 1ight1l
object and the availability of a function called on that should
be called to turn on the light. This knowledge plays also a
prominent role for implementing relations between objects.

However, defining a common interfaces for all the similar
objects is not an easy task. Instead, with ICN, this agreement
can be done on a name basis, facilitating the sharing of com-
mon interfaces, to allow objects to export their functionality
so that other objects can use them. For instance, it is not
needed for an object to know the protocol and the encoding
required to speak with an automatic door but it suffices to
know that “often” doors objects export a function named
“open”. In this case we can use a loose naming convention
rather then a complex protocol definition. Similar objects can
share similar names, as names implicitly express the interface
to communicate with the objects.

Distributed deployment: In contrast to many [oT deploy-
ment scenarios, where we have simple objects and ‘“‘smart”
middlebox/gateway, with LNO we can easily distribute func-
tions in the network. It has also be proven that the routing
plane of ICN can be implemented in life-size [oT deployments
[17] (this work also includes a comparison with common IoT
standards such as 6LoWPAN/RPL/UDP).

III. LNO IMPLEMENTATION
A. Naming schema

It is important to define the ICN naming schema to support
the LNO concept. We adopt the hierarchical naming structure
of the NDN architecture [18] and we select a name compo-
sition that is an extension of [14] and [15]. Specifically, we

Islow deterioration of software performance over time or its diminishing
responsiveness, which can eventually lead to software becoming faulty or
unusable
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propose an object name composed by four parts: the routable
prefix, the name of the object, the specific data or function
name and its (optional) parameters (see fig. 2).

The routable prefix is used by the network forwarder to
restrict the propagation of Interest packets to a specific area
in their way to the data location [12].

The name of the object part represents the physical (or
virtual) device in the namespace.

The data or function name represents a way to access the
data or to invoke the function execution; it is published under
the object scope identified by the routable prefix and the name
of the object.

Finally, the parameters part is optional; it can be needed by
the functions to address a specific problem. Each function may
require one or more parameters that are concatenated in the re-
quest by the “_” character that acts as a delimiter between the
parameters values. Clearly the underscore becomes a reserved
symbol for the LNO naming scheme, which, if necessary can
be escaped e.g. with the ASCII numerical form.

/buildingl/ @® cameral/ @® onDetect/ ® $/faces/john/$/doorl/open

routable prefix object name funcion name parameters

Fig. 2. Proposed named schema

B. Name publishing and advertising

The introduced naming scheme is inherently supported by
NDN nodes. However, in the IoT network, devices can come
and go, so it is imperative to handle things management in an
automatic way. In the ICN context this requirement is fulfilled
thanks to the routing protocol that dynamically advertises
the names published by the various objects in the network,
enforcing all necessary security requirements ad discussed in
sec. IV.

More in details, the node publishing a function on the
routing information base (producer) is also the one responsible
of allowing this function to run and to produce Data Packets
for the consumer node. To this aim, the producer leverages the
ICN routing daemon such as the NLSR link state routing pro-
tocol [19] to advertise the new name towards the other nodes
of the network. The selected naming scheme structure allows
exploiting the scalability features of the NLSR protocol since
it includes the routable prefix part. Similarly to many other
routing protocols, NLSR uses a link cost in order to choose the
best route for the destination node. This functionality is used
in the LNO architecture to give a numerical priority to names
so that Interest packets will be forwarded to the advertising
node having a greater priority. This enables the update feature
illustrated in section II: to update a function the new publisher,
using the right security credentials, advertises the same name
with the routing protocol but with an higher priority than the
legacy function. In this way the network layer will route the
Interest packet towards the new “updated” function producer.
Note that this strategy exposes the network to a name attack:
for example, by overloading the “/cameral/stream” name a
malicious node could hijack the security camera video flows
from the actual captured stream to a recorded tape. Thus, it
is important to prevent unauthorized nodes to publish names

on the routing information base. We address this requirement
by using NDN and NLSR security features as described in
section IV.

C. Object synchronous interaction

When a node has to interact with a LNO it sends an Interest
packet with a suitable name, according to the specified naming
schema. Every router receiving the interest is able to forward
the request to the node that is able to perform the requested
action. The simpler interaction that can take place in LNO
is the synchronous function invocation showed in figure 3.
The controller sends an interest containing the name of the
object and of the invoked function. In figure 3 it invokes the
/cameral/status and then the /1ight1/on functions.
The invoked objects execute the command and return back
the results in a Data packet for instance with a JSON data
structure.

