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ABSTRACT  

Information Centric Networking (ICN) is a paradigm in which the network layer provides users with access to content by names, instead 

of providing communication channels between hosts. The ICN paradigm promises to offer a set of advantages with respect to existing (IP) 

networks for the support of the large majority of current traffic. In this paper, we consider the deployment of ICN by exploiting the Software 

Defined Networking (SDN) architecture. SDN is characterized by a logically centralized control plane and a well-defined separation 

between data and control planes. An SDN-enabled network facilitates the introduction of ICN functionality, without requiring a complex 

transition strategy and the re-deployment of new ICN capable hardware. More in details, in this paper we provide: i) a solution to support 

ICN by exploiting SDN, extending a previous work of ours; ii) design and implement an open reference environment to deploy and test 

the ICN over SDN solutions over local and distributed testbeds; iii) design and implementation of a set of Caching policies that leverage 

on the ICN over SDN approach; iv) performance evaluation of key aspects of the ICN over SDN architecture and of the designed caching 

policies. All the source code and the monitoring suite are publicly available. To the best of our knowledge, there are no other similar 

solutions available in Open Source, nor similar emulation platforms, including also a comprehensive set of monitoring tools. 

 

1. Introduction 

Information Centric Networking (ICN) is a paradigm emerged to 

overcome some intrinsic limitations of the IP protocol [1][2]. In 

ICN, the network provides users with access to content by names, 

instead of providing communication channels between hosts. The 

idea is to provide “access to named data” as the fundamental 

network service. This means that all content (e.g. a document, a 

picture) is given a name; then, users request for the named content, 

the network forwards the requests toward the “closest” copy of 

such a content, which is delivered to the requesting user. With ICN, 

the communication network becomes aware of the name of the 

content that it provides and the routing decisions are made based 

on the content name. As a result, ICN [3]: i) improves network 

efficiency; ii) naturally supports mobility of users and servers and 

multicast communications; iii) eases the operation of fragmented 

networks, or sets of devices disconnected from the rest of the 

network; iv) offers simpler application programming interfaces; v) 

provides a content-oriented security and access control model. 

The capabilities of ICN are particularly valuable as we move to an 

increasingly mobile connected world, where information, end-

points and people are continually connecting to a different point, 

requiring in-built mobility support from the network. The 

Internet’s coupling of the IP address for both identifying a device 

(and related content) and for determining where it is topologically 

located in the network resulted in conflicting goals. On one hand, 

for routing to be efficient, the address must be assigned 

topologically; on the other hand in order to manage collections of 

devices, without the need for renumbering in response to 

topological change or mobility events, the address must not be 

explicitly tied to the topology [4]. ICN offers a clean solution, by 

logically separating network locators from identifiers, not only of 

devices but also of content and potentially of users and functions. 

Despite the widespread attention that ICN has received from 

researchers in the past decade, both in terms of papers and research 

projects (see the section 9 on related work), the area is still facing 

significant research and innovation challenges, including 

innovative applications, interplay with cloud and virtualization 

concepts, name to location resolution, routing/forwarding table 

scalability.  

One of the open issues is the deployment of an ICN infrastructure 

in the current networks, based on the IP protocol, as it may require 

the replacement or update of existing running equipment. In this 

regard, we believe that Software Defined Networking (SDN) 

[5][6][7][8] can be an important enabler of ICN, as it promises to 

facilitate the continuous evolution of networking architectures. 

The SDN architecture is characterized by a logically centralized 

control plane and a well-defined separation between data and 

control planes. Forwarding devices execute packet forwarding 

actions following rules installed by an SDN Controller. The logical 

interface between the Controller and the forwarding devices is 

called southbound interface. An SDN-enabled network could 

facilitate the introduction of ICN functionality, without requiring a 

complex transition strategy and the re-deployment of new ICN 

capable hardware.  

In [9] we introduced an ICN over SDN network architecture to 

deploy ICN in IP networks. Here we build on and extend that work, 

providing the following main novel contributions: 

1. Enhancements in the design of the ICN over SDN 

forwarding mechanisms to support mesh topology and to 

scale with the size of the topology. 

2. Design and implementation of an open reference 

environment to deploy and test the ICN over SDN 

infrastructure and the related network service over local and 

distributed testbeds. 

3. Design and implementation of a set of Caching policies that 

leverage on the ICN over SDN approach. 

4. Performance evaluation of key aspects of the ICN over SDN 

architecture and of the designed caching policies. 

The paper is organized as follows. Sections 2 and 3 provide 

background information respectively on the basic ICN solution 

called CONET [13] and on our ICN over SDN architecture [9]. 

Section 4 presents the detailed description of the forwarding 



mechanism implemented in our Proof of Concept (ICNoSDN v1 

PoC), which were not described in [9]. This is needed to 

understand the motivations and operation advances of the new 

ICNoSDN v2 PoC, which is described in Section 5. The novel 

contributions include automatic topology handling that allows 

managing large numbers of nodes, a flow forwarding mechanism 

that works in arbitrary mesh topology; an improved architecture of 

the Controller software that simplifies the introduction of new 

mechanisms. In section 6 we define a set of specific caching 

policies implemented as Controller logic. In section 7, we illustrate 

the emulation platform including the novel monitoring GUI, fully 

supported and tested in the OpenFlow v1.0 testbed provided by the 

OFELIA project [10] and in the Mininet emulation tool [11]. The 

framework and the tools are Open Source and available at [12]. 

The described environment can be used to test new mechanisms in 

the ICN over SDN architectural scenario. Section 7.4 in particular 

provides the needed indications and references for reusing the 

ICNoSDN v2 PoC. In order to ease the initial setup of the 

solutions, we also packaged everything in a ready-to-go virtual 

machine. To the best of our knowledge, there is no such effort 

readily available in Open Source, nor such an emulation platform 

with a comprehensive set of monitoring tools. Section 8 provides 

the performance evaluation of the caching policies implemented in 

the ICN over SDN architecture. The related works are discussed in 

section 9; finally, section 10 draws the conclusions.  

2. The ICN approach: CONET 

CONET [13][14] is based on the concepts introduced in Content 

Centric Networking/Named Data Networking (CCN/NDN) 

architectures [2][15]. It extends the approach proposed by 

CCN/NDN in several aspects, including integration with IP, 

routing scalability, transport mechanisms, inter-domain routing. 

For the reader’s convenience, the basics of the CONET solution 

are reported hereafter, please refer to [13][14] for a detailed 

description. The “terminals” are called ICN Clients and ICN 

Servers in analogy with a client/server architecture or a 

publish/subscribe scheme. ICN Clients request content using 

CONET protocols as transport solution, leveraging the unique 

name of the content to be received, while the ICN Servers are the 

originators/providers of the content. In general, a terminal can act 

as both ICN Client and ICN Server if needed. As for the naming 

schemas, there is a full support of the approaches proposed by 

CCN/NDN; names could be human-readable or self-certifying. 

The Forward-by-name operation, performed by ICN Nodes, 

consists in a name-based lookup table and on a prefix matching 

algorithm. The association between name prefixes and next hop is 

performed by using a table called FIB (Forwarding Information 

Base), this table must be accessed at line speed. Moreover, another 

table, called RIB (Routing Information Base) is used to exchange 

routing information with other nodes and it does not need to be 

accessed at line speed. The RIB and FIB could have tens of billions 

of entries in order to include all the possible content names, making 

it infeasible to implement both in router hardware. In CONET, the 

FIB is used as a cache of currently needed routes, while the full 

routing table is managed by a centralized routing logic (Name 

Routing System). The Name Routing System has some similarity 

with the Domain Name System, as it provides the resolution of a 

content name into a next-hop, while the DNS provides the 

resolution of a domain name into an IP address.  

The content requests are called interests and the related packets are 

called interest packets. The interest packets are forwarded over the 

ICN network, taking into account the requested content-name for 

the “routing” of the request. The request travels in the network 

until it reaches a node that contains the content. This node receives 

the interest packet and replies with the data packets that are sent 

back towards the requesting node. The latter ones follow back the 

path towards the requester. Intermediate nodes can store the 

content, performing transparent “in-network” caching, following 

the CCN approach. In order to fit the transfer units of under-

CONET technologies (e.g. Ethernet), CONET handles the 

segmentation of content using two levels: at the first level the 

content is segmented into chunks, at the second level chunks are 

segmented into smaller data units (called Carrier-Packets). The 

transfer of Carrier Packets is regulated by a receiver-driven 

transport protocol based on the well-known TCP congestion 

control mechanism [16]. This approach avoids the fragmentation 

at IP level, which is faced by chunks greater than 1500 bytes in the 

earliest implementations of CCN. Moreover, it helps in the SDN 

solution as the CONET carrier packets can be properly managed 

by SDN capable switches thanks to the information contained in 

the headers, while IP fragments resulting from the fragmentation 

of a chunk would lose all the needed information. 

