
A Framework for Experimenting ICN over SDN Solutions using Physical

and Virtual Testbeds

G. Siracusano, S. Salsano, P.L. Ventre, A. Detti, O. Rashed, N. Blefari-Melazzi
University of Rome “Tor Vergata” / CNIT, Rome (Italy)

Keywords:

Information Centric Networking; Software Defined Networking; Testbed; OpenFlow; Open Source; Emulation.

ABSTRACT

Information Centric Networking (ICN) is a paradigm in which the network layer provides users with access to content by names, instead

of providing communication channels between hosts. The ICN paradigm promises to offer a set of advantages with respect to existing (IP)

networks for the support of the large majority of current traffic. In this paper, we consider the deployment of ICN by exploiting the Software

Defined Networking (SDN) architecture. SDN is characterized by a logically centralized control plane and a well-defined separation

between data and control planes. An SDN-enabled network facilitates the introduction of ICN functionality, without requiring a complex

transition strategy and the re-deployment of new ICN capable hardware. More in details, in this paper we provide: i) a solution to support

ICN by exploiting SDN, extending a previous work of ours; ii) design and implement an open reference environment to deploy and test

the ICN over SDN solutions over local and distributed testbeds; iii) design and implementation of a set of Caching policies that leverage

on the ICN over SDN approach; iv) performance evaluation of key aspects of the ICN over SDN architecture and of the designed caching

policies. All the source code and the monitoring suite are publicly available. To the best of our knowledge, there are no other similar

solutions available in Open Source, nor similar emulation platforms, including also a comprehensive set of monitoring tools.

1. Introduction

Information Centric Networking (ICN) is a paradigm emerged to

overcome some intrinsic limitations of the IP protocol [1][2]. In

ICN, the network provides users with access to content by names,

instead of providing communication channels between hosts. The

idea is to provide “access to named data” as the fundamental

network service. This means that all content (e.g. a document, a

picture) is given a name; then, users request for the named content,

the network forwards the requests toward the “closest” copy of

such a content, which is delivered to the requesting user. With ICN,

the communication network becomes aware of the name of the

content that it provides and the routing decisions are made based

on the content name. As a result, ICN [3]: i) improves network

efficiency; ii) naturally supports mobility of users and servers and

multicast communications; iii) eases the operation of fragmented

networks, or sets of devices disconnected from the rest of the

network; iv) offers simpler application programming interfaces; v)

provides a content-oriented security and access control model.

The capabilities of ICN are particularly valuable as we move to an

increasingly mobile connected world, where information, end-

points and people are continually connecting to a different point,

requiring in-built mobility support from the network. The

Internet’s coupling of the IP address for both identifying a device

(and related content) and for determining where it is topologically

located in the network resulted in conflicting goals. On one hand,

for routing to be efficient, the address must be assigned

topologically; on the other hand in order to manage collections of

devices, without the need for renumbering in response to

topological change or mobility events, the address must not be

explicitly tied to the topology [4]. ICN offers a clean solution, by

logically separating network locators from identifiers, not only of

devices but also of content and potentially of users and functions.

Despite the widespread attention that ICN has received from

researchers in the past decade, both in terms of papers and research

projects (see the section 9 on related work), the area is still facing

significant research and innovation challenges, including

innovative applications, interplay with cloud and virtualization

concepts, name to location resolution, routing/forwarding table

scalability.

One of the open issues is the deployment of an ICN infrastructure

in the current networks, based on the IP protocol, as it may require

the replacement or update of existing running equipment. In this

regard, we believe that Software Defined Networking (SDN)

[5][6][7][8] can be an important enabler of ICN, as it promises to

facilitate the continuous evolution of networking architectures.

The SDN architecture is characterized by a logically centralized

control plane and a well-defined separation between data and

control planes. Forwarding devices execute packet forwarding

actions following rules installed by an SDN Controller. The logical

interface between the Controller and the forwarding devices is

called southbound interface. An SDN-enabled network could

facilitate the introduction of ICN functionality, without requiring a

complex transition strategy and the re-deployment of new ICN

capable hardware.

In [9] we introduced an ICN over SDN network architecture to

deploy ICN in IP networks. Here we build on and extend that work,

providing the following main novel contributions:

1. Enhancements in the design of the ICN over SDN

forwarding mechanisms to support mesh topology and to

scale with the size of the topology.

2. Design and implementation of an open reference

environment to deploy and test the ICN over SDN

infrastructure and the related network service over local and

distributed testbeds.

3. Design and implementation of a set of Caching policies that

leverage on the ICN over SDN approach.

4. Performance evaluation of key aspects of the ICN over SDN

architecture and of the designed caching policies.

The paper is organized as follows. Sections 2 and 3 provide

background information respectively on the basic ICN solution

called CONET [13] and on our ICN over SDN architecture [9].

Section 4 presents the detailed description of the forwarding

mechanism implemented in our Proof of Concept (ICNoSDN v1

PoC), which were not described in [9]. This is needed to

understand the motivations and operation advances of the new

ICNoSDN v2 PoC, which is described in Section 5. The novel

contributions include automatic topology handling that allows

managing large numbers of nodes, a flow forwarding mechanism

that works in arbitrary mesh topology; an improved architecture of

the Controller software that simplifies the introduction of new

mechanisms. In section 6 we define a set of specific caching

policies implemented as Controller logic. In section 7, we illustrate

the emulation platform including the novel monitoring GUI, fully

supported and tested in the OpenFlow v1.0 testbed provided by the

OFELIA project [10] and in the Mininet emulation tool [11]. The

framework and the tools are Open Source and available at [12].

The described environment can be used to test new mechanisms in

the ICN over SDN architectural scenario. Section 7.4 in particular

provides the needed indications and references for reusing the

ICNoSDN v2 PoC. In order to ease the initial setup of the

solutions, we also packaged everything in a ready-to-go virtual

machine. To the best of our knowledge, there is no such effort

readily available in Open Source, nor such an emulation platform

with a comprehensive set of monitoring tools. Section 8 provides

the performance evaluation of the caching policies implemented in

the ICN over SDN architecture. The related works are discussed in

section 9; finally, section 10 draws the conclusions.

2. The ICN approach: CONET

CONET [13][14] is based on the concepts introduced in Content

Centric Networking/Named Data Networking (CCN/NDN)

architectures [2][15]. It extends the approach proposed by

CCN/NDN in several aspects, including integration with IP,

routing scalability, transport mechanisms, inter-domain routing.

For the reader’s convenience, the basics of the CONET solution

are reported hereafter, please refer to [13][14] for a detailed

description. The “terminals” are called ICN Clients and ICN

Servers in analogy with a client/server architecture or a

publish/subscribe scheme. ICN Clients request content using

CONET protocols as transport solution, leveraging the unique

name of the content to be received, while the ICN Servers are the

originators/providers of the content. In general, a terminal can act

as both ICN Client and ICN Server if needed. As for the naming

schemas, there is a full support of the approaches proposed by

CCN/NDN; names could be human-readable or self-certifying.

The Forward-by-name operation, performed by ICN Nodes,

consists in a name-based lookup table and on a prefix matching

algorithm. The association between name prefixes and next hop is

performed by using a table called FIB (Forwarding Information

Base), this table must be accessed at line speed. Moreover, another

table, called RIB (Routing Information Base) is used to exchange

routing information with other nodes and it does not need to be

accessed at line speed. The RIB and FIB could have tens of billions

of entries in order to include all the possible content names, making

it infeasible to implement both in router hardware. In CONET, the

FIB is used as a cache of currently needed routes, while the full

routing table is managed by a centralized routing logic (Name

Routing System). The Name Routing System has some similarity

with the Domain Name System, as it provides the resolution of a

content name into a next-hop, while the DNS provides the

resolution of a domain name into an IP address.

The content requests are called interests and the related packets are

called interest packets. The interest packets are forwarded over the

ICN network, taking into account the requested content-name for

the “routing” of the request. The request travels in the network

until it reaches a node that contains the content. This node receives

the interest packet and replies with the data packets that are sent

back towards the requesting node. The latter ones follow back the

path towards the requester. Intermediate nodes can store the

content, performing transparent “in-network” caching, following

the CCN approach. In order to fit the transfer units of under-

CONET technologies (e.g. Ethernet), CONET handles the

segmentation of content using two levels: at the first level the

content is segmented into chunks, at the second level chunks are

segmented into smaller data units (called Carrier-Packets). The

transfer of Carrier Packets is regulated by a receiver-driven

transport protocol based on the well-known TCP congestion

control mechanism [16]. This approach avoids the fragmentation

at IP level, which is faced by chunks greater than 1500 bytes in the

earliest implementations of CCN. Moreover, it helps in the SDN

solution as the CONET carrier packets can be properly managed

by SDN capable switches thanks to the information contained in

the headers, while IP fragments resulting from the fragmentation

of a chunk would lose all the needed information.

3. ICN over SDN architecture and high level view the Proof

of Concept

The architectural concepts for the deployment of the CONET

architecture over a Software Defined Network are introduced in

[9]. Here we briefly recall them. Following the SDN approach, an

OpenFlow-based ICN architecture is considered, where the

intelligence of the ICN is de-coupled from the forwarding (of

interest and data packets) and caching functions. As shown in

Figure 1, this architecture is composed of two different planes: i) a

data plane containing ICN Servers, ICN Clients and ICN Nodes;

ii) a control plane that includes the Name Routing System

(composed by NRS Nodes), SDN controllers and an Orchestrator

node. The two planes communicate through an extended

OpenFlow interface, used by the Controllers/NRS nodes to control

one or more ICN Nodes. In the control plane, the Controllers/NRS

nodes offer also a northbound API towards the Orchestrator node

that orchestrates the overall behavior of a domain. Note that the

role of NRS nodes in CONET is fully aligned with the SDN

approach of using a controller to drive the forwarding behavior of

switches/routers and to enforce an explicit separation between a

data forwarding plane and a control plane.