Controller Object

/camera1/status

/light1/on

Fig. 3. Message sequence diagram for LNO synchronous function invocation

D. Objects asynchronous interactions and chaining

Very often in IoT systems we need to specify behaviors
of the network in reaction to some triggering events. For
instance, if we want to open a door only when an employee
is recognized to be in front of the door, then we need to set a
trigger action for that event. This functional chaining pattern,
common in flow programming, requires the implementation of
the so called callbacks. In the LNO architecture a callback is
a name corresponding to a function that has to be called in
reaction to a specific event. For instance, as depicted in figure
4, we can decide to call /doorl/open when cameral
detects a given face.

Controller camera1 door1

‘cameral/detect_/faces/riccardo_/door1/open
{cms-status:"accepted”} detect

/door1/open
{cms-status:"executed”}

Fig. 4. Message sequence diagram of a LNO asynchronous function invoca-
tion and functional chaining

According to the presented named schema, the
controller sends an Interest packet with the name
/cameral/detect_/faces/riccardo_/doorl/open.
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The returned Data carries an acknowledgment string to
notify that the request is taken in charge by the LNO, or
may contain application layer error reporting. Each function
can receive as parameters many different values, which can
correspond to integers, strings or NDN Names. The definition
of the parameter and of their types are function-dependent. We
remark the possibility of chaining reactions. For instance, we
can also program this callback event in addition to the previous
one. As showed in figure 4, once a given face is detected by a
camera, the door is opened, to let the employee access to the
building.

Algorithm 1 Controller side
1: function INVOKE OBJECT FUNCTION(o, f, p1 ... pn) »>

Where o is the object name, f the function name and p;

... pn, the function parameters
name = setupName(o, f, p1, ...
sendInterest(name)

4 while not isDataArrived do:

5 Wait()

6: end while

7

8:

Dn)

W N

passDataToApplication()
end function

Algorithm 2 Object side
1: function EXECUTE LOCAL FUNCTION(J])
the received Interest

> Where I is

2: o < getObjectName(I)

3: f <+ getFunctionName(I)

4: P1 ... pn < getFunctionParameters(I)

5: if isSynchronous(f) then

6: res = f(p1 ... pn) > execute the function
7: sendData(res)

8: else

9: sendAcknoledgeData()

10: f(p1 ... pn) > execute the function
11: while functionIsRunning do:

12: if AsyncronousNotification() then

13: SendInterest(p;) > p; = callback name
14: while not isDataArrived do:

15: Wait()

16: end while

17: end if

18: end while

19: end if

20: end function

Algorithms 1 and 2 describe the actions performed by the
controller and by the object, respectively. The main task of
the controller is to create an Interest name according to the
specified naming schema and to send an Interest packet in
the ICN network. On the object side, we distinguish if the
function call is related to a synchronous or an asynchronous
interaction. In case of synchronous interaction, after getting the
object name, the function name and the (optional) parameters
from the Interest name, the object executes the function and

sends back to the controller the result. In case of asynchronous
interaction, the object sends an acknowledgment data and
starts executing the function. Then, when the function needs
to asynchronously notify state changes through a callback
(e.g., when a camera detects a target), it sends an Interest
packet. We remark that objects can receive Interest packets
from both controllers and other objects in case of function
service chaining.

IV. SECURITY

In NDN, security is built-in, through a data-centric ap-
proach. Authorization and authentication properties and pro-
cedures are defined and applied for and to each named data; a
named based trusted schema is also defined to implement them
in a distributed form [5]. In what follows we limit ourselves
to describe the security aspects related to the construction of
the LNO, referring to the specific literature (such as [5], [18],
[20] and the survey [21]) for the general issue of security in
NDN.

A. Authorizing LNO interactions

In every IoT environment it is necessary to properly define
the authorization procedures, allowing only selected objects
to interact with other selected objects to create the smart
environment. To this aim we need a trusted entity that, in our
case, is the owner of the object. We remark that the owner
could be a person, company or a public administration. The
owner is responsible of the behavior of the objects and defines
the security and authorization rules that regulate the objects
interactions.