3. ICN over SDN architecture and high level view the Proof 

of Concept 

The architectural concepts for the deployment of the CONET 

architecture over a Software Defined Network are introduced in 

[9]. Here we briefly recall them. Following the SDN approach, an 

OpenFlow-based ICN architecture is considered, where the 

intelligence of the ICN is de-coupled from the forwarding (of 

interest and data packets) and caching functions. As shown in 

Figure 1, this architecture is composed of two different planes: i) a 

data plane containing ICN Servers, ICN Clients and ICN Nodes; 

ii) a control plane that includes the Name Routing System 

(composed by NRS Nodes), SDN controllers and an Orchestrator 

node. The two planes communicate through an extended 

OpenFlow interface, used by the Controllers/NRS nodes to control 

one or more ICN Nodes. In the control plane, the Controllers/NRS 

nodes offer also a northbound API towards the Orchestrator node 

that orchestrates the overall behavior of a domain. Note that the 

role of NRS nodes in CONET is fully aligned with the SDN 

approach of using a controller to drive the forwarding behavior of 

switches/routers and to enforce an explicit separation between a 

data forwarding plane and a control plane.  
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Figure 1 - Architecture for ICN over SDN based on CONET 

The reference scenario for our testbed implementation is shown in 

Figure 2. We consider an OpenFlow based domain, in which ICN 

border nodes act as “Inter Working Elements” (IWE) with external 

domains. Such nodes translate the information contained in the 

Carrier-Packets header to something that can be processed by the 

OpenFlow-capable equipment. In particular, this adaptation 

corresponds to pushing (then popping) a tag to the Carrier-Packets 



header. In the scenario depicted in Figure 2, there are no ICN 

Clients and Servers directly connected to the OpenFlow domain. 

In this case, the ICN “ingress/egress” nodes act as relay for the ICN 

Clients/Servers and execute the IWE functions on the ICN packets 

before forwarding them. More in general, it is also possible that 

ICN Clients/Servers integrate the IWE functions and are directly 

connected to the OF-capable nodes in the OpenFlow domain. The 

functionality of an ICN node is split between an OpenFlow capable 

switch and an external Cache Server paired with the switch, which 

act as ICN in-network cache. The NRS nodes, realized as set of 

SDN Controllers, instruct the forwarding nodes in order to realize 

the forwarding-by-name and the in-network caching operation. 
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Figure 2 - ICN over SDN testbed scenario 
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Figure 3 - ICNoSDN PoC operations (high level view) 

The high-level view of the ICNoSDN PoC operations is shown in 

Figure 3. The ICN Clients (border nodes) send the interest requests 

that are initially served by ICN Servers, which send back the data 

towards the ICN clients. While the data are forwarded on the 

reverse path, the SDN controller can instruct the OF switches to 

forward a copy of the data towards Cache Servers distributed in 

the network (Figure 3, interface 1). Once a Cache Server completes 

a “chunk” of data, it informs the Controller about the possibility to 

serve new contents with its cache (Figure 3, interface 2). At this 

point the Controller proactively “pushes” rules in the OF switches 

(Figure 3, interface 3), instructing them to redirect further requests 

of these contents towards the Cache Server, instead of the ICN 

Servers. We call this behavior as Tag Based Forwarding (TBF), as 

it is based on the tags inserted by the border node of the OpenFlow 

domain. The forwarding of regular (e.g. non-ICN) IP traffic is 

supported; we distinguish the regular IP traffic from the ICN traffic 

using a disjoint set of addresses, so the Controller and the Switches 

can recognize them. Clearly, this is meant to work in a single-

provider scenario, in which the provider can assign a subset of the 

private IP address space to support the ICN services. From the 

point of view of the regular IP traffic, the OpenFlow domain is 

seen as a layer 2 network. It is a specific design goal of the 

ICNoSDN testbed to support in parallel the operation of the 

ICNoSDN and of the regular IP traffic, in order to show the 

flexibility of the SDN based approach. 

In the next section, we present in details the operations and 

forwarding mechanism of the first version of our Proof of Concept, 

which were not described in [9]. This is also needed to understand 

the advances of the new version 2, described in Section 5. 

4. Proof of Concept version 1 operation details 

A detailed view of the ICNoSDN v1 PoC operations is given in 

Figure 4 (where the logical steps are numbered from A0 to A13). 

The ICNoSDN v1 PoC uses a static approach to configure the 

Controller with the information about the experimental topology. 

For each experimental topology, we need to prepare two 

configuration files. The first configuration file includes the list of 

IP addresses of all CONET hosts in the network, separated in ICN 

Clients and Servers (A0 – Client/Server Config). If a host needs to 

play both roles, it is assigned two IP addresses. The second 

configuration file lists the DPID and MAC address of all the 

switches equipped with a cache (A0 – Cache Server Config) and 

the port to which a Cache Server is connected. The MAC address 

of the switch is needed because the Data packets redirected 

towards the Cache Server cannot keep the ICN server MAC 

address. This configuration procedure is error prone and does not 

facilitate experiments with different arbitrary topologies. 

 
Figure 4 –ICNoSDN v1 PoC: detailed operations 

When the client transmits an interest request for the first time (A1), 

the OF switch forwards the interest packet to the Controller (A2) 

through an OF Packet-In message. Taking into account the 

information contained in the configuration file, the Controller is 

able to identify that the request is coming from an ICN client and 

to retrieve the information needed to setup the forwarding rules for 

data packets the switch (A3). Then it “pushes” the forwarding rules 

for the Client and the duplication rule towards the Cache Server in 

the proper switches (A4) (rules 1.1 and 1.2 in Figure 5). The 

request is forwarded in the network (A5) and it can be received by 

the server (A6). When the ICN server sends the response (data 

packet) in the network (A7-8), the first packet is forwarded to the 

OF controller (A9). Leveraging on the information contained in the 

configuration file, the Controller is able to properly identify the 

Server (A10) and install the forwarding rule for it in the switches 

(A11) (rule 2.1 in Figure 5). Finally, the response packet is 

forwarded both to the Cache Server (A12) and to the ICN Client 

(A13). Finally, once the Controller is informed by the Cache 

Server about the completion of a chunk, it “pushes” the rule 3.1 of 

Figure 5 to the switch.  Another request for the same content will 

be served by the Cache Server. 



// (1) Deliver of Data packets 
// For each (client, server) couple, on the switches that have 

received the Interest packets and are connected to a Cache Server 

IF IP Proto is CONET && IP/MAC destination is an ICN Cli 
THEN IF IP Src is an ICN Cache Server  
 (1.1) Forward the packet only towards the destination 
  with Priority 200 
OTHERWISE IF IP Src is an ICN Server 
 (1.2) Forward the packet both the destination and the 
  associated Cache Server with Priority 200 

// (2) Delivery of Interest packets 
// For each (client, server) couple, on the switches that have 

received a packet from a server  

IF IP Proto is CONET && IP/MAC destination is an ICN Ser 
THEN IF IP Src is an ICN Client 
 (2.1) Forward the packet on the port towards the ICN 
  Server with priority 201 

// (3) Delivery of the interests packets to the cache server  

// For each (client, server, tag) triple, on the switches connected to 

a Cache Server that has the content stored  

IF IP Proto is CONET && IP/MAC destination is an ICN Ser 
THEN IF IP Src is an ICN Cli && the packet contains X tag 
 (3.1) Forward the packet on the port toward the Cache  
 Server with priority 350   

Figure 5 - TBF forwarding Rules 

For the forwarding of regular IP traffic, the classical MAC learning 

approach is used (with a procedure driven by the controller, 

implemented in the Learning Switch of Floodlight). If the MAC 

destination address is unknown, the packet is sent on all ports but 

the receiving one. For the ICN traffic, the Learning Switch module 

is extended to support the installation of the rules described in 

Figure 5. This approach inherits the limitation of the Learning 

Switch forwarding logic and it is able to work only in loop-free 

topologies. The scalability of this solution is very poor. In fact, let 

C, S, T be respectively the number of ICN clients, ICN servers and 

different content chunks (Tags). The number of rules of type (1) 

and (2) in Figure 5 is proportional to C∙S, while the number of rules 

of type (3) is proportional to C∙S∙T.   