End-Node

(ICN client)
Serving Node

(ICN server)

ICN

node
ICN

node

CCNx

client

CONET CONET CONET

CCNx

server

CONET
CONET CONET

CONETCONET

CCNx

API
CCNx

API

NRS

OpenFlow

controll.

NRS Node /

SDN Controller

CONET

NRS

OpenFlow

controll.

ICN

node

M

Orchestrator

(OSS / UI)

Control Plane

Data Plane

Figure 1 - Architecture for ICN over SDN based on CONET

The reference scenario for our testbed implementation is shown in

Figure 2. We consider an OpenFlow based domain, in which ICN

border nodes act as “Inter Working Elements” (IWE) with external

domains. Such nodes translate the information contained in the

Carrier-Packets header to something that can be processed by the

OpenFlow-capable equipment. In particular, this adaptation

corresponds to pushing (then popping) a tag to the Carrier-Packets

header. In the scenario depicted in Figure 2, there are no ICN

Clients and Servers directly connected to the OpenFlow domain.

In this case, the ICN “ingress/egress” nodes act as relay for the ICN

Clients/Servers and execute the IWE functions on the ICN packets

before forwarding them. More in general, it is also possible that

ICN Clients/Servers integrate the IWE functions and are directly

connected to the OF-capable nodes in the OpenFlow domain. The

functionality of an ICN node is split between an OpenFlow capable

switch and an external Cache Server paired with the switch, which

act as ICN in-network cache. The NRS nodes, realized as set of

SDN Controllers, instruct the forwarding nodes in order to realize

the forwarding-by-name and the in-network caching operation.

End Nodes Serving

Nodes

ICN node

Border node IN node

OF-switch

CONET
CONET

CONET

CONET

OF CONET

CONET

OF

CONET

OF IWE

NRS

OpenFlow

controll.

NRS Node

SDN

controller

IWE

OpenFlow

domain

ICN

nodes

ICN

nodes

CONET

OF

ICN node

OF-switch +

CacheServer

CONET

OF

Control Plane

Data Plane

Extended OF interface

Cache

Server

ICN node

Border node

M

Orchestrator

(OSS / UI)

Figure 2 - ICN over SDN testbed scenario

Cache

Server

OpenFlow 1.0

switch

Floodlight

SDN

Controller new content cached

Interest & Data

packets

1

2

3

Signaling

Data Flow

Figure 3 - ICNoSDN PoC operations (high level view)

The high-level view of the ICNoSDN PoC operations is shown in

Figure 3. The ICN Clients (border nodes) send the interest requests

that are initially served by ICN Servers, which send back the data

towards the ICN clients. While the data are forwarded on the

reverse path, the SDN controller can instruct the OF switches to

forward a copy of the data towards Cache Servers distributed in

the network (Figure 3, interface 1). Once a Cache Server completes

a “chunk” of data, it informs the Controller about the possibility to

serve new contents with its cache (Figure 3, interface 2). At this

point the Controller proactively “pushes” rules in the OF switches

(Figure 3, interface 3), instructing them to redirect further requests

of these contents towards the Cache Server, instead of the ICN

Servers. We call this behavior as Tag Based Forwarding (TBF), as

it is based on the tags inserted by the border node of the OpenFlow

domain. The forwarding of regular (e.g. non-ICN) IP traffic is

supported; we distinguish the regular IP traffic from the ICN traffic

using a disjoint set of addresses, so the Controller and the Switches

can recognize them. Clearly, this is meant to work in a single-

provider scenario, in which the provider can assign a subset of the

private IP address space to support the ICN services. From the

point of view of the regular IP traffic, the OpenFlow domain is

seen as a layer 2 network. It is a specific design goal of the

ICNoSDN testbed to support in parallel the operation of the

ICNoSDN and of the regular IP traffic, in order to show the

flexibility of the SDN based approach.

In the next section, we present in details the operations and

forwarding mechanism of the first version of our Proof of Concept,

which were not described in [9]. This is also needed to understand

the advances of the new version 2, described in Section 5.

4. Proof of Concept version 1 operation details

A detailed view of the ICNoSDN v1 PoC operations is given in

Figure 4 (where the logical steps are numbered from A0 to A13).

The ICNoSDN v1 PoC uses a static approach to configure the

Controller with the information about the experimental topology.

For each experimental topology, we need to prepare two

configuration files. The first configuration file includes the list of

IP addresses of all CONET hosts in the network, separated in ICN

Clients and Servers (A0 – Client/Server Config). If a host needs to

play both roles, it is assigned two IP addresses. The second

configuration file lists the DPID and MAC address of all the

switches equipped with a cache (A0 – Cache Server Config) and

the port to which a Cache Server is connected. The MAC address

of the switch is needed because the Data packets redirected

towards the Cache Server cannot keep the ICN server MAC

address. This configuration procedure is error prone and does not

facilitate experiments with different arbitrary topologies.

Figure 4 –ICNoSDN v1 PoC: detailed operations

When the client transmits an interest request for the first time (A1),

the OF switch forwards the interest packet to the Controller (A2)

through an OF Packet-In message. Taking into account the

information contained in the configuration file, the Controller is

able to identify that the request is coming from an ICN client and

to retrieve the information needed to setup the forwarding rules for

data packets the switch (A3). Then it “pushes” the forwarding rules

for the Client and the duplication rule towards the Cache Server in

the proper switches (A4) (rules 1.1 and 1.2 in Figure 5). The

request is forwarded in the network (A5) and it can be received by

the server (A6). When the ICN server sends the response (data

packet) in the network (A7-8), the first packet is forwarded to the

OF controller (A9). Leveraging on the information contained in the

configuration file, the Controller is able to properly identify the

Server (A10) and install the forwarding rule for it in the switches

(A11) (rule 2.1 in Figure 5). Finally, the response packet is

forwarded both to the Cache Server (A12) and to the ICN Client

(A13). Finally, once the Controller is informed by the Cache

Server about the completion of a chunk, it “pushes” the rule 3.1 of

Figure 5 to the switch. Another request for the same content will

be served by the Cache Server.

// (1) Deliver of Data packets
// For each (client, server) couple, on the switches that have

received the Interest packets and are connected to a Cache Server

IF IP Proto is CONET && IP/MAC destination is an ICN Cli
THEN IF IP Src is an ICN Cache Server
 (1.1) Forward the packet only towards the destination
 with Priority 200
OTHERWISE IF IP Src is an ICN Server
 (1.2) Forward the packet both the destination and the
 associated Cache Server with Priority 200

// (2) Delivery of Interest packets
// For each (client, server) couple, on the switches that have

received a packet from a server

IF IP Proto is CONET && IP/MAC destination is an ICN Ser
THEN IF IP Src is an ICN Client
 (2.1) Forward the packet on the port towards the ICN
 Server with priority 201

// (3) Delivery of the interests packets to the cache server

// For each (client, server, tag) triple, on the switches connected to

a Cache Server that has the content stored

IF IP Proto is CONET && IP/MAC destination is an ICN Ser
THEN IF IP Src is an ICN Cli && the packet contains X tag
 (3.1) Forward the packet on the port toward the Cache
 Server with priority 350

Figure 5 - TBF forwarding Rules

For the forwarding of regular IP traffic, the classical MAC learning

approach is used (with a procedure driven by the controller,

implemented in the Learning Switch of Floodlight). If the MAC

destination address is unknown, the packet is sent on all ports but

the receiving one. For the ICN traffic, the Learning Switch module

is extended to support the installation of the rules described in

Figure 5. This approach inherits the limitation of the Learning

Switch forwarding logic and it is able to work only in loop-free

topologies. The scalability of this solution is very poor. In fact, let

C, S, T be respectively the number of ICN clients, ICN servers and

different content chunks (Tags). The number of rules of type (1)

and (2) in Figure 5 is proportional to C∙S, while the number of rules

of type (3) is proportional to C∙S∙T.

In order to transport CONET Carrier Packets inside an OpenFlow

domain, we use the solution #1 in Figure 8 in which the ICN ID is

carried inside the IP Option field and the TAG is carried using the

source and destination ports of the UDP header.

5. Proof of Concept version 2

The second version of the PoC, referred to as ICNoSDN v2 PoC

aims at realizing an open source framework for the testing of

different caching policies inside an ICN over SDN network. It can

run on arbitrary topologies, therefore it introduces an automatic

topology handling mechanism (section 5.1) and a new more

general flow forwarding system (section 5.2), capable to deal with

mesh topologies. Dealing with larger topologies in the

experimental OFELIA testbed also meant dealing with different

types of network equipment; thus we had the chance to test and

improve the compatibility of the packet format on different

switches (section 5.3). We introduced a modular and extendible

controller software architecture (section 5.4), a key element to

support different caching policies. In particular, a set of

implemented caching policies are described in section 6.

5.1 Automatic topology handling

In the ICNoSDN v2 we drastically simplify the configuration

procedure of the SDN controller (see Figure 6, in which the steps

are numbered from B0 to B14). Rather than listing all the single IP

addresses of the node, we reduce the configuration information to

four ranges of IP addresses, respectively identifying: 1) the set of

ICN Clients; 2) the set of ICN Servers; 3) the set Cache Servers;

4) the Local Region range (used for TBFF policy, see section 6.1).