Let us consider for example, the security operations required
to control the status of a television named /tv1 on behalf of
a remote controller named /remotel:

1 When the owner buy the objects she/he signs their public
keys. The names of the resulting certificates will be used
by both objects as their key-locators as described in [5].
This will demonstrate that the objects belong to a given
owner and allows the construction of custom security
validators.

2 Then the owner certificate is added to a list called
authorized-operators, stored inside each object. This al-
lows the owner to add further certificates to these objects
in the future.

3 Finally, the remote controller certificate is added to a
list called allowed-entities of the television and vice
versa. This operation must be executed by an authorized
operator.

The NDN/NLSR infrastructure allows to easily enforce
such rules by defining a specific regular expression-based
language. To enforce the rules of the described example,
the permission check syntax is expressed by the following
fragment of configuration script:

rule {
id "LNO interest access control"
for interest
filter {
type name
regex <tvl><on>$
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}

checker {
type hierarchical
sig-type rsa-sha256

}

trust—-anchor {
type dir
file-name /authorized
refresh 1h;

}

}

B. Supporting LNO augmentation

Object augmentation allows network entities to provide
methods for other objects, by publishing a name in the
object namespace. This enables to enhance objects with new
functions or override existing functions. The new ”augmented”
functions are announced on the routing plane, but a protection
is needed against unauthorized object augmentation. To this
aim, we devised an NDN/NLSR rule that enables network
verification on nodes that announce names with a certain
prefix. This rule is implemented as follows:
rule {

id "LNO augmentation rule"

for interest

filter {

type name

regex “<localhost><nlsr><prefix-update>
[<advertise><withdraw>]<>%$

}
checker {
type customized
sig-type rsa-sha256
key-locator {
type name
hyper-relation {
k-regex ~ (<>%)<KEY><>x<ksk-.*><>x$
k—expand \\1
h-relation is-prefix-of
p-regex “<localhost><nlsr><prefix-update>
[<advertise><withdraw>] (<>%)$
p-expand \\1
Py oo}

This rule establishes a relationship between the an-
nounced/withdrawn name and the key name used for signing
the command interest: the filter matches the NLSR Con-
trol Command Interest for advertisement/withdrawal and the
checker checks if the left-hand part of the KeyLocator (before
the “KEY” component) corresponds to the prefix of the
announced/withdrawn name. The name of the public key
required to enable signature verification is specified in the
KeyLocator 2.

An entity that has to add a functionality (e.g.
/cameral/detect) to an LNO needs the authorization
from the owner of the parent object (e.g. /cameral), before
being allowed to publish its method on the global routing
plane. The owner of the parent object name prefix provides

2Currently, the NDN validation system does not allow to create security
rules with a relationship among the name announced/withdrawn and the name
of the key used to sign the Command Interest. The name to be announced
is encoded in the name of the Command Interest and the actual NDN
validator engine does not consider encoded name components. To extract
announced/withdrawn name from the command interest name, we had to
implement a patch in the ndn-cxx library, specifically in the checkRelation
method of the KeyLocatorChecker class, which extracts the name to an-
nounce/withdraw from the TLV encoded component of the command interest

the other entity with a signed certificate that is used to publish
that specific name under the same object prefix.

V. PROOF OF CONCEPT

In this section we describe some IoT use cases that we
implemented using the Lightweight Named Object concept,
to show how it can simplify the way to interact with “things”
and among “things”. The proposed uses cases have been
implemented by using NDN and in particular using NFD
v0.5.1. 3.

A. Synchronous interaction: controlling a smart lamp

We started by implementing a synchronous interaction in the
case of a smart lamp implementing the network architecture
depicted in figure 5. In particular, we developed an NDN
node that publishes the LNO interface of a Philips HUE
smart lamp advertising the names corresponding to the lamp
APIs and listening for action requests coming in the form of
NDN Interest packets. Basically, the node translates the HUE
proprietary protocol requests and responses into NDN Interests

and Data packets.
'lﬂl'

PHILIPS w
> 2\

Named Data
Network

Fig. 6. Testbed setup, composed by two NDN nodes installed on a laptop
and a smart lamp

We implemented the LNO /1ightl by using an LNO
abstraction that offers two easy synchronous methods to switch
on the lamp and to set the color of the smart bulb, as described
in the flow diagram of figure 7. We also implemented a test
client using a standard NDN consumer that can interact with

3https://named- data.net/doc/NFD/0.5.1/
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the lamp by invoking named methods such as /1ightl/on
or /lightl/color/#FEOOEA. The testbed implementation
is shown in figure 6.