In order to transport CONET Carrier Packets inside an OpenFlow 

domain, we use the solution #1 in Figure 8 in which the ICN ID is 

carried inside the IP Option field and the TAG is carried using the 

source and destination ports of the UDP header. 

5. Proof of Concept version 2 

The second version of the PoC, referred to as ICNoSDN v2 PoC 

aims at realizing an open source framework for the testing of 

different caching policies inside an ICN over SDN network. It can 

run on arbitrary topologies, therefore it introduces an automatic 

topology handling mechanism (section 5.1) and a new more 

general flow forwarding system (section 5.2), capable to deal with 

mesh topologies. Dealing with larger topologies in the 

experimental OFELIA testbed also meant dealing with different 

types of network equipment; thus we had the chance to test and 

improve the compatibility of the packet format on different 

switches (section 5.3). We introduced a modular and extendible 

controller software architecture (section 5.4), a key element to 

support different caching policies. In particular, a set of 

implemented caching policies are described in section 6.  

5.1 Automatic topology handling 

In the ICNoSDN v2 we drastically simplify the configuration 

procedure of the SDN controller (see Figure 6, in which the steps 

are numbered from B0 to B14). Rather than listing all the single IP 

addresses of the node, we reduce the configuration information to 

four ranges of IP addresses, respectively identifying: 1) the set of 

ICN Clients; 2) the set of ICN Servers; 3) the set Cache Servers; 

4) the Local Region range (used for TBFF policy, see section 6.1). 

Using this information, the Controller can identify the different 

types of entities when receiving “packet-In” messages as needed 

to react appropriately. Thanks to the use of IP address ranges, we 

do not need specific forwarding rules for each (client, server) 

couple as in Figure 5. A single rule can cover all possible clients 

and server addresses. The scalability of the system is much 

improved: the number of rules of type (1) and (2) in Figure 5 is 

respectively proportional to the number of servers S and of client 

C (like in the regular MAC learning approach). The number of 

rules of type (3) is proportional to the number of different tags T, 

while in the ICNoSDN v1 it was proportional to C∙S∙T. In order to 

further simply the configuration procedure, we added some 

automatic discovery procedures for gathering information related 

to the Cache Servers. With this approach, the same static 

configuration information is reused for different arbitrary 

topologies (in the limit of the IPv4 address ranges that have been 

specified for the different node types) achieving scalability from 

the management point of view. While we used IPv4 in our testbed, 

this idea of associating a “semantic” to ranges of IP addresses can 

be actually implemented in real networks with IPv6, thanks to the 

huge available address space. In facts, ICN solutions have been 

proposed that even map the content name in the IPv6 address, see 

for example hICN [69] (while in our proposed solution we only 

need to map the class of node in the IPv4 address).   

The automatic discovery procedure collects the addresses of Cache 

Servers and of the switches to which they are connected and will 

be referred to as CS scouting procedure. It is needed because the 

OpenFlow rules, used to forward traffic towards Cache Servers, 

have to be installed in proactive way in the switches, before that 

the Cache servers send any data. The CS scouting procedure avoids 

the needs of a static configuration file. At their start up and 

whenever the TCP connection with the Controller goes down, the 

Cache Servers send a Scouting Packet in the data plane (B1). This 

packet arrives at the first OpenFlow Switch, i.e. the attachment 

point of the cache server, and then goes to the Controller through 

a Packet-In message (B2). The Controller receives the Packet-In 

message and if it is a Scouting Packet stores the configuration info 

for the Cache Server, i.e. the connected switch (the one that sends 

the Packet-In), input port, the MAC address of the OpenFlow 

switch and Cache Server addresses (IP and MAC). After 

performing the scouting procedure, the Cache Server establishes a 

TCP connection with the Controller. At this point, the operations 

follow the same procedure of the v1 PoC. The Cache Server 

operations in ICNoSDN v2 PoC also include a keep alive 

procedure, based on sending periodic hello messages towards the 

Controller. After the Cache Server has established the TCP 

connection to the Controller, it sends periodic hello messages on 

the connection. This procedure allows detecting any 

communication problem. If the connection goes down, the Cache 

Server enters in emergency mode and re-activates the periodic 

Scouting Procedure until a new pairing can be realized with the 

Controller.  

The procedures to configure the ICN Clients and Servers in the 

Controller are simpler because we can install the forwarding rules 

in reactive way and not in a proactive way as needed for the Cache 

Servers. In fact, the Controller relies on the traffic generated from 



the ICN Clients and Servers in order to infer their attachment ports, 

the IP and the MAC addresses that are needed to install the proper 

rules for the forwarding of the data packets. The first time that a 

switch sees a packet from an ICN Client or Server, it sends a 

Packet-In towards the Controller. Then, the Controller with a 

comparison between the IP address and the IP address ranges 

stored in the configuration file checks if the host is an ICN Client 

or Server, finally it does the necessary processing for the packet 

and “learns” the information needed by our module.  

 

Figure 6 – Automatic handling of node types in ICNoSDN v2 

PoC 

5.2 Forwarding mechanism based on reverse path 

forwarding (RPF) check 

In traditional layer-2 switched networks (i.e. not based on 

OpenFlow), topologies with redundant links and loops can be used 

thanks to the Spanning Tree protocol (SPT) [17]. Using SPT, the 

switches build the spanning tree that connects all the switches, 

disabling the ports that are not necessary and can create loops. The 

SPT approach is not efficient in OpenFlow based networks, where 

it is preferable to keep all links enabled. In fact, the SDN controller 

can allocate the flows to the links. The most efficient solution is to 

keep all links active and let the controller choose which links to 

use. For example, the Floodlight controller activates by default the 

Forwarding module that evaluates the Shortest Path towards a 

destination using Dijkstra’s algorithm (no automatic learning, the 

Controller uses the knowledge of the whole topology). The routing 

of broadcast packet is also decided centrally by building a tree for 

broadcasts. 

The v1 PoC implements a straightforward extension of the MAC 

Learning Switch forwarding logic and it is only able to support 

loop-free topologies. One property of the MAC learning approach 

interesting for our purpose is that response packets always follow 

back the path of the request packets. In our case this is needed, as 

in our ICN scenario, the data packets must follow the same path of 

the interest packets. If this does not happen, the in-network caching 

mechanism can become much less effective: a content chunk can 

be cached in a Cache Server during the forwarding of the data, but 

if the interest packets follow a different route it will never be 

requested to the Cache Server. Therefore, we are interested in 

designing a solution with symmetric routing as provided by MAC 

learning. On the other hand, we want to support arbitrary mesh 

topologies and leave all the links active so the SDN controller can 

choose all links. 

To support arbitrary topologies with redundant links and loops, we 

have extended the Learning Switch solution implementing the RPF 

(Reverse Path Forwarding). The RPF check is a simple solution 

used for example in multicast protocol like PIM – DM [18], while 

a variant of this algorithm is used in DVMRP [19]. It consists in a 

check done on all incoming packets that needs to be broadcast 

(including the unicast packets towards a destination that is not in 

the forwarding table). The RPF check discards all packets that the 

switches receive on ports that are not on the shortest path towards 

the source (when there are multiple shortest paths, one of them is 

arbitrarily chosen). Our solution is simpler than the algorithms 

realized in PIM-DM and DVMRP, as we do not have any 

“pruning” or “re-grafting” messages. We virtually build a spanning 

tree combining the Learning Switch approach with the RPF check. 

When a packet is received on a given port px and px is on the 

shortest path towards the source, the controller understands that the 

source is reachable through px and installs the appropriate rules. 

Subsequently, when the switch receives a packet for the source, it 

uses px to forward the packet. Moreover, one must consider that 

this choice in a scenario with asymmetric links represents the best 

solution, when compared with a solution that forwards the packet 

using a direct (no reverse) spanning tree. In fact using a direct tree 

the switch could learn that the source is reachable through a port 

that is not on the shortest path from its point of view.  