Using this information, the Controller can identify the different

types of entities when receiving “packet-In” messages as needed

to react appropriately. Thanks to the use of IP address ranges, we

do not need specific forwarding rules for each (client, server)

couple as in Figure 5. A single rule can cover all possible clients

and server addresses. The scalability of the system is much

improved: the number of rules of type (1) and (2) in Figure 5 is

respectively proportional to the number of servers S and of client

C (like in the regular MAC learning approach). The number of

rules of type (3) is proportional to the number of different tags T,

while in the ICNoSDN v1 it was proportional to C∙S∙T. In order to

further simply the configuration procedure, we added some

automatic discovery procedures for gathering information related

to the Cache Servers. With this approach, the same static

configuration information is reused for different arbitrary

topologies (in the limit of the IPv4 address ranges that have been

specified for the different node types) achieving scalability from

the management point of view. While we used IPv4 in our testbed,

this idea of associating a “semantic” to ranges of IP addresses can

be actually implemented in real networks with IPv6, thanks to the

huge available address space. In facts, ICN solutions have been

proposed that even map the content name in the IPv6 address, see

for example hICN [69] (while in our proposed solution we only

need to map the class of node in the IPv4 address).

The automatic discovery procedure collects the addresses of Cache

Servers and of the switches to which they are connected and will

be referred to as CS scouting procedure. It is needed because the

OpenFlow rules, used to forward traffic towards Cache Servers,

have to be installed in proactive way in the switches, before that

the Cache servers send any data. The CS scouting procedure avoids

the needs of a static configuration file. At their start up and

whenever the TCP connection with the Controller goes down, the

Cache Servers send a Scouting Packet in the data plane (B1). This

packet arrives at the first OpenFlow Switch, i.e. the attachment

point of the cache server, and then goes to the Controller through

a Packet-In message (B2). The Controller receives the Packet-In

message and if it is a Scouting Packet stores the configuration info

for the Cache Server, i.e. the connected switch (the one that sends

the Packet-In), input port, the MAC address of the OpenFlow

switch and Cache Server addresses (IP and MAC). After

performing the scouting procedure, the Cache Server establishes a

TCP connection with the Controller. At this point, the operations

follow the same procedure of the v1 PoC. The Cache Server

operations in ICNoSDN v2 PoC also include a keep alive

procedure, based on sending periodic hello messages towards the

Controller. After the Cache Server has established the TCP

connection to the Controller, it sends periodic hello messages on

the connection. This procedure allows detecting any

communication problem. If the connection goes down, the Cache

Server enters in emergency mode and re-activates the periodic

Scouting Procedure until a new pairing can be realized with the

Controller.

The procedures to configure the ICN Clients and Servers in the

Controller are simpler because we can install the forwarding rules

in reactive way and not in a proactive way as needed for the Cache

Servers. In fact, the Controller relies on the traffic generated from

the ICN Clients and Servers in order to infer their attachment ports,

the IP and the MAC addresses that are needed to install the proper

rules for the forwarding of the data packets. The first time that a

switch sees a packet from an ICN Client or Server, it sends a

Packet-In towards the Controller. Then, the Controller with a

comparison between the IP address and the IP address ranges

stored in the configuration file checks if the host is an ICN Client

or Server, finally it does the necessary processing for the packet

and “learns” the information needed by our module.

Figure 6 – Automatic handling of node types in ICNoSDN v2

PoC

5.2 Forwarding mechanism based on reverse path

forwarding (RPF) check

In traditional layer-2 switched networks (i.e. not based on

OpenFlow), topologies with redundant links and loops can be used

thanks to the Spanning Tree protocol (SPT) [17]. Using SPT, the

switches build the spanning tree that connects all the switches,

disabling the ports that are not necessary and can create loops. The

SPT approach is not efficient in OpenFlow based networks, where

it is preferable to keep all links enabled. In fact, the SDN controller

can allocate the flows to the links. The most efficient solution is to

keep all links active and let the controller choose which links to

use. For example, the Floodlight controller activates by default the

Forwarding module that evaluates the Shortest Path towards a

destination using Dijkstra’s algorithm (no automatic learning, the

Controller uses the knowledge of the whole topology). The routing

of broadcast packet is also decided centrally by building a tree for

broadcasts.

The v1 PoC implements a straightforward extension of the MAC

Learning Switch forwarding logic and it is only able to support

loop-free topologies. One property of the MAC learning approach

interesting for our purpose is that response packets always follow

back the path of the request packets. In our case this is needed, as

in our ICN scenario, the data packets must follow the same path of

the interest packets. If this does not happen, the in-network caching

mechanism can become much less effective: a content chunk can

be cached in a Cache Server during the forwarding of the data, but

if the interest packets follow a different route it will never be

requested to the Cache Server. Therefore, we are interested in

designing a solution with symmetric routing as provided by MAC

learning. On the other hand, we want to support arbitrary mesh

topologies and leave all the links active so the SDN controller can

choose all links.

To support arbitrary topologies with redundant links and loops, we

have extended the Learning Switch solution implementing the RPF

(Reverse Path Forwarding). The RPF check is a simple solution

used for example in multicast protocol like PIM – DM [18], while

a variant of this algorithm is used in DVMRP [19]. It consists in a

check done on all incoming packets that needs to be broadcast

(including the unicast packets towards a destination that is not in

the forwarding table). The RPF check discards all packets that the

switches receive on ports that are not on the shortest path towards

the source (when there are multiple shortest paths, one of them is

arbitrarily chosen). Our solution is simpler than the algorithms

realized in PIM-DM and DVMRP, as we do not have any

“pruning” or “re-grafting” messages. We virtually build a spanning

tree combining the Learning Switch approach with the RPF check.

When a packet is received on a given port px and px is on the

shortest path towards the source, the controller understands that the

source is reachable through px and installs the appropriate rules.

Subsequently, when the switch receives a packet for the source, it

uses px to forward the packet. Moreover, one must consider that

this choice in a scenario with asymmetric links represents the best

solution, when compared with a solution that forwards the packet

using a direct (no reverse) spanning tree. In fact using a direct tree

the switch could learn that the source is reachable through a port

that is not on the shortest path from its point of view.

Figure 7 shows the RPF check in action on a topology that presents

some loops. In particular, we show an example of a controlled

broadcast communication started from the red node. The “SPT

links” (continuous line) identify the branches of the spanning tree.

The dashed lines represent the links that are not part of the

Spanning Tress. Similarly, the arrows with the continuous lines

show the packets that are accepted as broadcast packets and copied

on all interfaces (except the incoming one). The arrows with the

dashed line show the broadcast packets that are discarded by the

RPF check.

Figure 7 – RPF check in action

The RPF check has been implemented in the Control Plane as a

simple check performed on the Packet-In, the Controller discards

all the packets that the switches receive on ports that are not on the

shortest path towards the source.

The combination of Learning Switch and RPF check represents a

unified solution used for both ICN traffic and regular IP, but the

ICN packets (recognized by their IP source and destination

addressed) are further processed in order to setup the rules for the

duplication of data towards the Cache Server.

5.3 Encoding of CONET packets

We designed two different solutions to transport CONET Carrier

Packets inside an OpenFlow domain (Figure 8). In the first solution

(#1 in Figure 8) the ICN ID is carried inside the IP Option field,

the TAG is carried using the source and destination ports of the

UDP header and the CONET payload is carried inside the

remaining part of the UDP header (length and checksum) and

inside the UDP payload. In the second solution (#2 in Figure 8) the

TAG is carried in the UDP header, as in the first solution, but the

ICN ID has been shifted from the IP header to the UDP payload.

Both solutions leverage the fields of existing protocols in order to

carry CONET information, as needed to be processed by legacy

OpenFlow switches. In both cases, the TAG carries the ICN

information (a function of the ICN name) in a section of the packet

that can be matched with the OpenFlow rules. The IP header

Protocol field is set to UDP so the packets are seen by network

elements (including OF switches as UDP packets). The ICN traffic

can be distinguished from “regular” UDP traffic by the IP address.

In the simple experiment reported in [9] we implemented and used

the first solution based on the IP option. We have then extended

the experiments on the OFELIA testbed deploying larger

topologies across multiple OFELIA islands, as will be detailed in

section 7.1. In these multi-island experiments, we encountered

issues, as some ICN Clients systematically could not establish any

communication with an ICN Server. This happened when the ICN

Server was located behind an Open vSwitch instead of a hardware

switch. We discovered that the switch had problems in forwarding

the packets with the IP Option. Therefore, we implemented and

used the second solution (#2 in Figure 8), avoiding potential issues

with IP Options. It has to consider that this fix was also a key

enabler for the deployment and the experimentations over Mininet

environment.

#1)

IP OPTIONIP PROTO

ICN-ID

(CP header)

CONET Carrier Packet Payload

(Interest/Data)

UDP HEAD. UDP PAYLOAD

TAGUDPIP Addr

IP OPTION + Tag + UDP

#2)

CONET Transport + TAG + UDP

IP PROTO

CONET Carrier Packet Payload

(Interest/Data)

ICN-ID

(CP header)
TAG

UDP HEAD. UDP PAYLOAD

UDPIP Addr

IP HEADER IP PAYLOAD

IP HEADER IP PAYLOAD

Figure 8 - CONET packet over SDN

5.4 Software Architecture of SDN Controller modules

The SDN Controller implementation is based on Floodlight 0.9

[23]. The v1 PoC described in [9] is based on a rough

implementation, with the introduction of a new monolithic

Floodlight module, managing all the aspects of the ICNoSDN

control plane. The software implementation for v2 PoC improves

the modularity of the control plane, easing the development of new

application logics and caching policies. Figure 9 shows the new

software architecture. The ConetModule class acts as an

abstraction layer between the switches and the other parts of the

module, and offers methods that permit to easily push tag based

rules on the OpenFlow equipment (i.e. using the Southbound API).