Consumer
Nlight1/on

Light1

PHILIPS

Fig. 7. Smart lamp NDN sequence diagram: switch on and change color
operations

B. Camera detection and asynchronous calls

To assess the call chaining features we devised a more
complex use case: switching on a light once a given person
is recognized by a camera. To this aim we setup the network
architecture depicted in figure 8.

Named Data Network

Fig. 8. Architecture of the camera detection use case

We connected two other NDN nodes to the previous net-
work: a custom NDN node publishing the LNO interface of
the video camera (named /cameral), and an NDN standard
repository publishing the faces (named /faces). Clearly,
this scenario requires an asynchronous interaction among two
LNOs, the light and the camera, showing how this interaction
can be easily achieved using the LNO abstraction. Moreover
the cameral is augmented with the detect function. This
method accepts as parameters the face to detect and the action
to do after detection, both of them in the form of names.

The detection is performed by using recent machine learning
algorithms that can be possibly substituted/updated in the
future. In the implemented scenario a deep learning algorithm
is trained by using the image of the face specified by the
first parameter and fetched through the NDN network by
some node caches or by the face repo. The detection activity
performed by the object (or near the object, for instance
following the approach of Krol et al. in [14]) offers the benefit
of implementing the principle of data locality avoiding that
the whole video stream flows from the camera device to a
centralized cloud to be processed.

Then, when the camera detects a person, with a certain level
of probability, it sends an Interest towards the name specified
by the second parameter: in our case this action will switch on

the light with the color specified by the parameter. Finally, the
third parameter specifies another recipient of the notification;
in our case we use this name to notify the consumer that
a detection took place. The producer publishes a new name
using a “nonce” and the consumer can retrieve the details of
the detection using that unique name (e.g. the name of the
detected persons together with the details of the camera that
detected that person). An example of interaction among the
NDN nodes is reported in figure 9, showing all the names in
the Interest and Data packets.

Consumer cameral light1
/camera1/detect/_/faces/riccardo/_/light1/color/red/_/consumer/result
Bl ]
< ‘starting [faces/riccardo/
| seng T
3 detection” - -------"""" face
Q [«
@ repo
o .-~~~ picture bytes
o waiting for
-3\- camera
g detection
3
«
c
é fconsumer/result/_fcamera1/result/nonce | /iightt/color/red/_/camera1/result/nonce
I |
S empty data N ——
s | T o @S-
- ® ® light status
/camera1/result/nonce =3
Q)
- — | &%
-------------------------- 53
[ “detected riccardo” §3
&

Fig. 9. Flow diagram of the camera detection use case

The proposed architecture allows to natively support mul-
tiple cameras and multiple consumers and detect multiple
persons. A potential extension of this use case is thus showed
in figure 10 where we depict four LNO objects correspond-
ing to four different security cameras named /cameral ...
/camera4 and two security operators /operatorl and
/operator2. Operatorl is interested in all video streaming
from the cameras detecting Alice while Operator?2 is interested
in cameras detecting Alice or Bob. Clearly the NDN built-
in caching and multicast features allow simplifying and opti-
mizing all the nodes interactions. Moreover, using the same
architecture of figure 8, operators can be notified about the
detection and they can start fetching the video stream using a
distributed strategy orchestrated by NDN. The NDN network
can provide the video stream detecting Alice to all the security
operators at the same time, leveraging on the NDN multicast
functionality. Moreover packet filtering can be performed as
close as possible to the video, avoiding bandwidth waste and
allowing easy programmability.

1,

- Joperatorl
/cameral

4 D fpiee

\J\Q
operator2
— / p:
Allce
Bob

Fig. 10. Example of a many-to-many use case, where LNO is used for
surveillance
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C. Interactive shell for objects configuration and maintaining

The LNO architecture has been designed to support existing
IoT frameworks. However, it also allows a direct programming
of objects. Thus, we designed a custom IoT shell running on
a web page. The shell communicates with NDN nodes using a
web-socket and it is able to “translate” simple scripts in a set
of NDN interests. Each Interest packet represents a function
and it is forwarded by the routing plane to the NDN object
able to execute it. Responses are echoed back on the web page.