Figure 7 shows the RPF check in action on a topology that presents 

some loops. In particular, we show an example of a controlled 

broadcast communication started from the red node. The “SPT 

links” (continuous line) identify the branches of the spanning tree. 

The dashed lines represent the links that are not part of the 

Spanning Tress. Similarly, the arrows with the continuous lines 

show the packets that are accepted as broadcast packets and copied 

on all interfaces (except the incoming one). The arrows with the 

dashed line show the broadcast packets that are discarded by the 

RPF check. 

 

Figure 7 – RPF check in action 

The RPF check has been implemented in the Control Plane as a 

simple check performed on the Packet-In, the Controller discards 

all the packets that the switches receive on ports that are not on the 

shortest path towards the source. 

The combination of Learning Switch and RPF check represents a 

unified solution used for both ICN traffic and regular IP, but the 

ICN packets (recognized by their IP source and destination 

addressed) are further processed in order to setup the rules for the 

duplication of data towards the Cache Server. 

5.3 Encoding of CONET packets 

We designed two different solutions to transport CONET Carrier 

Packets inside an OpenFlow domain (Figure 8). In the first solution 

(#1 in Figure 8) the ICN ID is carried inside the IP Option field, 

the TAG is carried using the source and destination ports of the 

UDP header and the CONET payload is carried inside the 

remaining part of the UDP header (length and checksum) and 

inside the UDP payload. In the second solution (#2 in Figure 8) the 

TAG is carried in the UDP header, as in the first solution, but the 

ICN ID has been shifted from the IP header to the UDP payload. 

Both solutions leverage the fields of existing protocols in order to 



carry CONET information, as needed to be processed by legacy 

OpenFlow switches. In both cases, the TAG carries the ICN 

information (a function of the ICN name) in a section of the packet 

that can be matched with the OpenFlow rules. The IP header 

Protocol field is set to UDP so the packets are seen by network 

elements (including OF switches as UDP packets). The ICN traffic 

can be distinguished from “regular” UDP traffic by the IP address. 

In the simple experiment reported in [9] we implemented and used 

the first solution based on the IP option. We have then extended 

the experiments on the OFELIA testbed deploying larger 

topologies across multiple OFELIA islands, as will be detailed in 

section 7.1. In these multi-island experiments, we encountered 

issues, as some ICN Clients systematically could not establish any 

communication with an ICN Server. This happened when the ICN 

Server was located behind an Open vSwitch instead of a hardware 

switch. We discovered that the switch had problems in forwarding 

the packets with the IP Option. Therefore, we implemented and 

used the second solution (#2 in Figure 8), avoiding potential issues 

with IP Options. It has to consider that this fix was also a key 

enabler for the deployment and the experimentations over Mininet 

environment. 
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CONET Transport + TAG + UDP

IP PROTO

CONET Carrier Packet Payload

(Interest/Data)

ICN-ID

(CP header)
TAG

UDP HEAD. UDP PAYLOAD

UDPIP Addr

IP HEADER IP PAYLOAD
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Figure 8 - CONET packet over SDN 

5.4 Software Architecture of SDN Controller modules 

The SDN Controller implementation is based on Floodlight 0.9 

[23]. The v1 PoC described in [9] is based on a rough 

implementation, with the introduction of a new monolithic 

Floodlight module, managing all the aspects of the ICNoSDN 

control plane. The software implementation for v2 PoC improves 

the modularity of the control plane, easing the development of new 

application logics and caching policies. Figure 9 shows the new 

software architecture. The ConetModule class acts as an 

abstraction layer between the switches and the other parts of the 

module, and offers methods that permit to easily push tag based 

rules on the OpenFlow equipment (i.e. using the Southbound API). 

The ConetListener class manages the incoming packets from the 

switches. If they belong to ICN traffic, the ConetListener 

dispatches them to the appropriate Handler. In the class hierarchy 

of the Handler we have encapsulated the application logic and the 

caching policies. The Handler super class provides the simple 

Layer 2 Forwarding of the packets, while the caching policies are 

implemented in the subclasses, for example the MultiCSHandler 

realizes the Tag Based Forwarding. This architecture is directly 

inspired from the Netfilter framework [24], new improvements can 

be introduced easily and their impact on the remaining code is 

minimized. As regards the northbound API, we introduce a set of 

classes that extend the REST API of the Floodlight Controller and 

provide many interesting functionalities, the most important are: i) 

activation of a specific policy; ii) customization of the policies; iii) 

accounting of cached items. These classes have not been reported 

in Figure 9 in order to provide a more clear representation of the 

core architecture of the ICNoSDN v2 implementation. 

 

Figure 9 - Software architecture of the SDN Controller 

6. Caching policies 

The Tag Based Forwarding (TBF) mechanism is the basic caching 

policy implemented in the ICNoSDN architecture. It simply tries 

to cache every content that crosses an ICN capable node. The 

limitation of the storage capacity and of the other network 

resources (e.g. size of the OF switch tables) is not taken into 

account. More complex caching policies are needed to maximize 

the cache effectiveness taking into account the resource constrains. 

The ICNoSDN v2 PoC offers an environment to deploy and test 

different solutions. We have designed and implemented four 

caching policies described hereafter, that are available in the PoC 

distribution. The policies have been implemented by changing the 

logic in the SDN controller, i.e. providing additional extensions to 

the Handler class (see Figure 9). Note that the same policies could 

be implemented without SDN, by putting the control logic in the 

ICN nodes. The advantage of using the SDN infrastructure is the 

flexibility and the facility of implementing new policies operating 

in the logically centralized SDN control infrastructure. 

6.1 TBFF 

TBFF stands for TBF-Filter. It is based on “filtering”, i.e. not 

caching a subset of the contents. The idea is that from the 

perspective of an ICN node, the contents can be divided in local 

and remote ones. This requires the partitioning of ICN Servers and 

ICN nodes in different regions. A content that is originated from 

an ICN Server in the same region of the node is local; a content 

that is originated from an ICN Server in a different region is 

remote. Local contents are not cached, so that cache resources are 

saved for remote contents. When caching resources are limited, 

TBFF ensures that they are used to reduce the inter-region traffic. 

Caching of local content is less effective, because they cross a 

smaller numbers of links, and the benefit of being served from the 

Cache Server are smaller than in the case of content coming from 

a remote Server and crossing the inter-region links. In TBFF, the 

Controller only installs rules that duplicate contents coming from 

remote servers, while the local contents are simply forwarded 

towards the clients. This behavior is realized configuring (with the 

Controller configuration file, or using the appropriate Rest API) 

the local region range, i.e. the subset of the IP addresses that 

belongs to the same region of a particular switch. The algorithms 

for the partitioning of a domain into regions are beyond the scope 

of this works. In our experiments on the ICNoSDN v2 PoC we 

have manually partitioned the network. 

In Figure 11, we show the TBFF mechanism in action. The arrows 

with label XA (X=1..3) is a number) represent the flow of contents 

(data packets) from a local server, while those with label XB 

(X=1..5) represent the flow of contents from a remote server. Data 

packets coming from the remote server are duplicated towards the 



Cache Server by the OF switch, while data packets coming from 

the local server are only sent towards the Client. Section 8 reports 

some experimental results of the TBFF implementation.  

 

Figure 11 - TBFF in action 

6.2 DTBF and DTBFF 

DTBF and DTBFF respectively stands for Dynamic TBF and 

Dynamic TBFF. These mechanisms introduce a timeout for the 

rules that replicate the data packets towards the Cache Servers. 

With DTBF and DTBFF, each rule has an associated soft-timeout 

of duration To [s]: if a rule has not been matched for To seconds it 

is deleted (making room for new requests). This policy, taking 

advantage of what has been realized previously, is implemented 

with simple modifications that have minimal impact on the work 

already done. The DTBF and DTBFF Caching Policies have been 

validated and we show their benefits with dynamic patterns of 

requests (see section 8). The timeout To can be set using the 

configuration file or by exploiting a specific REST API that we 

have implemented in order to control this behavior in real time 

during the experiment. 