The ConetListener class manages the incoming packets from the

switches. If they belong to ICN traffic, the ConetListener

dispatches them to the appropriate Handler. In the class hierarchy

of the Handler we have encapsulated the application logic and the

caching policies. The Handler super class provides the simple

Layer 2 Forwarding of the packets, while the caching policies are

implemented in the subclasses, for example the MultiCSHandler

realizes the Tag Based Forwarding. This architecture is directly

inspired from the Netfilter framework [24], new improvements can

be introduced easily and their impact on the remaining code is

minimized. As regards the northbound API, we introduce a set of

classes that extend the REST API of the Floodlight Controller and

provide many interesting functionalities, the most important are: i)

activation of a specific policy; ii) customization of the policies; iii)

accounting of cached items. These classes have not been reported

in Figure 9 in order to provide a more clear representation of the

core architecture of the ICNoSDN v2 implementation.

Figure 9 - Software architecture of the SDN Controller

6. Caching policies

The Tag Based Forwarding (TBF) mechanism is the basic caching

policy implemented in the ICNoSDN architecture. It simply tries

to cache every content that crosses an ICN capable node. The

limitation of the storage capacity and of the other network

resources (e.g. size of the OF switch tables) is not taken into

account. More complex caching policies are needed to maximize

the cache effectiveness taking into account the resource constrains.

The ICNoSDN v2 PoC offers an environment to deploy and test

different solutions. We have designed and implemented four

caching policies described hereafter, that are available in the PoC

distribution. The policies have been implemented by changing the

logic in the SDN controller, i.e. providing additional extensions to

the Handler class (see Figure 9). Note that the same policies could

be implemented without SDN, by putting the control logic in the

ICN nodes. The advantage of using the SDN infrastructure is the

flexibility and the facility of implementing new policies operating

in the logically centralized SDN control infrastructure.

6.1 TBFF

TBFF stands for TBF-Filter. It is based on “filtering”, i.e. not

caching a subset of the contents. The idea is that from the

perspective of an ICN node, the contents can be divided in local

and remote ones. This requires the partitioning of ICN Servers and

ICN nodes in different regions. A content that is originated from

an ICN Server in the same region of the node is local; a content

that is originated from an ICN Server in a different region is

remote. Local contents are not cached, so that cache resources are

saved for remote contents. When caching resources are limited,

TBFF ensures that they are used to reduce the inter-region traffic.

Caching of local content is less effective, because they cross a

smaller numbers of links, and the benefit of being served from the

Cache Server are smaller than in the case of content coming from

a remote Server and crossing the inter-region links. In TBFF, the

Controller only installs rules that duplicate contents coming from

remote servers, while the local contents are simply forwarded

towards the clients. This behavior is realized configuring (with the

Controller configuration file, or using the appropriate Rest API)

the local region range, i.e. the subset of the IP addresses that

belongs to the same region of a particular switch. The algorithms

for the partitioning of a domain into regions are beyond the scope

of this works. In our experiments on the ICNoSDN v2 PoC we

have manually partitioned the network.

In Figure 11, we show the TBFF mechanism in action. The arrows

with label XA (X=1..3) is a number) represent the flow of contents

(data packets) from a local server, while those with label XB

(X=1..5) represent the flow of contents from a remote server. Data

packets coming from the remote server are duplicated towards the

Cache Server by the OF switch, while data packets coming from

the local server are only sent towards the Client. Section 8 reports

some experimental results of the TBFF implementation.

Figure 11 - TBFF in action

6.2 DTBF and DTBFF

DTBF and DTBFF respectively stands for Dynamic TBF and

Dynamic TBFF. These mechanisms introduce a timeout for the

rules that replicate the data packets towards the Cache Servers.

With DTBF and DTBFF, each rule has an associated soft-timeout

of duration To [s]: if a rule has not been matched for To seconds it

is deleted (making room for new requests). This policy, taking

advantage of what has been realized previously, is implemented

with simple modifications that have minimal impact on the work

already done. The DTBF and DTBFF Caching Policies have been

validated and we show their benefits with dynamic patterns of

requests (see section 8). The timeout To can be set using the

configuration file or by exploiting a specific REST API that we

have implemented in order to control this behavior in real time

during the experiment.

6.3 FIX(p)

FIX(p) is a caching policy proposed and discussed in [20][21]. The

idea is that each chunk of the content received by an ICN node has

a probability p of getting indexed and cached. It is simple to be

implemented as it does not need the cooperation among the in-

network caches. On the other hand, as it is stated in [22] an explicit

cache coordination policy would likely violate the CCN line speed

constraint. In the original implementation ([20][21]) the receiving

node implements the policy and decides whether to cache a chunk

or not. We have implemented FIX(p) leveraging the SDN Control

Plane. In particular we have added the FIX(p) logic in the

Controller, when it processes the messages coming from the Cache

Server. On receipt of a cached or refreshed message the Controller

activates the FIX(p) logic: it chooses with probability p whether to

consider the message and configure the rules in the flow table

(according to the active caching policy) or discard the message. In

our context this simple caching policy can be combined with the

basic TBF mechanism or joined with other caching policies

(TBFF, DTBF…). In the latter case, FIX(p) acts as an implicit

cache coordination policy. For example if we have M Cache

Servers inside a local TBFF domain, all the M Cache Servers in

the request path will cache the requested content. The total number

of objects that can be cached in the local domain corresponds to

the capacity of the largest Cache Server in the domain. If all Cache

Servers can contain N objects, it can happen that the total number

of different objects is N, while the maximum aggregated capacity

is M x N. The combination of FIX(p) and TBFF mitigates this issue

improving the total number of different cached object in the local

TBFF domain.

6.4 Additional caching policies

The proposed framework can be leveraged to realize additional

caching policies, based on the existing ones or based on different

mechanisms. For example, the popularity of the contents is not

included as an ingredient in the implemented policies. A module

that estimates the popularity of the contents should be

implemented, and then this information could be used by the

algorithms that decide which content is to be cached in a given

Cache Server. The SDN based approach may allow the algorithms

to be based on a centralized view of the system, improving their

effectiveness.

7. Emulation tools

The ICNoSDN v2 PoC can be run over different testbeds,

maintaining the same Execution Enviroment. In Figure 12, we can

see the building blocks that make up the tools needed to run an

experiment using our framework. An experimenter that want to use

our framework should only choose the suitable deployment for the

desired type of testbed, he/she will be able to execute the

experiment using the same Monitoring GUI and the same

Execution Environment. The ability to perform experiments using

different testbeds is a considerable extension to the v1 PoC. In

particular, as the access to the OFELIA distributed testbed could

be difficult, it is valuable to have the option to use the local

emulation approach provided by Mininet, lowering the “entry

Figure 10 - OFELIA testbed scenario

barrier” to perform meaningful experiments. It is possible to

execute a given experiment first on a local setup and then on a

distributed testbed with minimal changes, saving a lot of

configuration effort. Hereafter, we report the details of the

deployment on the different testbeds and of the monitoring GUI.

Figure 12 - Emulation building blocks

7.1 ICNoSDN deployment on OFELIA

OFELIA is a European research project that created a large

distributed testbed for OpenFlow based Software Defined

Networks [25]. The OFELIA testbed provides network

virtualization and allows the experimenters to operate in parallel

on the same physical resources. The OFELIA infrastructure

consists of OpenFlow enabled islands. These islands create a

federation all over Europe that allows the experimenters to access

virtual machines and their interconnecting switches through the

“OFELIA Control Framework” (OCF). The OCF is derived from

the Expedient tool developed at Stanford University in the eGENI

project [26]. Using the OCF an experimenter can create its own

“slice” i.e. virtual topology over the set of physical OpenFlow

switches, can instantiate its own OpenFlow controller(s) and a set

of “user” Virtual Machines that may play the role of traffic

sources/sinks. In our previous work [9] the experiments were

realized on small OFELIA slice composed of three VMs and two

OpenFlow switches, in a single island experiment. In the phase 2

of the OFELIA project the island interconnection has been

introduced. This allows to increase the scale of the experiments,

combining resources offered by different islands, and to test

scenarios with higher latencies. Deploying and running a multi

island experiment requires to connect through OpenVPN, via the

central hub at IBBT in Ghent. Then using the OCF GUI (similar to

the graphical user interfaces provided by other Infrastructure as a

Services environments) it is possible to create and configure the

experimental slice. A slice consists of a number of end points

(Xen-based Virtual Machines) and OpenFlow access to a set of

switches that connect the end points. This equipment is shared

among the other experimenters, using the FlowVisor tool [27]. The

experimenters have to choose the links between the end points and

the switch ports in order to obtain the desired virtual topology

(typically containing a subset of physical link). Then the

experimenters have to deploy the SDN controller in one of the

created VMs, as well as to deploy the needed software in the other

VMs. The available facilities are completely independent of the

software used, the only requirements is the compatibility with the

OpenFlow 1.0.

The OFELIA deployment can be defined as semi-automatized; in

fact, some steps in the deployment process cannot be fully

dynamic. The creation of a slice in the OFELIA testbed requires

the permission of the island administrator; this step must be

performed manually. An important missing feature is the

possibility to save/copy/restore the VMs images. This would

enable the user to reduce the effort needed to setup new slices and

new experiments in a considerable way. VMs could be even shared

between experimenters, to replicate / enhance experiments

performed by other researchers. In the current state, only “empty”

VMs can be instantiated and the experimenters need to perform all

the VM setup/configuration steps. In order to improve the

deployment of ICNoSDN framework on the OFELIA testbed the

v2 PoC introduces the automatic topology handling (see section

5.1) and provides a set of scripts that help in the

setup/execution/analysis of the experiment. The topology in Figure

10 describes the v2 PoC deployment, with four federated islands:

Trento, Barcelona, Zurich and Ghent (which provides inter-island

connectivity among the other three islands). Users can easily run

experiments with topologies containing a subset or all nodes of the

topology in Figure 10. Note that to add a new host the user only

needs to configure a new VM and provide the hosts setup scripts

and configurations files. On the other hand, adding a new switch

or link in the experiment topology requires the authorization of the

administrators of the involved islands.

