
Toward Superfluid Deployment of Virtual Functions:

Exploiting Mobile Edge Computing for Video Streaming

S. Salsano(1), L. Chiaraviglio(1), N. Blefari-Melazzi(1), C. Parada(2), F. Fontes(2), R. Mekuria(3), D. Griffioen(3)

(1) CNIT / Univ. of Rome Tor Vergata, Italy - (2) Altice Labs, Portugal - (3) Unified Streaming, Netherlands

Abstract— The Network Function Virtualization (NFV)

technologies are fundamental enablers to meet the objectives

of 5G networks. In this work, we first introduce the

architecture for dynamic deployment and composition of

virtual functions proposed by the Superfluidity project. Then

we consider a case study based on a typical 5G scenario. In

particular, we detail the design and implementation of a Video

Streaming service exploiting Mobile Edge Computing (MEC)

functionalities. The analysis of the case study provide an

assessment on what can be achieved with current technologies

and gives a first confirmation of the validity of the proposed

approach. Finally, we identify future directions of work

towards the realization of a superfluid softwarized network.

Keywords: NFV; Mobile Edge Computing; 5G network

architecture; Video Streaming; 5G services.

I. INTRODUCTION

5G networks are characterized by very challenging
objectives in terms of system capacity and perceived
Quality of Experience (QoE) for users. Specifically, 5G will
deliver data rates in the order of tens or hundreds of Mbps
to a large number of users with high spatial density, while
connecting a huge number of devices from different
scenarios, e.g., Internet of Things (IoT) and Machine-to-
Machine (M2M) communication. Not surprisingly, current
estimates foresee a 1000x increase in the system capacity
and the performance parameters w.r.t. currently deployed
networks. In order to cope with the increase of capacity and
performance, current researches are focusing on the
Network Softwarization (NS) paradigm. More in depth, NS
allows decoupling the networking and computing
functionalities from the hardware equipment physically
realizing it. This decoupling is also referred to as
virtualization. In such a context, it is possible to replace the
traditional monolithic hardware equipment with Virtual
Functions (VFs). The VFs run on a distributed environment,
which is made up of general-purpose computing nodes,
much like virtualized servers that can host services and
applications in a cloud computing infrastructure.

The trend towards softwarization is already
revolutionizing the market of communication equipment
and services. In particular, Network Function Virtualization
(NFV) [3] and Software Defined Networking (SDN) [4] are
two complementary technologies that are part of this trend.
There are several advantages for a telecom operator in
adopting softwarization. The use of common off-the-shelf
(COTS) hardware and the economy of scale related to the
purchase and the operation of a large number of one-fits-all
computing devices may allow a substantial decrease in the
Capital Expenditures (CAPEX) and Operating
Expenditures (OPEX) to install and manage 5G networks.
Moreover, the softwarization approach tends to increase the

openness of the infrastructure, easing the adoption of open
source solutions and in general the reduction of the “vendor
lock-in”. In addition, having a geographically distributed
infrastructure which supports the execution of softwarized
functions gives the possibility to execute virtual functions
close to where it is better for performance reasons and in
general to optimize the allocation of computing resources to
services, applications, users. Overall, these advantages
trigger a greater efficiency and/or reduction of CAPEX and
OPEX costs and are key elements to achieve the required
increase of capacity and performance for 5G networks.

Although network softwarization is a very promising
solution to the deployment of 5G networks, its practical
realization in operator networks is still an open issue. In this
context, several questions are arising, like: How to design a
softwarized 5G network architecture? How to manage the
5G network functionalities in an efficient way? What is the
maturity of the current off-the-shelf technology? In this
paper, we describe the architecture and the vision proposed
by the Superfluidity project [1] [8] and consider the design
and implementation of a Video Streaming service as a use
case. Superfluidity aims at fully exploiting the features and
opportunities of network softwarization, by achieving a
dynamic superfluid (i.e., flexible, transparent and fast)
management of the infrastructure. In this vision, all
functions of 5G networks can be programmatically
composed using reusable building blocks, called RFB –
Reusable Functional Blocks. The main architectural
concepts of Superfluidity are described in section II. The
Mobile Edge Computing (MEC) [6] [7] concept, described
in section III, relies on the enhancement of the infrastructure
at the network edge, so that it is possible to deploy and
execute applications taking advantages of the user
proximity and of a direct interaction with capability and
services offered by the edge networking equipment. The
Superfluidity architecture leverages the MEC concepts. As
a case study for the proposed architecture, we report the
design and implementation of a Video Streaming service,
which can be considered among the main 5G use cases. We
have implemented this case study on a prototype of the
Superfluidity architecture, exploiting the MEC functionality
and the RFB concepts. In particular, section IV describes
how the Video Streaming service can be decomposed in
RFBs and executed in a virtualized environment. Section V
provides the details of the prototype architecture and some
results from a running demo. The presented work relies on
a previous work [2] on a Video Streaming solution based on
late transmuxing in the edge node. The contribution of this
work consists in the integration with the Superfluidity
architecture and the development of the integrated prototype
of the Video Streaming components and of the MEC Traffic
Offloading components. The results confirm the feasibility
of the proposed approach. In addition, we provide an