The keyword “NOTIFY” is used to implement the asyn-
chronous function invocations and thus to create parallel
requests: if this keyword is present, the application starts the
execution of the IF/ENDIF block in a separate thread, in order
to let the user to execute other commands at the same time.
Otherwise, commands are executed one by one.

F camera.detect(faces/riccardo
light1 ¢
NOTIFY=consumer/result

ENDIF

Command List| Clear

SENDING: camerai/detect/_/faces/riccardo/_flight1/colorired/_/consumeriresult

RESPONSE: Command

d - waiting for d

RESPONSE: Detected riccardo

Fig. 11. Example of the LNO interactive shell used to program the behavior
described in section V-B

In the example of figure 11 we show the commands needed
to implement the use case presented in the previous subsection.
The semantic associated to the NDN LNOs provides an easy
way to program, debug and maintain the above configuration.

VI. RESULTS AND DISCUSSION

In this section, we compare LNO and functional approaches
with the aim of assessing their impact in an ICN network, in
terms of forwarding load. A pivotal characteristic of LNO is
that augmented functions are exposed as object methods rather
than as global functions (with the object data as parameter),
as in case of NFN [15]. At the ICN layer this characteristics
implies the use of hierarchical names versus flat names, to
access augmented functions. This, in turn, influences the
number of routing entries in the ICN Forward Information
Base (FIB) needed to support the system, which is an impor-
tant performance indicator determining scalability and even
feasibility of ICN applications [22]. Thus, we compare the
two different choices, LNO and global augmented functions
(GAF), in terms of average number of required FIB entries
per node.

To this aim, we simulate a system of objects (sensor/ac-
tuators) interconnected by an ICN network. We generate a
graph composed by N = 500 nodes connected by a scale-free
network topology with parameters o = 0.41, 8 = 0.54 and
v = 0.05 [23]. We assume that leaf nodes represent objects
and that internal nodes have enough computational capacity

to execute both ICN processing and augmented functions. The
resulting network has L. = 284 leaf nodes (i.e. objects) and
216 internal nodes.
We divided the objects in G groups: the objects of the same
group expose the same set of internal functions and M aug-
mented functions. To simulate the fact that some objects may
be more popular than others, the groups cardinality follows a
Zipf distribution (power law) with parameter o = 1.1.
For instance a group of 5 temperature sensors with
only getCurrentTemperature internal functions may
be deployed on five distinct leaf nodes and may re-
quest to the network internal nodes to execute M = 3
augmented functions, namely: getAverageTemperature
getMinTemperature getMaxTemperature.
We considered two different deployment strategies for the
augmented functions:
o Edge: the functions are deployed on the leaf gateway,
i.e., the inner node that is directly connected to the leaf.

« Server: all the functions are deployed on a single server
node (e.g. hosted in a central cloud) that is the one with
the greatest ’betweenness centrality”.

To build the FIBs, we used the following approach. Each
leaf node has a pre-configured default FIB entry (/") towards
its gateway and an entry for the name of the object it hosts
(e.g. /temp-sensorl), which points to the local application
entity handling all the object internal functions. Such an object
entry is also announced to the ICN routing plane.

Internal nodes hosting augmented functions have an en-
try per function in their FIB, whose naming scheme
is the following: the augmented function name (e.g.
/getMinTemperature) in case of GAF; the augmented
function name under the naming subtree identified by the ob-
ject name (e.g. /temp-sensorl/getMinTemperature)
in case of LNO. Such function entries are also advertised on
the ICN routing plane.

A named-based version of the Dijkstra routing algorithm
computes the routes toward all published names for each
network node. We remind that ICN forwarding adopts a
longest prefix matching (LPM) forwarding strategy, but ap-
plied to names, rather than to bits of IP addresses. As a
consequence, many routing entries are redundant and we
removed them for building the final FIB. We call this pro-
cedure route-aggregation (similar to IP supernetting). For
instance, if a node has an entry for /temp-sensorl and an
entry for /temp-sensorl/getMinTemperature, and
both entries have the same next-hop (aka output face) then
the second entry can be removed since Interest messages
for /temp-sensorl/getMinTemperature are properly
forwarded by the /temp-sensorl entry too. If the next-
hops were different, the entry removal would have not been
possible.