7.2 Mininet deployments

The main reasons for supporting local testbeds with an emulation

environment are: i) distributed testbeds are accessible only for a

limited number of users and their usage can limited in time; ii) an

Experimenter do not have full control over the events and it is

difficult to trace all the problems that can occur during the

experiments executions; iii) the creation of slice in a distributed

testbed often requires the admin permission so the experimenter

needs to wait for the grant which makes the process slow.

Extending the ICNoSDN PoC to support local emulation

environment makes the development/deployment process easier

and faster. Mininet [11] is one of the best development/testing tool

for OpenFlow based SDN. It allows emulating a network

composed of OpenFlow capable nodes on a single host. Based on

Linux virtual network features (network namespaces and virtual

Ethernet pairs) it provides an efficient way to emulate network

topologies with reasonable fidelity. Obviously, the experimenter

has the full control of what happens on the links and nodes of the

emulated topologies, making the test and debugging of services

easier. The Mininet tool does not provide a fully virtualized

environment for the virtual nodes. On one hand, this allows saving

resources of the host running Mininet; on the other hand, this

requires some attention in the porting of the ICNoSDN Execution

Environment. We had to properly configure our software tools

(CONET ICN software and monitoring tools), creating a logically

separated execution environment (folders, configurations files and

scripts) for every Mininet node. We wrote a python script that

extends the Mininet functionality: taking the topology name as an

argument, it automatically prepares and configures the local

testbed. In the Mininet based emulation environment, the

ICNoSDN v2 PoC offers the possibility to experiment different

(user defined) topologies. The deployment scripts are topology-

independent; an experimenter can input his/her topology. A

catalogue of built-in topologies is included in the ICNoSDN v2

PoC. Each of these topologies includes a number of ICN Clients,

ICN Servers, Cache Servers, OF capable switches and a Floodlight

Controller. The python deployment script also enables to run the

SNMP daemon for collecting traffic measurements and the Multi

Router Traffic Grapher (MRTG [28]) application to draw the

graphs of the measurements. By using the Mininet API, we first

spawn the SNMP daemon in all our hosts, and then we properly

configure MRTG in order to collect and generate the monitoring

data. Another key feature of the Mininet deployment scripts is that

they compile automatically all the needed software tools before the

execution of the experiment.

OpenFlow Network

OFELIA

Deployments

Mininet

Deployments
...

Execution Environment M
o

n
ito

rin
g

 G
U

I

T
ra

ffic

M
o

n
ito

rin
g

Host Scripts

C
a

ch
e

d

Ite
m

s

M
o

n
ito

rin
g

 S
crip

ts

7.3 Monitoring GUI

A key element for the execution of our experiment is the

Orchestrator node (see Figure 1). This node provides the overall

control of the experiment, it offers a GUI to the experimenter, and

collects the results obtained from the monitoring of the ICN nodes

interfaces. The Orchestrator node gathers information both from

the Controller node (using its northbound interface) and directly

from the ICN nodes (using the SNMP protocol). The northbound

interface of the SDN controller is an extended version of the REST

API provided by the Floodlight controller; using this interface the

Orchestrator node can select the caching strategy and can receive

information about the number of cached objects and the status of

the switches flow tables. SNMP agents running on the ICN nodes

and Cache servers provide the statistics about the traffic rate

measured on the network interfaces. The SNMP manager that

collects such statistics runs on the Orchestrator node. The traffic

statistics are processed using the MRTG tool [28], which stores

them using the RRDtool [29]. The extended northbound interface

of the SDN controller exposes the statistics related to the number

of cached objects. These statistics are collected by a python script

that saves the data using the RRDtool as well. The RRDtool

provides also a convenient mechanism to produce graphic

representation of all statistics that are presented on the web GUI of

the Orchestrator node.

Figure 13 - Performance monitoring using the web GUI

Figure 13 shows an example of the performance monitoring GUI

for an experiment on ICN caching. The first three rows show the

amount of crossing traffic for ICN Clients, ICN Servers and Cache

Servers. These rows represents respectively the Trento, Zurich and

Barcelona islands (see Figure 10). In each graph, the blue line

shows the outgoing traffic and the green solid line shows the

incoming traffic. The graphs in the last two rows show the number

of cached items (for each of the three cache servers and then the

total number).

7.4 Software framework

In addition to the software modules in the SDN Controller and in

the Orchestrator node, the ICNoSDN v2 PoC includes several

other components. The ICN software that runs on ICN Servers and

clients is a modified version of the CCNx suite [31]. We patched

the ccnd daemon using the CONET CCNx patch available in [32].

This patch adds the support for CONET Carrier Packets and

transport protocol, leaving untouched the API offered by the CCNx

daemon to the others tools of the CCNx suite. An experimenter can

directly use the other components of the CCNx suite (e.g.

ccncatchunks or ccnrepo), or he/she can configure and use the

CCNx software using the v2 PoC host scripts. In our framework,

we support both plain OF switches and OF switches paired with

Cache Servers. The latter ones act as in-network caching nodes that

can be controlled using our extended southbound interface. In

addition to these tools, we provide also a set of scripts (Host and

Measurements scripts) that helps the experimenters during the

setup and execution of the experiments. As described in the

previous sections we offer two different testbed deployments

methods, one for the OFELIA testbed and another one based on a

local Mininet emulator. For the OFELIA testbed, a step-by-step

tutorial is provided at [12]. For the Mininet based emulation, a

“ready-to-go” Virtual Machine with the full ICNoSDN v2 PoC

installed is available for download [12].

8. Performance Evaluation

A performance evaluation of key aspects of our framework is

reported in this section. We show the potential of the SDN

paradigm to implement the caching operation inside an ICN

network and we provide a performance analysis of the different

caching strategies we implemented in our ICNoSDN v2 PoC. The

topology represented in Figure 10 has been used in the

experiments. Note that ICN clients can communicate with “local”

Cache Servers and ICN Servers (i.e. in the same island) or with

“remote” Cache Servers and ICN Servers (i.e. in a different island).

This configuration is rather typical; therefore, the experiments

results will be of general validity and not restricted to the specific

topology. Table 1 reports the definition of the variables governing

our tests, which will be used in the following sections.

Notation Definition

N

NA

M

S

Nr

MaxItems

Tc

To

Ta

Cr

p

Number of contents

Number of active contents

Number of chunks composing a content

Size of a content, equal to M * chunk size

Number of requests (N * M)

Max number of items handled by an OF switch

Requests cycle [s]

Expiration time of the flow entries [s]

K * Tc [s]

Cached requests

Caching probability

Table 1 – Definition of the variables

In each experiment, a synthetic ICN traffic (interest and data

packets) is generated using a set of ICN Client and Server

applications. This synthetic ICN traffic is then processed by the

ICN/SDN network under test and we are able to collect the

measurements of interest using our monitoring tools.

The emulation tools described in section 7 allows running the

experiments both on the Ofelia testbed and on a local Mininet

deployment. From the experiments run on the Ofelia testbed we

were able to verify the functionality of our implemented solution

over real hardware switches (see the issues described in section

5.3) and we evaluated the flow size limitations of the hardware

switches (see section 8.2). The experiments reported in this section

have been performed on the Ofelia testbed, but the ones in section

8.4, which have been performed on Mninnet. Anyway, we checked

that the results on both testbeds are the same if we set a limitation

on the switch flow table size in the local Mininet experiments

corresponding to the one in the hardware switches.

8.1 IP forwarding and static in-network caching

The purpose of this experiment is to verify the functionality of the

TBF (Tag Based Forwarding) in-network caching mechanism by

measuring the traffic loads on ICN servers and ICN Cache server

and comparing then with the case in which no TBF caching is used.

In this experiment, we considered a “static” input traffic pattern. It

foresees a continuous repetition of a set of content requests

(cycling requests), which is only characterized by the number (N)

of contents in the set. A given ICN Client (we recall that an ICN

Client in the testbed represents a potentially large set of end users)

requests a set of N different content objects, each one composed

by M chunks (the size S of each object will be M * chunk size).

Note that our basic unit of storage is the chunk. Therefore, each

client will periodically generates a number of requests Nr = N*M

for different content chunks. We denote as cycle time Tc the

duration of the period [s] in which the ICN client requests the Nr

objects. The chunks of the requested objects are stored in the Cache

Server and the following requests for the same contents will be

forwarded to it instead of the origin server. We define To the

expiration time [s] of the flows in the switches. If we assume that

To is longer than the cycle time Tc, the entries in the switch flow

table will not expire in our experiment.

We used as baseline for our evaluation a traditional forwarding

(NO-TBF), which does not use in-network caching and only uses

MAC learning forwarding with RPF check (as described in section

5.2). In this first evaluation scenario, we simply assume that the

cache resources can cache all the set of requested contents and the

number of chunks is not greater than the number of flow entries

the switches are able to manage. Each client requests contents to a

remote origin server with a requests cycle Tc of about 110 seconds,

the communication mapping is the following: CLI-CNET to SER-

ETHZ, CLI-ETHZ to SER-i2C and CLI-i2C to SER-CNET. If No-

TBF is used, the interest requests and the data keep flowing on the

inter-islands links. Figure 14 shows the traffic captured on the

interface of SER-ETHZ (top) and on the interface of the cache

server CAC-CNET (bottom) near the client CLI-CNET. The ICN

Server interface is loaded, while the Cache server is unloaded (note

that the y-scale of the graph is dynamically adapted, for the ICN

Server (top) it is set to 50kb/s while for Cache Server (bottom) the

scale is set to 1 kb/s.