assessment on what can be achieved with current
technologies in terms of deployment times. Finally, we
identify the directions of further work.

II. SUPERFLUIDITY VISION AND ARCHITECTURE

In the Superfluidity vision, the high-level functions of a
service provider network are decomposed into components,
referred to as Reusable Functional Blocks (RFBs).
Specifically, a RFB is a generalization of the concept of
Virtual Network Function (VNF) [10], which is under
standardization within the ETSI NFV group [9]. In the
current vision, VNFs represent relatively big components,
offering a complex set of functionality and are mapped to
Virtual Machines (VMs) or Containers. Although NFV is a
promising paradigm, this approach lacks granularity and
flexibility. To solve this issue, in our vision, the RFBs can
also represent “smaller” components and do not need
necessarily to be mapped into a VM or a Container.
Moreover, we apply the decomposition of functions into
RFBs spanning from radio and access related functions, to
packet and network processing functions, up to application
level functions.

Hereafter we will highlight the main concepts and
elements of the SUPERFLUDITY architecture, which are
summarized in Figure 1. We refer the reader to [1] for a
more detailed description. The different heterogeneous
environments in which the decomposition can be applied
are referred to as REEs - RFB Execution Environments. A
network-wide REE corresponds to the current NFV
Infrastructure concept, supporting the decomposition of
Network Services into Virtual Network Functions and
VNFs into VNF Components (VNFCs). A node-level REE
can be composed of packet processing blocks, like for
example in a modular software router, or signal processing
blocks, like in a software radio implementation. At the
different levels, the RFBs can be implemented with
different approaches, from VMs to processes or to software
modules that are linked together. In this way, a very granular
and flexible decomposition can be performed.

Figure 1 - SUPERFLUIDITY architecture

A RFB Description and Composition Language
(RDCL), is required to describe the RFBs properties and

their interconnections to realize services or other RFBs.
However, it is not possible to use a single language to
describe the different types of RFBs in all the heterogeneous
environments. Therefore, the proposed architecture
supports a set of RDCLs, each tailored to a specific
environment. For example, the ETSI NSD - Network
Service Descriptor and VNFD - VNF Descriptor (see [10])
can be used to describe the VNFs and their combination in
Network Services. In addition, the Click language can be
used to describe configurations of the Click modular router
[12]. In this scenario, Superfluidity provides a holistic
vision, by extending and orchestrating the RFBs and the
RDCLs of the different environments.

In our vision, the MEC applications can benefit from
being realized using the RFB concepts. Moreover, the edge
computing infrastructure becomes an extension of the
network-wide RFB execution environments.

III. MOBILE EDGE COMPUTING (MEC) ARCHITECTURE

Among the target Key Performance Indicators (KPIs)
proposed for 5G networks, one of the most challenging is
the ‘latency < 1ms’ – actually defying the laws of physics.
To achieve an under-millisecond end-to-end latency, the
traditional network topology has to be modified, by moving
the applications to the network edge, thus closer to end user
devices [7]. This new paradigm shift is usually known as
edge computing and is becoming very popular. Not
surprisingly, the ETSI board created the MEC [6] Industry
Specification Group (ISG) in December 2014. The group
goal is to standardize a framework for executing
applications at the edge, by defining management and
orchestration tools for a multi-edge and multi-party
environment.