In figure 12 we plot the average number of entries in the FIB
of a generic network node. We varied the number of groups G
in case of L = 284 objects and M = 10 augmented functions
per group. For both kinds of LNO deployments the number
of FIB entries does not increase with the number of groups,
indeed, for LNO, what actually impacts the FIB size is the
total number L x M of per-object augmented function names
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(e.g. /temp-sensorl/getMinTemperature) and the
number L of object names (e.g. /temp-sensorl), whose
values are constant in this simulation. The big difference
in FIB size between the Edge and Server cases is due to
the fact that in the Edge deployment the route-aggregation
process practically cancels the effect of L x M contribution,
by removing the per-object augmented function names from
the FIBs in a large fraction of network nodes. Actually, a per-
object function name only remains in the FIB of the leaf node
hosting the object and on its gateway.

In case of GAF what impacts the FIB size is
the total number of augmented functions names (e.g.
/getMinTemperature), i.e. G X M, and the number L of
objects names. We observe that Edge and Server deployments
lead to the same results and this will be the case also for other
performance measures addressed below. This is due to the fact
that any FIB must have the routes towards any augmented
function and object name (even though pointing to different
next-hops in the different deployments) and route-aggregation
is not possible since the related names are flat.
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Fig. 12. Average number of FIB entries for different deployment strategies
by varying the number of groups

In figure 13 we repeat the same analysis by increasing the
network size from 300 to 1000 nodes, and thus varying the
number L of objects (leaf nodes) too, as reported in the x-axis
of the figure. Number of groups and of augmented functions
per group are G = 20 and M = 10, respectively. In any
case, we see an almost linear increase of the average FIB
size. Indeed, as discussed before, the FIB size of any solution
increases with L and with other possible contributions too.
More precisely: L x M for LNO-Server, justifying the slope
increasing with respect to LNO-Edge; and G x M in case of
GAPF, justifying the almost constant difference with respect to
LNO-Edge.

Figure 14 reports the average FIB size versus the number
of augmented functions M, in case of G = 20 and L = 284.
The plot confirms the LNO and GAF dependencies from the
parameters discussed above.

To sum up, our analysis shows that LNO scales better with
respect to GAF from an ICN point of view, when we have the
need (e.g., for low latency requirements) or the opportunity of
deploying augmented functions on the edge of the network;
this is because it is possible to exploit LNO hierarchical
naming and ICN forwarding LPM to aggregate FIB tables.
Conversely, when augmented functions have to be deployed
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Fig. 13. Average number of FIB entries for different deployment strategies
by varying the number of objects (and network size)
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Fig. 14. Average number of FIB entries for different deployment strategies
by varying the number of augmented functions per group

in a central node (e.g., a central cloud) the GAF approach
provides a better ICN scalability.

VII. RELATED WORK

Named Data, Named Function, Named Object

Information Centric Networking (ICN) has been proposed
by Van Jacobson in 2006 [24] and then widely investigated
in the literature. One of the most remarkable result in the
field is the design and implementation of the Named Data
Networking (NDN) architecture [25]. The basic brick of the
architecture is the concept of named data, basically any kind
of information chunk identified by a unique name. Clients
(consumers) express their willingness to retrieve a given data
by emitting an Interest packet containing the name of the data.
The network is in charge of delivering back to the requesting
client the Data packet corresponding to that name.

Later on, other researchers proposed Named Function Net-
working (NFN) [15], as an ICN style where “the request
must carry at least two names in order to be satisfied” [26].
Proposed in 2012 and with the first prototype delivered in
2014, NFN, instead of using names to organize the access
to data, it uses them to access and invoke functions, which
may incidentally produce passive content (data). NFN starts
from the assumption that there exists many raw data but
clients usually desire customized elaborations on such data.
The NFN applications request such data elaboration by Interest
packets. The network consequently invokes the execution
of the function (called lambda function) that produces the
output eventually delivered to the requisting client [15]. This
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approach allows clients to name the desired result, server-
agnostically, while the network is in charge of finding exe-
cution places and caches the results.