6.3 FIX(p) 

FIX(p) is a caching policy proposed and discussed in [20][21]. The 

idea is that each chunk of the content received by an ICN node has 

a probability p of getting indexed and cached. It is simple to be 

implemented as it does not need the cooperation among the in-

network caches. On the other hand, as it is stated in [22] an explicit 

cache coordination policy would likely violate the CCN line speed 

constraint. In the original implementation ([20][21]) the receiving 

node implements the policy and decides whether to cache a chunk 

or not. We have implemented FIX(p) leveraging the SDN Control 

Plane. In particular we have added the FIX(p) logic in the 

Controller, when it processes the messages coming from the Cache 

Server. On receipt of a cached or refreshed message the Controller 

activates the FIX(p) logic: it chooses with probability p whether to 

consider the message and configure the rules in the flow table 

(according to the active caching policy) or discard the message. In 

our context this simple caching policy can be combined with the 

basic TBF mechanism or joined with other caching policies 

(TBFF, DTBF…). In the latter case, FIX(p) acts as an implicit 

cache coordination policy. For example if we have M Cache 

Servers inside a local TBFF domain, all the M Cache Servers in 

the request path will cache the requested content. The total number 

of objects that can be cached in the local domain corresponds to 

the capacity of the largest Cache Server in the domain. If all Cache 

Servers can contain N objects, it can happen that the total number 

of different objects is N, while the maximum aggregated capacity 

is M x N. The combination of FIX(p) and TBFF mitigates this issue 

improving the total number of different cached object in the local 

TBFF domain.  

6.4 Additional caching policies 

The proposed framework can be leveraged to realize additional 

caching policies, based on the existing ones or based on different 

mechanisms. For example, the popularity of the contents is not 

included as an ingredient in the implemented policies. A module 

that estimates the popularity of the contents should be 

implemented, and then this information could be used by the 

algorithms that decide which content is to be cached in a given 

Cache Server. The SDN based approach may allow the algorithms 

to be based on a centralized view of the system, improving their 

effectiveness. 

7. Emulation tools 

The ICNoSDN v2 PoC can be run over different testbeds, 

maintaining the same Execution Enviroment. In Figure 12, we can 

see the building blocks that make up the tools needed to run an 

experiment using our framework. An experimenter that want to use 

our framework should only choose the suitable deployment for the 

desired type of testbed, he/she will be able to execute the 

experiment using the same Monitoring GUI and the same 

Execution Environment. The ability to perform experiments using 

different testbeds is a considerable extension to the v1 PoC. In 

particular, as the access to the OFELIA distributed testbed could 

be difficult, it is valuable to have the option to use the local 

emulation approach provided by Mininet, lowering the “entry 

 

Figure 10 - OFELIA testbed scenario 



barrier” to perform meaningful experiments. It is possible to 

execute a given experiment first on a local setup and then on a 

distributed testbed with minimal changes, saving a lot of 

configuration effort. Hereafter, we report the details of the 

deployment on the different testbeds and of the monitoring GUI.  

 

Figure 12 - Emulation building blocks 

7.1 ICNoSDN deployment on OFELIA 

OFELIA is a European research project that created a large 

distributed testbed for OpenFlow based Software Defined 

Networks [25]. The OFELIA testbed provides network 

virtualization and allows the experimenters to operate in parallel 

on the same physical resources. The OFELIA infrastructure 

consists of OpenFlow enabled islands. These islands create a 

federation all over Europe that allows the experimenters to access 

virtual machines and their interconnecting switches through the 

“OFELIA Control Framework” (OCF). The OCF is derived from 

the Expedient tool developed at Stanford University in the eGENI 

project [26]. Using the OCF an experimenter can create its own 

“slice” i.e. virtual topology over the set of physical OpenFlow 

switches, can instantiate its own OpenFlow controller(s) and a set 

of “user” Virtual Machines that may play the role of traffic 

sources/sinks. In our previous work [9] the experiments were 

realized on small OFELIA slice composed of three VMs and two 

OpenFlow switches, in a single island experiment. In the phase 2 

of the OFELIA project the island interconnection has been 

introduced. This allows to increase the scale of the experiments, 

combining resources offered by different islands, and to test 

scenarios with higher latencies. Deploying and running a multi 

island experiment requires to connect through OpenVPN, via the 

central hub at IBBT in Ghent. Then using the OCF GUI (similar to 

the graphical user interfaces provided by other Infrastructure as a 

Services environments) it is possible to create and configure the 

experimental slice. A slice consists of a number of end points 

(Xen-based Virtual Machines) and OpenFlow access to a set of 

switches that connect the end points. This equipment is shared 

among the other experimenters, using the FlowVisor tool [27]. The 

experimenters have to choose the links between the end points and 

the switch ports in order to obtain the desired virtual topology 

(typically containing a subset of physical link). Then the 

experimenters have to deploy the SDN controller in one of the 

created VMs, as well as to deploy the needed software in the other 

VMs. The available facilities are completely independent of the 

software used, the only requirements is the compatibility with the 

OpenFlow 1.0. 

The OFELIA deployment can be defined as semi-automatized; in 

fact, some steps in the deployment process cannot be fully 

dynamic. The creation of a slice in the OFELIA testbed requires 

the permission of the island administrator; this step must be 

performed manually. An important missing feature is the 

possibility to save/copy/restore the VMs images. This would 

enable the user to reduce the effort needed to setup new slices and 

new experiments in a considerable way. VMs could be even shared 

between experimenters, to replicate / enhance experiments 

performed by other researchers. In the current state, only “empty” 

VMs can be instantiated and the experimenters need to perform all 

the VM setup/configuration steps. In order to improve the 

deployment of ICNoSDN framework on the OFELIA testbed the 

v2 PoC introduces the automatic topology handling (see section 

5.1) and provides a set of scripts that help in the 

setup/execution/analysis of the experiment. The topology in Figure 

10 describes the v2 PoC deployment, with four federated islands: 

Trento, Barcelona, Zurich and Ghent (which provides inter-island 

connectivity among the other three islands). Users can easily run 

experiments with topologies containing a subset or all nodes of the 

topology in Figure 10. Note that to add a new host the user only 

needs to configure a new VM and provide the hosts setup scripts 

and configurations files. On the other hand, adding a new switch 

or link in the experiment topology requires the authorization of the 

administrators of the involved islands. 

7.2 Mininet deployments 

The main reasons for supporting local testbeds with an emulation 

environment are: i) distributed testbeds are accessible only for a 

limited number of users and their usage can limited in time; ii) an 

Experimenter do not have full control over the events and it is 

difficult to trace all the problems that can occur during the 

experiments executions; iii) the creation of slice in a distributed 

testbed often requires the admin permission so the experimenter 

needs to wait for the grant which makes the process slow. 

Extending the ICNoSDN PoC to support local emulation 

environment makes the development/deployment process easier 

and faster. Mininet [11] is one of the best development/testing tool 

for OpenFlow based SDN. It allows emulating a network 

composed of OpenFlow capable nodes on a single host. Based on 

Linux virtual network features (network namespaces and virtual 

Ethernet pairs) it provides an efficient way to emulate network 

topologies with reasonable fidelity. Obviously, the experimenter 

has the full control of what happens on the links and nodes of the 

emulated topologies, making the test and debugging of services 

easier. The Mininet tool does not provide a fully virtualized 

environment for the virtual nodes. On one hand, this allows saving 

resources of the host running Mininet; on the other hand, this 

requires some attention in the porting of the ICNoSDN Execution 

Environment. We had to properly configure our software tools 

(CONET ICN software and monitoring tools), creating a logically 

separated execution environment (folders, configurations files and 

scripts) for every Mininet node. We wrote a python script that 

extends the Mininet functionality: taking the topology name as an 

argument, it automatically prepares and configures the local 

testbed. In the Mininet based emulation environment, the 

ICNoSDN v2 PoC offers the possibility to experiment different 

(user defined) topologies. The deployment scripts are topology-

independent; an experimenter can input his/her topology. A 

catalogue of built-in topologies is included in the ICNoSDN v2 

PoC. Each of these topologies includes a number of ICN Clients, 

ICN Servers, Cache Servers, OF capable switches and a Floodlight 

Controller. The python deployment script also enables to run the 

SNMP daemon for collecting traffic measurements and the Multi 

Router Traffic Grapher (MRTG [28]) application to draw the 

graphs of the measurements. By using the Mininet API, we first 

spawn the SNMP daemon in all our hosts, and then we properly 

configure MRTG in order to collect and generate the monitoring 

data. Another key feature of the Mininet deployment scripts is that 

they compile automatically all the needed software tools before the 

execution of the experiment. 
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7.3 Monitoring GUI 

A key element for the execution of our experiment is the 

Orchestrator node (see Figure 1). This node provides the overall 

control of the experiment, it offers a GUI to the experimenter, and 

collects the results obtained from the monitoring of the ICN nodes 

interfaces. The Orchestrator node gathers information both from 

the Controller node (using its northbound interface) and directly 

from the ICN nodes (using the SNMP protocol). The northbound 

interface of the SDN controller is an extended version of the REST 

API provided by the Floodlight controller; using this interface the 

Orchestrator node can select the caching strategy and can receive 

information about the number of cached objects and the status of 

the switches flow tables. SNMP agents running on the ICN nodes 

and Cache servers provide the statistics about the traffic rate 

measured on the network interfaces. The SNMP manager that 

collects such statistics runs on the Orchestrator node. The traffic 

statistics are processed using the MRTG tool [28], which stores 

them using the RRDtool [29]. The extended northbound interface 

of the SDN controller exposes the statistics related to the number 

of cached objects. These statistics are collected by a python script 

that saves the data using the RRDtool as well. The RRDtool 

provides also a convenient mechanism to produce graphic 

representation of all statistics that are presented on the web GUI of 

the Orchestrator node.  