Figure 14 - No-TBF

In Figure 15, we show the effects of introducing the simple strategy

TBF (Tag Based Forwarding) strategy for in-network caching. The

same Tc of about 110 seconds is used in the clients. Initially, the

set of N different contents are requested and provided by the SER-

ETHZ. During the data transfer, the packets are copied to the

Cache server, that caches the content and notifies the controller

(the number of cached items increases). After Tc, the ICN Clients

start requesting again the same set of content: the load of the ICN

Server and on the inter-island links goes to zero, while the CAC-

CNET starts serving requests and the traffic on the Cache Server

increases.

Figure 15 - TBF caching policy

8.2 Policy based in-network caching

In the previous experiment, we have assumed that the resources of

the Cache Servers (storage capacity) and of the OF switches (table

entries) do not constitute a constraint for our caching strategy.

However, this is not a realistic assumption because the resources

are limited. In particular, during our experiments on the OFELIA

testbed, we have encountered resource limitations in the OF

switches: once the entries of the OF tables are exhausted it is not

possible to use the proposed caching mechanism for new contents.

Therefore, we have analyzed the dimensions of the OF tables of

the different switches deployed in our testbeds. We executed

experiments where an ICN Client requested a set of big sized

contents, each one made of a very large number of chunks (in our

solution we need a different flow entry for each chunk). The

objective was to saturate the OF tables, to receive the

OF_TABLE_FULL error from the switch and to register the

maximum number of entries in the table. Table 2 reports our

findings: the limits of the available OF tables are 1518 entries.

Actually, the number of rules that can be inserted is lower because

the ingress ports are “wildcarded”, and this is equivalent to insert

one rule for each port. The rightmost column of Table 2 reports the

maximum number of items that can be redirected to the cache

server for the switches used in our testbed (NEC AX-3640-

24T2XW-L). Note that in these conditions, the bottleneck will not

be the storage capacity in the Cache Server, but the number of

items that can be redirected by configuring the OF switch tables.

Switch Entries Ports Max_Items

CN-03 1518 2 755

i2C-01 1518 3 503

ETH-01 1518 2 755

Table 2 - Max number of available flow table entries and items

that can be handled

Taking into account the fact that the resources are constrained, in

the second experiment we enhance the static in-network caching

solution by using the TBFF strategy defined in section 6.1. The

TBFF strategy selectively caches content on a Cache server to

maximize the gain obtained by caching. This avoids the caching of

contents originated from the local server. The purpose of this

second experiment is to verify the functionality of the TBFF

caching mechanism by measuring the traffic load on the local and

remote ICN servers.

We assume that an ICN Client located in CreateNet island is

periodically making a set of requests to three different ICN servers,

one located in CreateNet island and the other two in the remote

islands (i2Cat and ETHZ). We use the same “static” pattern of

requests described for the first experiment, but now the number of

requested item Nr is more than 1K exceeding Max_Items. We

performed a run of the experiment with the static TBF caching

policy and we observed that in the steady state the items exceeding

Max_Items were equally split among the three ICN servers and

that the requests for these items were causing traffic load on the

ICN servers (results not shown for space reasons). On the other

hand, when using the TBFF policy, the CAC-CNET Cache Server

does not cache all the contents coming from the local ICN server

SER-CNET. The number of items requested from the remote ICN

servers is less than Max_Items, therefore all “remote” items will

be cached in the CAC-CNET Cache Server. In Figure 16, the

steady state of the experiment with TBFF is reported, after the first

cycle (of duration Tc) of the requests has been performed. The ICN

client continues to request the same set of contents. The local ICN

Server in CreateNet (top left in Figure 16) is still loaded, as the

contents that it provides has not been cached. On the other hand,

the load on the remote ICN Servers in ETHZ and i2Cat island has

been reduced to zero (the two bottom diagrams in Figure 16, in

which there is only 1-2 kb/s background traffic, note again the

different scale of the graphs). We verified that the number of

cached items Cr in the cache is around 700, below the limit

imposed by the maximum number of entries in the OpenFlow

switch flow table, showing the effectiveness of the TBFF strategy.

Figure 16 - Advanced TBFF caching policy

8.3 Dynamic in-network caching

D-TBF and D-TBFF (defined in section 6.2) introduce a dynamic

entry expiration mechanism that makes room to new entries when

the old ones are not used. The purpose of the third experiment is to

validate the dynamic mechanism and show how it can

accommodate a set of different requests larger than the capacity of

the OF tables.

We defined a “dynamic” request pattern in which the “active set”

of content requests changes over time. NA is the number of

different contents in the active set. The client periodically (with

cycle time Tc) requests a set of Na contents. At a given time Ta = K

* Tc (i.e. after K cycles of requests) it will start requesting a

different set of Na contents. such that total number of different

requests Nr > Max_items. In the experiment, the table entries

resources are not enough to deal with all the Nr contents, but are

capable to deal with the contents in the “active” set of requests

(Na). Therefore, we need to make room to new contents and

remove the entries related to old unused contents. Using D-TBF or

D-TBFF, after the time-out time To, the entries for the first set of

content will expire, making room for the new content requests.

The ICN Client in CreateNet island starts performing a set of

requests towards the ICN Server in ETHZ island (at time t = 0) for

Nr <= Max_items, these requests are performed periodically with

a period Tc of about 70 seconds. Figure 17 reports the results of

this third experiment. The requests are initially served by the

remote ICN Server (SER-ETHZ); meanwhile they are cached by

the local Cache Server as it can be seen from the increasing number

of cached items. The ICN Client repeats the same set of requests

for K=3, so after the first Tc (first and third red vertical red lines)

the requests are served by the Cache Server and the ICN Server

load goes to zero. Then at time Ta (second and fourth vertical red

lines), the ICN client starts requesting a different set of requests,

i.e. the active set of requests is changing. The new contents are

requested to the remote ICN Server SER-ETHZ, as they are not in

the CAC-CNET Cache Server. The Cache Server starts caching the

new contents and the cached item number increases. After a short

while, the entries related to the old contents start to expire,

reducing the number of cached items. After a transient phase, the

number of cached items is the same as before (because in our

request pattern the second active set has an identical size to the first

active set). The requests are now forwarded to the local Cache

Server and the load on the remote ICN Server goes again to zero

as desired.

Figure 17 - D-TBF caching policies

8.4 Validation of the FIX(p) strategy

The FIX(p) mechanism (section 6.3) introduces a probability in the

decision whether to cache or not a content. This policy provides a

simple “implicit” cache coordination mechanism, which actually

does not require any explicit cooperation among Cache Server.

One of the most evident advantage is the improved cache diversity

in the network; other benefits of the cache coordination have been

widely discussed in [66]. The goal of the experiment presented in

this section is to validate the FIX(p) policy.

FIX(p) can be combined with the basic TBF caching mechanisms

or with other caching policies implemented in the ICNoSDN v2

PoC. In the experiment described hereafter, it is combined with the

basic TBF mechanism. For this experiment, we used a subset of

the topology depicted in Figure 10, only including the i2C and

ETHZ islands. The ICN Client1 (i2C island) requests contents

uploaded on ICN Server2 (ETHZ island).

We execute the experiment with four different values of the

caching probability p in FIX(p) {1, 0.8, 0.6, 0.4}, ranging from 1

to 0.4 in steps of 0.2. When p is equal to 1 it corresponds exactly

to the basic TBF case (this means that each content will be always

cached). Figure 18 reports the number of cached items in the iC3

Cache Server as function of the time. The number of cached items

grows from zero and continuously increases until it reaches the

maximum threshold (in this case 380 items, which is the number

of different chunks requested in the experiment). When we repeat

the experiment decreasing the caching probability, showing the

influence of the probability on the caching strategy: the grow rate

of the cached items decreases proportionally. With p=1, we are

able to cache the maximum number of cached items in 5 minutes.

Looking at Figure 18, we observe that after 5 minutes the fraction

of the items that has been cached directly depends on p. For

example, comparing p=0.8 and p= 0.4, we can clearly show that

after 5 minutes the number of the items for p=0.4 is exactly the half

of the items for p=0.8.

Figure 18 – FIX(p) cached items vs time for different p

8.5 Discussion on the scalability limitations

The most important outcome of the tests on the OFELIA testbed is

that the scalability of the solution is limited by the number of

entries in the flow table. This number is very low in the specific

testbed environment (see Table 2) for a number of reasons: i) the

switch used in the testbed are the first generation OpenFlow

switches; ii) only a fraction of the flow table of a physical switch

is assigned to a testbed user; iii) the virtualization mechanism

transforms a wildcard rule “all ports” in a set of rules, one for each

port. In a modern and not virtualized switch, we can expect a

number of entries in the order of tens of thousands.

Nevertheless, there can be scenarios in which we want to support

hundreds of thousands of different active chunks in a domain,

cached in a specific Cache Server. In such cases, we may need to

enhance the scalability of the proposed Tag based solutions

(assuming that the Cache server storage space will not become a

bottleneck). A first solution could be to consider chunks with

variable size. In fact, if the size of chunk is kept constant, very

large files will generate a very large number of chunks; therefore a

large number of different forwarding rules will be needed. An

improvement could be to have a chuck size that increases if the file

is longer. Another mitigation to this problem is a proper use of the

caching policies, which can reduce the average number of chunks

cached in Cache servers and consequently the number of Tag based

forwarding rules. In this respect, the Tag semantic could be

extended to transport additional information useful to assist the

decision of the Caching policies.