The applications running on MEC (referred as ME Apps
in the ETSI MEC terminology) take advantage of a cloud
environment (NFV-like), where they can be managed by
on-demand, flexible and agile paradigms. ME Apps benefit
of local services, which are available at the edge, to leverage
the building of complex applications based on information
like location, or network information, among others. ME
Apps can be managed in their lifetime (i.e., deployment,
scaling, disposal, etc.) and centrally orchestrated in order to
define where the different instances are running at a certain
moment in time.

A MEC environment is characterized by the following
properties: End User Proximity, delivering services at the
end user vicinity; Ultra-low Latency, benefiting from end
user physical proximity; Efficient Bandwidth Utilization,
reducing the traffic sent/received to/from the core; Real-
time Access to Local Services, accessing to a platform of
locally provided services.

Figure 2 shows the architecture proposed by the ETSI
MEC ISG [11]. Specifically, the following macro blocks are
identified: Data Plane Forwarding (DPF), Applications and
Services (AS), Management and Orchestration (MO). We
now describe each macro block in more detail.

The DPF macro block is located on top of the mobile
network data plane, usually between the e-NodeB (eNB)
equipment and the core network. This block is responsible
for inspecting, identifying and offloading (i.e., redirecting)
the user traffic to be exchanged with local ME Apps running
on the edge. This action is expected to be transparent both
to the end user and to the network. The DPF comprises a

component called Traffic Offloading Function (TOF),
which can be further decomposed as shown in Figure 2. The
motivation for this Traffic Offloading approach is that most
services will still be provided in the core and that a smooth
transition from current architecture is needed. The TOF can
offload traffic to the edge only for services that can benefit
of it and only if the edge infrastructure has been deployed
by the operator.

In addition, the AS macro block is a NFV infrastructure,
which supports the execution of ME Apps. It includes an
ME platform that exposes APIs to ME Apps to get context
and user information like network conditions, location, etc.
Finally, the MO macro block manages ME Apps and the
ME Platform, and orchestrates the whole environment.

The MEC technology can take advantage of existing
NFV deployments, reusing the IT infrastructure at the edge
(e.g. the one devoted for Cloud Radio Access Networks –
C-RAN). It is remarkable that the edge computing concept
can also be applied to other access networks (DSL, GPON,
Wi-Fi, etc.), by sharing the same edge data centres that can
be located in the traditional Central Offices (COs). In fact,
in phase 2 of ETSI MEC standardization activity, MEC will
mean Multi-access Edge Computing, expanding the scope
to other networks than mobile ones.

IV. VIRTUALIZATION AND DECOMPOSITION OF VIDEO

STREAMING FUNCTIONS

A key application in mobile networks is Video
Streaming. From a technological perspective, Video
Streaming is converging to an approach based on HTTP and
adaptive bit-rate streaming. Specifically, the video content
is divided in small segments (with typical duration of 2-8
seconds) of independently decodable video content that are
requested by clients with the HTTP GET method. This
approach has the advantage of making Video Streaming

transparent to the network, so that the same infrastructure
can be shared with any other service transferred over HTTP.
The basic operations of Video Streaming in a typical
deployment are shown in the top half of Figure 3.

More in detail, the original video content is compressed
by an encoder, which can be a live encoder for live video.
Alternatively, compressed video can be retrieved from a
dedicated storage. In order to support adaptive bit-rate
streaming the encoder provides content encoded in different
bit-rates or the file is encoded with different bit-rates and
then stored. The encoded video is sent to a Just-In-Time
(JIT) packager. This entity is in charge of making the video
available in small segments that can be independently
requested by the clients. More in depth, the JIT packager
generates segments for different protocols such as Apple
HLS, MPEG DASH, Microsoft HTTP Smooth Streaming
HSS, Adobe HTTP Dynamic Streaming HDS. These
protocols typically work by making the references (URL’s)
to these small video segments available in a textual manifest
file. A client can then parse and interpret this manifest and
download each of the segments from different locations to
realize playback. The segments in different protocols use
different container formats (such as MPEG-4 ISO Base
Media File in MPEG-DASH or MPEG-2 TS in Apple HLS)
to encapsulate the encoded media samples. In this context,
the operation of generating different segments and container
formats for the same video is called trans-multiplexing
(transmuxing). The Content Delivery Network (CDN) then
performs caching of the different multiplexed segments,
preferably as close as possible to the end user to reduce
delay. Each end user device requests video using one of the
protocols and decides which bit-rate segments to request
based on locally available information such as reception
statistics as well as playback status.