 

Figure 13 - Performance monitoring using the web GUI 

Figure 13 shows an example of the performance monitoring GUI 

for an experiment on ICN caching. The first three rows show the 

amount of crossing traffic for ICN Clients, ICN Servers and Cache 

Servers. These rows represents respectively the Trento, Zurich and 

Barcelona islands (see Figure 10). In each graph, the blue line 

shows the outgoing traffic and the green solid line shows the 

incoming traffic. The graphs in the last two rows show the number 

of cached items (for each of the three cache servers and then the 

total number). 

7.4 Software framework  

In addition to the software modules in the SDN Controller and in 

the Orchestrator node, the ICNoSDN v2 PoC includes several 

other components. The ICN software that runs on ICN Servers and 

clients is a modified version of the CCNx suite [31]. We patched 

the ccnd daemon using the CONET CCNx patch available in [32]. 

This patch adds the support for CONET Carrier Packets and 

transport protocol, leaving untouched the API offered by the CCNx 

daemon to the others tools of the CCNx suite. An experimenter can 

directly use the other components of the CCNx suite (e.g. 

ccncatchunks or ccnrepo), or he/she can configure and use the 

CCNx software using the v2 PoC host scripts. In our framework, 

we support both plain OF switches and OF switches paired with 

Cache Servers. The latter ones act as in-network caching nodes that 

can be controlled using our extended southbound interface. In 

addition to these tools, we provide also a set of scripts (Host and 

Measurements scripts) that helps the experimenters during the 

setup and execution of the experiments. As described in the 

previous sections we offer two different testbed deployments 

methods, one for the OFELIA testbed and another one based on a 

local Mininet emulator. For the OFELIA testbed, a step-by-step 

tutorial is provided at [12]. For the Mininet based emulation, a 

“ready-to-go” Virtual Machine with the full ICNoSDN v2 PoC 

installed is available for download [12]. 

8. Performance Evaluation 

A performance evaluation of key aspects of our framework is 

reported in this section. We show the potential of the SDN 

paradigm to implement the caching operation inside an ICN 

network and we provide a performance analysis of the different 

caching strategies we implemented in our ICNoSDN v2 PoC. The 

topology represented in Figure 10 has been used in the 

experiments. Note that ICN clients can communicate with “local” 

Cache Servers and ICN Servers (i.e. in the same island) or with 

“remote” Cache Servers and ICN Servers (i.e. in a different island). 

This configuration is rather typical; therefore, the experiments 

results will be of general validity and not restricted to the specific 

topology. Table 1 reports the definition of the variables governing 

our tests, which will be used in the following sections. 

Notation Definition 

N 

NA 

M 

S 

Nr 

MaxItems 

Tc 

To 

Ta 

Cr 

p 

Number of contents 

Number of active contents 

Number of chunks composing a content 

Size of a content, equal to M * chunk size 

Number of requests (N * M) 

Max number of items handled by an OF switch 

Requests cycle [s] 

Expiration time of the flow entries [s] 

K * Tc [s] 

Cached requests 

Caching probability 

Table 1 – Definition of the variables 

In each experiment, a synthetic ICN traffic (interest and data 

packets) is generated using a set of ICN Client and Server 

applications. This synthetic ICN traffic is then processed by the 

ICN/SDN network under test and we are able to collect the 

measurements of interest using our monitoring tools. 

The emulation tools described in section 7 allows running the 

experiments both on the Ofelia testbed and on a local Mininet 

deployment. From the experiments run on the Ofelia testbed we 

were able to verify the functionality of our implemented solution 

over real hardware switches (see the issues described in section 

5.3) and we evaluated the flow size limitations of the hardware 

switches (see section 8.2). The experiments reported in this section 

have been performed on the Ofelia testbed, but the ones in section 

8.4, which have been performed on Mninnet. Anyway, we checked 

that the results on both testbeds are the same if we set a limitation 

on the switch flow table size in the local Mininet experiments 

corresponding to the one in the hardware switches.  



8.1 IP forwarding and static in-network caching 

The purpose of this experiment is to verify the functionality of the 

TBF (Tag Based Forwarding) in-network caching mechanism by 

measuring the traffic loads on ICN servers and ICN Cache server 

and comparing then with the case in which no TBF caching is used. 

In this experiment, we considered a “static” input traffic pattern. It 

foresees a continuous repetition of a set of content requests 

(cycling requests), which is only characterized by the number (N) 

of contents in the set. A given ICN Client (we recall that an ICN 

Client in the testbed represents a potentially large set of end users) 

requests a set of N different content objects, each one composed 

by M chunks (the size S of each object will be M * chunk size). 

Note that our basic unit of storage is the chunk. Therefore, each 

client will periodically generates a number of requests Nr = N*M 

for different content chunks. We denote as cycle time Tc the 

duration of the period [s] in which the ICN client requests the Nr 

objects. The chunks of the requested objects are stored in the Cache 

Server and the following requests for the same contents will be 

forwarded to it instead of the origin server. We define To the 

expiration time [s] of the flows in the switches. If we assume that 

To is longer than the cycle time Tc, the entries in the switch flow 

table will not expire in our experiment. 

We used as baseline for our evaluation a traditional forwarding 

(NO-TBF), which does not use in-network caching and only uses 

MAC learning forwarding with RPF check (as described in section 

5.2). In this first evaluation scenario, we simply assume that the 

cache resources can cache all the set of requested contents and the 

number of chunks is not greater than the number of flow entries 

the switches are able to manage. Each client requests contents to a 

remote origin server with a requests cycle Tc of about 110 seconds, 

the communication mapping is the following: CLI-CNET to SER-

ETHZ, CLI-ETHZ to SER-i2C and CLI-i2C to SER-CNET. If No-

TBF is used, the interest requests and the data keep flowing on the 

inter-islands links. Figure 14 shows the traffic captured on the 

interface of SER-ETHZ (top) and on the interface of the cache 

server CAC-CNET (bottom) near the client CLI-CNET. The ICN 

Server interface is loaded, while the Cache server is unloaded (note 

that the y-scale of the graph is dynamically adapted, for the ICN 

Server (top) it is set to 50kb/s while for Cache Server (bottom) the 

scale is set to 1 kb/s. 

 

Figure 14 - No-TBF 

In Figure 15, we show the effects of introducing the simple strategy 

TBF (Tag Based Forwarding) strategy for in-network caching. The 

same Tc of about 110 seconds is used in the clients. Initially, the 

set of N different contents are requested and provided by the SER-

ETHZ. During the data transfer, the packets are copied to the 

Cache server, that caches the content and notifies the controller 

(the number of cached items increases). After Tc, the ICN Clients 

start requesting again the same set of content: the load of the ICN 

Server and on the inter-island links goes to zero, while the CAC-

CNET starts serving requests and the traffic on the Cache Server 

increases. 

 

Figure 15 - TBF caching policy 

8.2 Policy based in-network caching 

In the previous experiment, we have assumed that the resources of 

the Cache Servers (storage capacity) and of the OF switches (table 

entries) do not constitute a constraint for our caching strategy. 