In this work, we propose to extend the concept of NFN
not only to operate on the data produced by IoT objects,
but exposing an easy interface to programmers, allowing
programmers to move from functional programming to ob-
ject oriented programming. This requires methods to man-
age objects and “enrich” objects with functionality by using
the namespace provided by ICN to organize objects and
services. For instance, in our proposed evolution from the
NFN name /mapReduce (/sensors (/myhouse, temp,
2014), /avg) to the LNO name myhouse/sensors/
temp/avg (2014), the avg function is seen as a “method”
of the temperature sensors, and the temperatures sensors are
unaware of which function is used for calculating the average
or for retrieving historical data.

Object oriented distributed computing

There are many frameworks for distributing objects on
different hosts and for coordinating them. These frameworks
have a long history and some of them dates back to the
late 80s. One of the oldest is CORBA (Common Object
Request Broker Architecture) an OMG standard designed
to facilitate computer communications through a middleware
for distributed computing. Differently from CORBA objects,
LNOs do not require any connection among the parts compos-
ing the objects and rely on a different networking technology
(ICN) that natively offers the namespace where the object
live, rather than requiring a dedicated middleware. Also,
remote procedure calls have been investigated for a long
time; probably the most successful implementations are Java
RMI (Remote Method Invocation) and Apache River (former
Jini [27]). Apache River is a network architecture for the
construction of distributed systems in the form of modular
co-operating services; differently from Java RMI, in Apache
River services are connected to clients through a lookup
service (dynamic multicast discovery) to which they have to
connect to. In this way clients do not need to know where
the services are located. For the security aspects, the Kerberos
protocol provides network authentication services to clients.
Its behavior requires clients’ time synchronization and the
presence a central server.

ICN for IoT

Information Centric Networking offers a clean slate alter-
native that natively supports multicast, mobility, and content
oriented security, as well as an organizing namespace. For
these reasons it has been proposed, also in standardization
bodies [13], to address part of the IoT challenges [4]. ICN
usage for IoT has been investigated e.g. to provide solutions
to device organization [6], [7], [8], [28] and in-network data
processing [6] (e.g. to compute the average among different
values coming from various sensors in order to limit the data
flowing, programming a kind of stream analytic). ICN has
also been proposed together with novel light authentication
schemes [11], [12] and routing [11], [9], exploiting also its
native in-network caching functionality [29].

Named data solutions for in-network computation

In [14] authors present Named Function as a Service
(NFaaS), a framework that extends the Named Data Net-
working architecture to support in-network function execution.
NFaaS builds on very lightweight VMs and allows for dynamic
execution of custom code. This work is in part inspired by the
previous Service Centric Networking (SCN) [30] which focus
on how to create processing workflows inside an ICN network
through a manipulated concatenation of names that identify
network services in the network. Even though we share the
same vision of objects with SCN, we are more similar to
NEN [15] as regards the role of the network of orchestrating
the function execution server in an agnostic way. Indeed, in
our work we aim to show potential benefits of our solution in
IoT environments, where real objects constitute a name basis
“for humans” even if the processing of an object data can be
done inside different network entities that could be situated in
different locations in the network. Finally, our objects are in
general state-full as, in our case, the function call may change
the internal state of the object. Finally, recently, ICN has been
also proposed for implementing micro-service architectures
[31].

VIII. CONCLUSIONS

In this work, we presented an abstraction named
Lightweight Named Object (LNO), based on the Information
Centric Networking architecture. LNO provides a convenient
abstraction of real objects supporting easy discovery, program-
ming and management procedures for real or virtual Internet
of Things devices. The proposed abstraction fully exploits
most of the ICN benefits and can be used to support objects
interaction in IoT environments. To this aim, we devised a
hierarchical naming schema, which is specifically designed for
the NDN framework, to support all the LNO capabilities. The
proposed naming schema allows the diffusion of names by
means of the NLSR routing protocol. Thanks to NDN and
NLSR, we can enforce all the security procedures required
in IoT scenarios, to avoid objects takeover and preventing
unauthorized access. Specific rules have been defined for the
NDN forwarding agents and for the NLSR routing agents.
A Proof of Concept has been implemented using commercial
IoT products and showing objects augmentation and function
chaining, as well as an interactive web socket console able to
interact with LNO-enabled things. Performance evaluation in
a simulated network scenario shows how LNO is a viable
solution, especially in edge computing scenarios, where it
improves the simplicity of network service programmability
and exhibits good scaling capabilities with respect to the
number of objects and of augmented functions.
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