9. Related work

The basic ideas about the ICN paradigm have been proposed in [1]

[2], which in turn find their root in [30]. Several recent projects

have been dealing with ICN research ([15][31][33][34][35][36], to

list a few). Surveys on ICN concepts and research issues can be

found in [37] and [38]. Our previous work on ICN namely on

CONET framework can be found in [13] and [14]. As regards

SDN, the seminal paper on the paradigm can be found at [8],

surveys on SDN research issues can be found in [5][6] and [7].

ICN and SDN have evolved separately; a relatively recent research

trend is considering their combination. Our early work related and

supporting ICN functionalities in SDN can be found in [39][40].

Hereafter we provide an overview on research related to the

combination of ICN and SDN.

The proposed architecture in [43] shares some common points with

our approach especially in the operations performed at the edge of

the ICN domain. The edge node acts as the domain Controller and

is responsible to achieve internal or edge delivery.

The recent work in [44] proposes an ICN architecture based on

SDN concept, aligned with the approach we have proposed in [9].

The authors in [42] exploit the SDN concept for their specific ICN

solution [33][41], which is rather different from our ICN approach

[13] based on the CCN/NDN architectures [2][15] .

The architecture proposed in [45][46] focuses on the extension of

SDN/OpenFlow, particularly in storage and content primitives.

Content routing is supported by mapping content to a TCP flow

and using an SDN approach to route the flow. The mapping is

performed in the edge proxies, which map HTTP requests into

flows. The main difference with our approach proposed is that the

clients and server just use legacy HTTP without using any ICN

protocol, as we do.

In [47], the “tagging” approach is proposed for routing within a

data center. The approach of having a centralized routing engine

per autonomous system has also been considered for regular IP

routing. For example, [48] first proposed the so-called Routing

Control Platforms, while the BGP “Route reflector” solution [49]

can be seen as a form of centralization of RIBs. Recently, solutions

to centralize the RIB avoiding to run BGP at the edges of an

autonomous system and exploiting a SDN backbone have been

proposed in [50] and [51]. As for the inter-domain name-based

routing, the use of a BGP-like approach was already proposed in

[52]. Recently, it has been proposed to extend BGP to disseminate

advertisement information about content objects in the form of

URIs [53].

In [54], the authors provides a detailed view and discuss about the

availability of OpenFlow based technologies. Moreover, they

present research initiatives regarding the use of SDN for future

internet research and experimentation.

In [55], the authors provide an experimental environment based on

virtual networks called Future Internet Testbed with Security

(FITS). FITS allows the creation of multiple virtual networks in

parallel, based on virtualization tools Xen and OpenFlow. The

experimenting platform divides physical network in virtual

networks, each containing its own protocol stack, routing rules and

management. They used FITS to experiment Content-Centric

Network and compare the CCNx with the conventional TCP/IP

protocol stack.

In [56], the authors present a survey on the existing ICN software

tools, with a cross comparison between ICN simulators.

In [57], the authors present a survey on caching approach in ICN,

identifying two different types of caching (In-network and Off-

path), and then describing different caching deployment scenarios

and caching algorithms. Icarus [58] is a discrete event simulator

specific for ICN caching simulation. This simulator, designed to

be extensible and scalable, provides an easy interface to implement

and test new caching policies. This extendibility approach is

similar to ours, but Icarus is a simulator, while we have presented

an emulator.

In [59] and [60], the authors propose a wrapper which pairs a

switch interface to a CCNx interface, decodes and hashes content

names in CCN messages into fields that an OpenFlow switch can

process (e.g. IP address and port number). Wrapper also enables

the OpenFlow switch to forward and monitor interest packets using

content names. In contrast to our work, they did not provide any

platform and real testbed scenarios. The implementation of this

work is very simple, it includes a node for generation content, a

node for requesting the content and an OpenFlow switch, no GUI

for monitoring and experiment evaluation is provided.

In [67], the authors propose a mechanism to deploy ICN in a

network domain using SDN paradigm. Briefly, the controller sets

up the path rules for transferring an interest packet and its returning

data packet. Differently by us, the scenario assumes that any ICN

request is served by a cache node internal to the network domain.

Conversely, we also consider the cases in which ICN packets

traverse the SDN network domain since the related content is not

(yet) available in the internal cache. In [68], the authors present an

ICN architecture that uses a SDN approach for routing and caching

programmability. While our architecture uses OpenFlow, the

architecture in [68] uses the Protocol-Oblivious Forwarding

protocol for which the switches can apply powerful match

conditions over customizable and variable length fields of the

packet header.

The more general aspects of caching in ICN has been studied quite

extensively in the literature, hereafter we provide a selection of

some references. In [61], random selection centrality-driven

caching schemes are used to investigate the possibility of caching

less in order to achieve higher performance gain and determine the

effectiveness of the schemes. In [62], the authors propose a

centralized architecture for ICN without using OpenFlow protocol.

The proposed architecture combines Content-Centric Networking

and Network Coding (NC). They have considered multi-level

caches operating under several different coding situations. It is

assumed that the LRU algorithm runs in all caches and the LCD is

incorporated in the intermediate nodes. In [20], the authors present

a simulation study of CCN to emphasize on caching performance.

They have considered several aspects including sizing of cache

catalog, popularity, caching replacement and decision policies,

topology and single vs multi-path routing strategies. The result of

their work shows that the cache catalog and popularity has the most

important factor that affects the cache-hit performance. In [63], the

authors try to investigate different combinations of naming and

digital signature schemes and analysis their impacts on cache-hit

probability. In [64], the authors investigate the impact of traffic

mix on the caching performance of a tow level caching hierarchy.

They have identified four main types of content (Web, file sharing,

user generated content and video on demand). Their result shows

that the caching performance increases if VoD content is cached

towards the edge of the network to leave core with large caches for

other type of content. In [65], the authors focus on the performance

evaluation of the ICN paradigm and develop an analytical model

of bandwidth and storage sharing. Moreover, they provide also a

closed form characterization of the average content delivery time.

10. Conclusions

In this paper, we have presented a solution to support ICN by

exploiting SDN, implemented by means of Open Source

components and offered as a platform for further experiments and

developments. We have provided an in depth description of the

configuration and forwarding mechanism needed to support the

ICN based transfer of content from ICN servers to ICN clients,

exploiting in-network caching. The solution supports arbitrary

topologies and, in general, it scales linearly with the number of

different active chunks that are cached in an in-network cache.

We have implemented a set of basic caching policies using the

SDN-based approach and have provided their performance

analysis thanks to a set of testbed management and monitoring

tools that we have developed.

From a methodological point of view, we have shown that it is

possible to deploy the different policies by changing the logic

residing in controller modules. Considering that the SDN concepts

are currently shaping the evolution of telecommunication

networks, we believe that they will play a fundamental role for

ICN. In facts, the ICN over SDN approach facilitates the

introduction of ICN in production networks and fosters the

development of innovative caching policies and mechanisms.

We have provided a reference environment to deploy and test the

proposed ICN over SDN infrastructure over local and distributed

testbeds. Additional caching policies can be added and further

experiments are facilitated by the provided tools. We have given a

strong emphasis on replicability and extendibility of our research.

To this purpose, the capability to emulate the solution using the

widespread Mininet emulator represents an important contribution.

11. Acknowledgments

This work has been partially supported by the EU research projects

OFELIA and H2020 EU-JP ICN2020.

12. References

[1] T. Koponen, M. Chawla, B.G. Chun, et al.: “A data-oriented

(and beyond) network architecture”, ACM SIGCOMM 2007
[2] V. Jacobson, D. K. Smetters, J. D. Thornton et

al., ”Networking named content”, ACM CoNEXT 2009
[3] N. Blefari Melazzi, L. Chiariglione: “The potential of

Information Centric Networking in two illustrative use

scenarios: mobile video delivery and network management in

disaster situations”, IEEE Multimedia Communications

Technical Committee E-letter, Vol. 8, N. 4, July 2013.

[4] David Meyer and Darrel Lewis. The locator/id separation

protocol (LISP). In RFC 6830, 2013
[5] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg,

S. Azodolmolky, S. Uhlig, “Software-defined networking: A

comprehensive survey”, Proceedings of the IEEE, 2015

[6] B. Nunes, M. Mendonca, X. N. Nguyen, K. Obraczka, T.

Turletti, “A survey of software-defined networking: Past,

present, and future of programmable networks”, IEEE

Communications Surveys & Tutorials, 2014

[7] T.D. Nadeau, K. Gray, “Software Defined Networks”, 2013,

Published by O’Reilly Media

[8] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L.

Peterson, J. Rexford, S. Shenker, J. Turner, “OpenFlow:

Enabling innovation in campus networks”, ACM

Communications Review, 2008
[9] S. Salsano, N. Blefari-Melazzi, A.Detti, G.Morabito, L.

Veltri: “Information centric networking over SDN and

OpenFlow: Architectural aspects and experiments on the

OFELIA testbed”, Computer Networks, Elsevier 2013

[10] OFELIA project: http://www.fp7-OFELIA.eu
[11] Mininet project home page, http://mininet.org/
[12] CONET (COntent NETworking) and ICN over SDN Home

Page http://netgroup.uniroma2.it/CoNet/
[13] A. Detti, N. Blefari-Melazzi, S. Salsano, and M. Pomposini.