In addition to these basic functions, let us consider a set
of advanced functions that can extend the Video Streaming

User Traffic Forwarding

eNB/BBU

User Traffic Forwarding

CORE

(EPC)

MEC TOF

GTP-U

Encap

S/DNAT

Traffic

Filter

(UL)

Router

Traffic

Filter

(DL)

GTP-U

Encap

MEC Host

ME Service

(TOF)

ME Service

(RNIS)

ME Service

(LOC)

ME Service

(DNS)

ME App C

(e.g. Video

Streaming)

ME App B

(e.g. Augmented

Reality)

ME App A

(e.g. IoT)

GTP-U

Decap

GTP-U

Decap

NFVI

User Traffic Forwarding

U
se

r
T

ra
ff

ic
 F

o
rw

a
rd

in
g

A
P

I

(L
O

C
)

A
P

I

(D
N

S
)

A
P

I

(N
IS

A
P

I

(T
O

F) M
E

 P
la

tf
o

rm
 (

B
U

S
)

Applications and Services (AS)

Data Plane Forwarding (DPF)

MEC System level

ME Orchestrator

Virtualized Infrastructure Management

(VIM)

Platform Manager

ME App A

Manager

ME App B

Manager

ME App C

Manager

Rep

MEC Edge level

Management and Orchestration (MO)

Figure 2 - MEC Software Architecture

services. More in detail, content encryption is typically
exploited by content owners and distributors. In addition,
content customization is of fundamental importance to
allow monetization of the streaming service using
advertisement content. Specifically, with this approach the
videos generated from different sources are stitched
together, resulting in new segments or streams. Moreover,
transcoding is sometimes needed to generate additional bit-
rates that were not produced by the origin encoder. Stream
recording is used for storing streams in the network for later
playback. Finally, up-sampling of media content is used for
example when users have a high resolution Ultra HD
device, but the high resolution content is not available. In
this case, pixels can be interpolated to create a high
resolution version of the video for playback. On the other
hand, down-sampling can convert high resolution content to
lower resolution content.

JIT

PACKAGER

MPEG-DASH,

HLS, HSS, HSD

CDN

MPEG-DASH,

HLS, HSS, HSD

Media Storage

or Live Encoder
Origin ServerCDN

Proxy Cache

End-user

Devices

Basic Video Streaming deployment

Prototype Mobile Edge Computing / RFB based deployment

Video

Content

Storage

Nginx

Byte

Range

Cache

Nginx

CDN

Cache

Proxy

Back endEdge end

Manifest

Generation

Apache

Origin

Transmux

App

Manifest

Generation

Apache

Edge

Transmux

App
Multi

bit-rate

Encoder

Front end

Player

page

Figure 3 - Video Streaming deployment and decomposition in RFBs

A. Allocation of functions: Core vs. Edge.

In current networks, most of Video Streaming functions
are performed by origin servers in the core of the network,
while only caching is typically performed at the edge.
Moreover, the HTTP caching infrastructure is re-used
transparently to all these video specific network functions.
In our vision instead, the idea of Superfluid and location
independent orchestration using RFBs could enable the
deployment of functions on the most suitable hardware and
on the most suitable location. Specifically, a subset of the
Video Streaming network functions benefit from hardware
acceleration while others benefit from being close to the end
user (location). Let us consider the packaging/transmuxing
function, which generates the HTTP segments for the
different protocols implemented in the end user devices. If
this function is implemented in the origin node, and
assuming that four different protocols need to be supported
for a given video stream, the packager will send up to four
versions of a given video content to the CDN cache function
running in an edge node. On the other hand, if the packaging
function is implemented in the edge, and the edge node
caches the encoded video before the packaging, the amount
of traffic from the core to the edge can be divided by four,
thus achieving relevant savings. We call this solution late
transmuxing, as the packaging/transmuxing is performed
late in the delivery chain, i.e., closer to the end user. In the
following sections, we describe the design aspects and
discuss the results of a prototype implementation of the late
transmuxing solution. In principle, the same approach of

executing a function in the edge rather than in the core can
be applied to the other advanced functions and it can result
in large saving of network capacity and in reduction of the
latency perceived by the end user. The design
considerations and the discussed results also hold for the
migration of the other functions to the Edge.