However, this is not a realistic assumption because the resources 

are limited. In particular, during our experiments on the OFELIA 

testbed, we have encountered resource limitations in the OF 

switches: once the entries of the OF tables are exhausted it is not 

possible to use the proposed caching mechanism for new contents. 

Therefore, we have analyzed the dimensions of the OF tables of 

the different switches deployed in our testbeds. We executed 

experiments where an ICN Client requested a set of big sized 

contents, each one made of a very large number of chunks (in our 

solution we need a different flow entry for each chunk). The 

objective was to saturate the OF tables, to receive the 

OF_TABLE_FULL error from the switch and to register the 

maximum number of entries in the table. Table 2 reports our 

findings: the limits of the available OF tables are 1518 entries. 

Actually, the number of rules that can be inserted is lower because 

the ingress ports are “wildcarded”, and this is equivalent to insert 

one rule for each port. The rightmost column of Table 2 reports the 

maximum number of items that can be redirected to the cache 

server for the switches used in our testbed (NEC AX-3640-

24T2XW-L). Note that in these conditions, the bottleneck will not 

be the storage capacity in the Cache Server, but the number of 

items that can be redirected by configuring the OF switch tables. 

Switch Entries Ports Max_Items 

CN-03  1518 2 755 

i2C-01 1518 3 503 

ETH-01 1518 2 755 

Table 2 - Max number of available flow table entries and items 

that can be handled 



Taking into account the fact that the resources are constrained, in 

the second experiment we enhance the static in-network caching 

solution by using the TBFF strategy defined in section 6.1. The 

TBFF strategy selectively caches content on a Cache server to 

maximize the gain obtained by caching. This avoids the caching of 

contents originated from the local server. The purpose of this 

second experiment is to verify the functionality of the TBFF 

caching mechanism by measuring the traffic load on the local and 

remote ICN servers. 

We assume that an ICN Client located in CreateNet island is 

periodically making a set of requests to three different ICN servers, 

one located in CreateNet island and the other two in the remote 

islands (i2Cat and ETHZ). We use the same “static” pattern of 

requests described for the first experiment, but now the number of 

requested item Nr is more than 1K exceeding Max_Items. We 

performed a run of the experiment with the static TBF caching 

policy and we observed that in the steady state the items exceeding 

Max_Items were equally split among the three ICN servers and 

that the requests for these items were causing traffic load on the 

ICN servers (results not shown for space reasons). On the other 

hand, when using the TBFF policy, the CAC-CNET Cache Server 

does not cache all the contents coming from the local ICN server 

SER-CNET. The number of items requested from the remote ICN 

servers is less than Max_Items, therefore all “remote” items will 

be cached in the CAC-CNET Cache Server. In Figure 16, the 

steady state of the experiment with TBFF is reported, after the first 

cycle (of duration Tc) of the requests has been performed. The ICN 

client continues to request the same set of contents. The local ICN 

Server in CreateNet (top left in Figure 16) is still loaded, as the 

contents that it provides has not been cached. On the other hand, 

the load on the remote ICN Servers in ETHZ and i2Cat island has 

been reduced to zero (the two bottom diagrams in Figure 16, in 

which there is only 1-2 kb/s background traffic, note again the 

different scale of the graphs). We verified that the number of 

cached items Cr in the cache is around 700, below the limit 

imposed by the maximum number of entries in the OpenFlow 

switch flow table, showing the effectiveness of the TBFF strategy. 

 

Figure 16 - Advanced TBFF caching policy 

8.3 Dynamic in-network caching 

D-TBF and D-TBFF (defined in section 6.2) introduce a dynamic 

entry expiration mechanism that makes room to new entries when 

the old ones are not used. The purpose of the third experiment is to 

validate the dynamic mechanism and show how it can 

accommodate a set of different requests larger than the capacity of 

the OF tables.  

We defined a “dynamic” request pattern in which the “active set” 

of content requests changes over time. NA is the number of 

different contents in the active set. The client periodically (with 

cycle time Tc) requests a set of Na contents. At a given time Ta = K 

* Tc (i.e. after K cycles of requests) it will start requesting a 

different set of Na contents. such that total number of different 

requests Nr > Max_items. In the experiment, the table entries 

resources are not enough to deal with all the Nr contents, but are 

capable to deal with the contents in the “active” set of requests 

(Na). Therefore, we need to make room to new contents and 

remove the entries related to old unused contents. Using D-TBF or 

D-TBFF, after the time-out time To, the entries for the first set of 

content will expire, making room for the new content requests. 

The ICN Client in CreateNet island starts performing a set of 

requests towards the ICN Server in ETHZ island (at time t = 0) for 

Nr <= Max_items, these requests are performed periodically with 

a period Tc of about 70 seconds. Figure 17 reports the results of 

this third experiment. The requests are initially served by the 

remote ICN Server (SER-ETHZ); meanwhile they are cached by 

the local Cache Server as it can be seen from the increasing number 

of cached items. The ICN Client repeats the same set of requests 

for K=3, so after the first Tc (first and third red vertical red lines) 

the requests are served by the Cache Server and the ICN Server 

load goes to zero. Then at time Ta (second and fourth vertical red 

lines), the ICN client starts requesting a different set of requests, 

i.e. the active set of requests is changing. The new contents are 

requested to the remote ICN Server SER-ETHZ, as they are not in 

the CAC-CNET Cache Server. The Cache Server starts caching the 

new contents and the cached item number increases. After a short 

while, the entries related to the old contents start to expire, 

reducing the number of cached items. After a transient phase, the 

number of cached items is the same as before (because in our 

request pattern the second active set has an identical size to the first 

active set). The requests are now forwarded to the local Cache 

Server and the load on the remote ICN Server goes again to zero 

as desired. 

 

Figure 17 - D-TBF caching policies 

8.4 Validation of the FIX(p) strategy 

The FIX(p) mechanism (section 6.3) introduces a probability in the 

decision whether to cache or not a content. This policy provides a 

simple “implicit” cache coordination mechanism, which actually 

does not require any explicit cooperation among Cache Server. 

One of the most evident advantage is the improved cache diversity 

in the network; other benefits of the cache coordination have been 

widely discussed in [66]. The goal of the experiment presented in 

this section is to validate the FIX(p) policy. 

FIX(p) can be combined with the basic TBF caching mechanisms 

or with other caching policies implemented in the ICNoSDN v2 

PoC. In the experiment described hereafter, it is combined with the 

basic TBF mechanism. For this experiment, we used a subset of 

the topology depicted in Figure 10, only including the i2C and 

ETHZ islands. The ICN Client1 (i2C island) requests contents 

uploaded on ICN Server2 (ETHZ island). 

We execute the experiment with four different values of the 

caching probability p in FIX(p) {1, 0.8, 0.6, 0.4}, ranging from 1 

to 0.4 in steps of 0.2. When p is equal to 1 it corresponds exactly 

to the basic TBF case (this means that each content will be always 



cached). Figure 18 reports the number of cached items in the iC3 

Cache Server as function of the time. The number of cached items 

grows from zero and continuously increases until it reaches the 

maximum threshold (in this case 380 items, which is the number 

of different chunks requested in the experiment). When we repeat 

the experiment decreasing the caching probability, showing the 

influence of the probability on the caching strategy: the grow rate 

of the cached items decreases proportionally. With p=1, we are 

able to cache the maximum number of cached items in 5 minutes. 

Looking at Figure 18, we observe that after 5 minutes the fraction 

of the items that has been cached directly depends on p. For 

example, comparing p=0.8 and p= 0.4, we can clearly show that 

after 5 minutes the number of the items for p=0.4 is exactly the half 

of the items for p=0.8. 

 

Figure 18 – FIX(p) cached items vs time for different p 

8.5 Discussion on the scalability limitations 

The most important outcome of the tests on the OFELIA testbed is 

that the scalability of the solution is limited by the number of 

entries in the flow table. This number is very low in the specific 

testbed environment (see Table 2) for a number of reasons: i) the 

switch used in the testbed are the first generation OpenFlow 

switches; ii) only a fraction of the flow table of a physical switch 

is assigned to a testbed user; iii) the virtualization mechanism 

transforms a wildcard rule “all ports” in a set of rules, one for each 

port. In a modern and not virtualized switch, we can expect a 

number of entries in the order of tens of thousands.  