“CONET: A Content-Centric Inter-Networking

Architecture”, ACM Sigcomm workshop ICN 2011.
[14] A. Detti, M. Pomposini, N. Blefari-Melazzi, S. Salsano,

“Supporting the Web with an Information Centric Network

that Routes by Name”, Computer Networks, vol. 56, Issue 17.

[15] Named Data Networking (NDN), http://named-data.net/

[16] S. Salsano, A. Detti, M. Cancellieri, M. Pomposini, N.

Blefari-Melazzi, “Transport-layer issues in Information

Centric Networks”, ACM SIGCOMM Workshop ICN-2012.

[17] IEEE 802.1D -

http://standards.ieee.org/getieee802/download/802.1D-

2004.pdf
[18] Protocol Independent Multicast – Dense Mode -

http://www.rfc-editor.org/rfc/rfc3973.txt

[19] Distance Vector Multicast Routing Protocol -

http://tools.ietf.org/html/draft-ietf-idmr-dvmrp-v3-11

[20] D. Rossi G. Rossini, “Caching performance of content centric

networks under multi-path routing (and more)”, Technical

report, Telecom ParisTech, 2011

[21] S. Arianfar and P. Nikander, “Packet-level Caching for

Information centric Networking,” in ACM SIGCOMM,

ReArch Workshop, 2010.

[22] S. Wang, B. Jun, Z. G. Li, X. Yang, J. P. Wu, “Caching in

information-centric networking”, AsiaFI Future Internet

Technology Workshop, 2011

[23] Floodlight Home page, http://www.projectfloodlight.org
[24] Netfilter Project Home Page, http://www.netfilter.org/
[25] Marc Sune et al. “Design and implementation of the OFELIA

FP7 facility: the European OpenFlow testbed”, Computer

Networks, Elsevier 2014
[26] Enterprise GENI (eGENI) project:

http://groups.geni.net/geni/wiki/EnterpriseGeni

[27] R. Sherwood, G. Gibb, K. K. Yap, G. Appenzeller, M.

Casado, N. McKeown, G. Parulkar, “FlowVisor: A network

virtualization layer”. OpenFlow Switch Consortium, Tech.

Rep, 2009.
[28] MRTG home page,

http://oss.oetiker.ch/mrtg/doc/mrtg.en.html

[29] RRDtool home page,
http://oss.oetiker.ch/rrdtool/prog/rrdpython.en.html

[30] D. Cheriton, M. Gritter, “TRIAD: A new next-generation

Internet architecture”, Technical report, CSD, Stanford

University, 2000
[31] CCNx project web site: http://www.ccnx.org
[32] Conet patch for ccnx

https://github.com/StefanoSalsano/alien-ofelia-conet-ccnx
[33] PURSUIT project, http://www.fp7-pursuit.eu

[34] SAIL project, http://www.sail-project.eu/

[35] CONVERGENCE project, http://www.ict-convergence.eu

[36] COMET project http://www.comet-project.org

[37] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, B.

Ohlman, “A survey of information-centric networking”,

IEEE Communications Magazine, 2012.

[38] G. Xylomenos, et al. “A survey of information-centric

networking research”, IEEE Communications Surveys &

Tutorials, 2014.
[39] L. Veltri, G. Morabito, S. Salsano, N. Blefari-Melazzi, A.

Detti, “Supporting Information-Centric Functionality in

Software Defined Networks”, SDN’12: Workshop on

Software Defined Networks, co-located with IEEE ICC, June

10-15 2012, Ottawa, Canada

[40] N. Blefari-Melazzi, A. Detti, G. Mazza, G. Morabito, S.

Salsano, L. Veltri, “An OpenFlow-based Testbed for

Information Centric Networking”, Future Network & Mobile

Summit 2012, 4-6 July 2012, Berlin, Germany.

[41] D. Trossen, G. Parisis. “Designing and Realizing an

Information-Centric Internet”, IEEE Communications

Magazine, July 2012
[42] D. Syrivelis, G. Parisis, D. Trossen, P. Flegkas, V. Sourlas, T.

Korakis, L. Tassiulas, “Pursuing a Software Defined

Information-centric Network”. In Software Defined

Networking (EWSDN), 2012 European Workshop on (pp.

103-108). IEEE.
[43] B. Raghavan, M. Casado, T. Koponen, S. Ratnasamy, A.

Ghodsi, S. Shenker, “Software-defined internet architecture:

decoupling architecture from infrastructure”, 11th ACM

Workshop on Hot Topics in Networks (HotNets-XI), October

29-30, 2012, Redmond, WA

[44] S. Eum, M. Jibiki, M. Murata, H. Asaeda and N. Nishinaga,

"A design of an ICN architecture within the framework of

SDN," 2015 Seventh International Conference on Ubiquitous

and Future Networks, Sapporo, 2015
[45] A. Chanda, C. Westphal, “Content as a network primitive”,

arXiv preprint arXiv:1212.3341 (2012).

[46] A. Chanda, C. Westphal, “ContentFlow: Mapping Content to

Flows in Software Defined Networks”, arXiv preprint

arXiv:1302.1493 (2013).

[47] B. J.Ko, V. Pappas, R.Raghavendra, Y. Song, R. B.

Dilmaghani, K.-won Lee, D. Verma,“An information-centric

architecture for data center networks”. 2nd ICN workshop on

Information-centric networking (ICN '12),Helsinki, Finland

[48] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh,

and J. van der Merwe, “Design and implementation of a

routing control platform”, in NSDI’05, 2005

[49] T. Bates, E. Chen, R. Chandra “BGP Route Reflection:An

Alternative to Full Mesh Internal BGP (IBGP)”, IETF RFC

4456, April 2006

[50] C. E. Rothenberg, M. R. Nascimento, M. R. Salvador, C. N.

A. Corrêa, S. C. de Lucena, and R. Raszuk, “Revisiting

routing control platforms with the eyes and muscles of

software-defined networking”, HotSDN'12 Workshop, Aug.

2012, Helsinki, Finland
[51] V.Kotronis, X. Dimitropoulos, B. Ager,“Outsourcing the

routing control logic: better internet routing based on SDN

principles”, 11th ACM Workshop on Hot Topics in Networks

(HotNets-XI), 2012, New York, USA

[52] M. Gritter, D. Cheriton, “An Architecture for Content

Routing Support in the Internet”, Proc. Usenix USITS, March

2001

[53] A. Narayanan, Ed., S. Previdi, B. Field, “BGP advertisements

for content URIs”, draft-narayanan-icnrg-bgp-uri-00, Work

in progress, July 28, 2012

[54] F. de Oliveira Silva, et al “Enabling Future Internet

Architecture Research and Experimentation by Using

Software Defined Networking”, European Workshop on

Software Defined Networking, EWSDN 2012.
[55] P. Guimaraes, V. Henrique, et al. “Experimenting Content-

Centric Networks in the Future Internet Testbed

Environment”, Communications Workshops (ICC), 2013

IEEE International Conference on. IEEE, 2013.
[56] M. Tortelli, D. Rossi, G. Boggia, L.A. Grieco. “ICN software

tools: Survey and cross-comparison”, Simulation Modelling

Practice and Theory, April 2016.
[57] Ibrahim Abdullahi, et al., “Survey on caching approaches in

Information Centric Networking“, Journal of Network and

Computer Applications, October 2015.
[58] L. Saino, I. Psaras and G. Pavlou. “Icarus: a Caching

Simulatorfor Information Centric Networking (ICN)”,

Proceedings of the 7th International ICST Conference on

Simulation Tools and Techniques, 2014.
[59] X. N. Nguven, D. Saucez, T. Turletti, "Efficient caching in

Content-Centric Networks using OpenFlow", IEEE

INFOCOM, 2013

[60] X. N. Nguyen, D. Saucez, T. Turletti, “Providing CCN

functionalities over OpenFlow switches”, research report -

https://hal.inria.fr/hal-00920554/document.
[61] W. K. Chai, D. He, L. Psaras, G. Pvlou, "Cache Less for More

in Information-centric Networks (extended version)",

Computer Communications, 2013

[62] Qin, Lidu, et al. "Exploring Cache Coding Scheme for

Information-centric Networking." Computational Science

and Engineering (CSE), 2014 IEEE 17th International

Conference on. IEEE, 2014
[63] A. Detti, A. Caponi, G. Tropea, G. Bianchi, N. Blefari-

Melazzi, “On the Interplay among Naming, Content Validity

and Caching Information Centric Networks”, IEEE

GLOBECOM 2013.
[64] C. Fricker, P. Robert, J. Roberts, N. Sbihi, “Impact of traffic

mix on caching performance in a content-centric network”,

IEEE INFOCOM NOMEN Workshop, 2012

[65] L. Muscariello, G. Carofiglio, and M. Gallo. “Bandwidth and

storage sharing performance in information centric

networking”. ACM Sigcomm workshop ICN 2011.

[66] Li, Jun, et al. "Popularity-driven coordinated caching in

named data networking." Proceedings of the eighth

ACM/IEEE symposium on Architectures for networking and

communications systems. ACM, 2012.

[67] M. Vahlenkamp, F. Schneider, D. Kutscher, J.

Seedorf, ”Enabling information centric networking in IP

networks using SDN” Proceedings of IEEE SDN for of

Future Networks and Services (SDN4FNS), 2013

[68] Charpinel, Sergio, et al. “SDCCN: A Novel Software Defined

Content-Centric Networking Approach.” 2016 IEEE 30th

International Conference on Advanced Information

Networking and Applications (AINA).

[69] “Mobile Video Delivery with Hybrid ICN”, CISCO white

paper, available at:

http://www.cisco.com/c/dam/en/us/solutions/collateral/servi

ce-provider/ultra-services-platform/mwc17-hicn-video-

wp.pdf