Nevertheless, there can be scenarios in which we want to support 

hundreds of thousands of different active chunks in a domain, 

cached in a specific Cache Server. In such cases, we may need to 

enhance the scalability of the proposed Tag based solutions 

(assuming that the Cache server storage space will not become a 

bottleneck). A first solution could be to consider chunks with 

variable size. In fact, if the size of chunk is kept constant, very 

large files will generate a very large number of chunks; therefore a 

large number of different forwarding rules will be needed. An 

improvement could be to have a chuck size that increases if the file 

is longer. Another mitigation to this problem is a proper use of the 

caching policies, which can reduce the average number of chunks 

cached in Cache servers and consequently the number of Tag based 

forwarding rules. In this respect, the Tag semantic could be 

extended to transport additional information useful to assist the 

decision of the Caching policies.  

9. Related work 

The basic ideas about the ICN paradigm have been proposed in [1] 

[2], which in turn find their root in [30]. Several recent projects 

have been dealing with ICN research ([15][31][33][34][35][36], to 

list a few). Surveys on ICN concepts and research issues can be 

found in [37] and [38]. Our previous work on ICN namely on 

CONET framework can be found in [13] and [14]. As regards 

SDN, the seminal paper on the paradigm can be found at [8], 

surveys on SDN research issues can be found in [5][6] and [7].  

ICN and SDN have evolved separately; a relatively recent research 

trend is considering their combination. Our early work related and 

supporting ICN functionalities in SDN can be found in [39][40]. 

Hereafter we provide an overview on research related to the 

combination of ICN and SDN. 

The proposed architecture in [43] shares some common points with 

our approach especially in the operations performed at the edge of 

the ICN domain. The edge node acts as the domain Controller and 

is responsible to achieve internal or edge delivery. 

The recent work in [44] proposes an ICN architecture based on 

SDN concept, aligned with the approach we have proposed in [9]. 

The authors in [42] exploit the SDN concept for their specific ICN 

solution [33][41], which is rather different from our ICN approach 

[13] based on the CCN/NDN architectures [2][15] . 

The architecture proposed in [45][46] focuses on the extension of 

SDN/OpenFlow, particularly in storage and content primitives. 

Content routing is supported by mapping content to a TCP flow 

and using an SDN approach to route the flow. The mapping is 

performed in the edge proxies, which map HTTP requests into 

flows. The main difference with our approach proposed is that the 

clients and server just use legacy HTTP without using any ICN 

protocol, as we do. 

In [47], the “tagging” approach is proposed for routing within a 

data center. The approach of having a centralized routing engine 

per autonomous system has also been considered for regular IP 

routing. For example, [48] first proposed the so-called Routing 

Control Platforms, while the BGP “Route reflector” solution [49] 

can be seen as a form of centralization of RIBs. Recently, solutions 

to centralize the RIB avoiding to run BGP at the edges of an 

autonomous system and exploiting a SDN backbone have been 

proposed in [50] and [51]. As for the inter-domain name-based 

routing, the use of a BGP-like approach was already proposed in 

[52]. Recently, it has been proposed to extend BGP to disseminate 

advertisement information about content objects in the form of 

URIs [53]. 

In [54], the authors provides a detailed view and discuss about the 

availability of OpenFlow based technologies. Moreover, they 

present research initiatives regarding the use of SDN for future 

internet research and experimentation.  

In [55], the authors provide an experimental environment based on 

virtual networks called Future Internet Testbed with Security 

(FITS). FITS allows the creation of multiple virtual networks in 

parallel, based on virtualization tools Xen and OpenFlow. The 

experimenting platform divides physical network in virtual 

networks, each containing its own protocol stack, routing rules and 

management. They used FITS to experiment Content-Centric 

Network and compare the CCNx with the conventional TCP/IP 

protocol stack. 

In [56], the authors present a survey on the existing ICN software 

tools, with a cross comparison between ICN simulators. 

In [57], the authors present a survey on caching approach in ICN, 

identifying two different types of caching (In-network and Off-

path), and then describing different caching deployment scenarios 

and caching algorithms. Icarus [58] is a discrete event simulator 

specific for ICN caching simulation. This simulator, designed to 

be extensible and scalable, provides an easy interface to implement 

and test new caching policies. This extendibility approach is 

similar to ours, but Icarus is a simulator, while we have presented 

an emulator. 

In [59] and [60], the authors propose a wrapper which pairs a 

switch interface to a CCNx interface, decodes and hashes content 



names in CCN messages into fields that an OpenFlow switch can 

process (e.g. IP address and port number). Wrapper also enables 

the OpenFlow switch to forward and monitor interest packets using 

content names. In contrast to our work, they did not provide any 

platform and real testbed scenarios. The implementation of this 

work is very simple, it includes a node for generation content, a 

node for requesting the content and an OpenFlow switch, no GUI 

for monitoring and experiment evaluation is provided.  

In [67], the authors propose a mechanism to deploy ICN in a 

network domain using SDN paradigm. Briefly, the controller sets 

up the path rules for transferring an interest packet and its returning 

data packet. Differently by us, the scenario assumes that any ICN 

request is served by a cache node internal to the network domain. 

Conversely, we also consider the cases in which ICN packets 

traverse the SDN network domain since the related content is not 

(yet) available in the internal cache. In [68], the authors present an 

ICN architecture that uses a SDN approach for routing and caching 

programmability. While our architecture uses OpenFlow, the 

architecture in [68] uses the Protocol-Oblivious Forwarding 

protocol for which the switches can apply powerful match 

conditions over customizable and variable length fields of the 

packet header. 

The more general aspects of caching in ICN has been studied quite 

extensively in the literature, hereafter we provide a selection of 

some references. In [61], random selection centrality-driven 

caching schemes are used to investigate the possibility of caching 

less in order to achieve higher performance gain and determine the 

effectiveness of the schemes. In [62], the authors propose a 

centralized architecture for ICN without using OpenFlow protocol. 

The proposed architecture combines Content-Centric Networking 

and Network Coding (NC). They have considered multi-level 

caches operating under several different coding situations. It is 

assumed that the LRU algorithm runs in all caches and the LCD is 

incorporated in the intermediate nodes. In [20], the authors present 

a simulation study of CCN to emphasize on caching performance. 

They have considered several aspects including sizing of cache 

catalog, popularity, caching replacement and decision policies, 

topology and single vs multi-path routing strategies. The result of 

their work shows that the cache catalog and popularity has the most 

important factor that affects the cache-hit performance. In [63], the 

authors try to investigate different combinations of naming and 

digital signature schemes and analysis their impacts on cache-hit 

probability. In [64], the authors investigate the impact of traffic 

mix on the caching performance of a tow level caching hierarchy. 

They have identified four main types of content (Web, file sharing, 

user generated content and video on demand). Their result shows 

that the caching performance increases if VoD content is cached 

towards the edge of the network to leave core with large caches for 

other type of content. In [65], the authors focus on the performance 

evaluation of the ICN paradigm and develop an analytical model 

of bandwidth and storage sharing. Moreover, they provide also a 

closed form characterization of the average content delivery time.  

10. Conclusions 

In this paper, we have presented a solution to support ICN by 

exploiting SDN, implemented by means of Open Source 

components and offered as a platform for further experiments and 

developments. We have provided an in depth description of the 

configuration and forwarding mechanism needed to support the 

ICN based transfer of content from ICN servers to ICN clients, 

exploiting in-network caching. The solution supports arbitrary 

topologies and, in general, it scales linearly with the number of 

different active chunks that are cached in an in-network cache. 

We have implemented a set of basic caching policies using the 

SDN-based approach and have provided their performance 

analysis thanks to a set of testbed management and monitoring 

tools that we have developed.  

From a methodological point of view, we have shown that it is 

possible to deploy the different policies by changing the logic 

residing in controller modules. Considering that the SDN concepts 

are currently shaping the evolution of telecommunication 

networks, we believe that they will play a fundamental role for 

ICN. In facts, the ICN over SDN approach facilitates the 

introduction of ICN in production networks and fosters the 

development of innovative caching policies and mechanisms. 

We have provided a reference environment to deploy and test the 

proposed ICN over SDN infrastructure over local and distributed 

testbeds. Additional caching policies can be added and further 

experiments are facilitated by the provided tools. We have given a 

strong emphasis on replicability and extendibility of our research. 

To this purpose, the capability to emulate the solution using the 

widespread Mininet emulator represents an important contribution.  
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