V. PROTOTYPE DEMONSTRATION

Our prototype demonstrates a simple case study in
which a common infrastructure is able to concurrently
support application level RFBs (for the Video Streaming)
and network level RFBs (implementing the TOF).
Moreover, following the MEC concept, the application
level RFBs can be executed in the core or dynamically
deployed in the edge. The demo scenario considers a
standard compliant 4G network setup, with User Equipment
(UE), e-Node B, Baseband Units (BBU) and Evolved
Packet Core (EPC). Figure 4 shows an overview of the
considered architecture. In this scenario, the UE starts
getting the video streaming from a central server, as there is
no edge server available. Based on operator/service rules,
the set of Video Streaming RFBs are deployed in the edge.
Then the Traffic Offloading Function (TOF) module starts
offloading the video traffic requests coming from the UE
towards the edge. Again, based on operator/service rules,
the video front-end instance at the edge is disposed and the
TOF enforces the traffic to follow the standard path, making
the UE to be served from the core Video Streaming RFB
instances.

The testbed used for this prototype is hosted at Altice
Labs in Aveiro (Portugal) and it is composed of one
powerful server, with 16 cores Xeon E5 v2 CPUs running
at 2.00GHz and 96GB RAM. The host operating system
runs an Ubuntu 16.04.1 LTS Linux. In addition, the cloud
management is the OpenStack (Kilo) version and KVM is
used as hypervisor for the virtualization of computing
nodes. Hereafter we first describe some design aspects
related to the softwarization of Video Streaming and TOF
components, then we report the obtained results.

A. RFBs for Late Transmuxing and Implementation

We decompose the functional blocks shown in the top
half of Figure 3 into a set of RFBs, as shown in the bottom
half of Figure 3 and in Figure 4, mapped into the prototype
architecture. More in detail, the multi-bit rate encoder
performs the raw encoding of the bit-stream and is used for
live video. The video content storage provides storage of the
media asset and is used for video on demand services. The
manifest generation provides the appropriate manifest for
the protocol in use. The Apache transmux app packages the
video content in the proper format. The last two RFBs can
be executed in the back end or in the edge end (i.e. with late
transmuxing). When executed in the back end, the video
streams to the edge-end are already packaged in a specific
protocol format. In the late transmuxing case, the original
encoded or stored media information are transmitted
between the core and the edge. A “byte range”
communication mechanism has been designed, meaning
that the HTTP requests indicate specific ranges of the video
files to be streamed (details in [2]). The Nginx byte range
cache RFB is able to cache the original raw compressed
video content before the packaging operation. The Apache
Edge Transmux App performs the packaging/transmuxing.

The caching of the packaged video segments in the edge
network is performed by the Nginx CDN cache proxy. In
addition, we implement a front end player page to test the
solution. The platforms used for implementation include a
VM running the back end and a VM running the edge end.
An alternative implementation was performed where each
of the blocks run in a separate Docker container, using the
Docker images for Apache and Nginx. Finally, the Unified
Origin server was compiled for Alpine Linux, enabling a
tiny Docker based transmux container that can run in the
Network.

Figure 4 – Prototype architecture

B. Implementation of the Traffic Offloading as RFB(s)

The TOF module of the MEC data plane forwarding
macroblock is decomposed into a set of RFBs. The
decomposition is also shown in Figure 4. More in detail, the
TOF control agent RFB is the central entity that controls a
chain of data plane RFBs, performing a sequence of actions
on the user traffic (orange). The data plane RFBs are the
following ones:

- GTP-U Filter filters GTP-U traffic and forwards to the
core other traffic (GTP-C or non-GTP).

- GTP-U Encap Decap decapsulates GTP-U packets,
extracting the user IP traffic in upstream direction; it
encapsulates the user IP traffic into GTP-U packets,
forwarding it towards the eNB in downstream direction.

- User IP Filter inspects the user IP traffic and decides
whether it is to be forwarded towards the EPC, according to
the 3GPP usual standards, or must be offloaded towards the
edge datacenter (ME App). The filtering rules are defined
by the management layer.

- DNAT is used to translate the user destination IP
(global address of the ME App) to the local IP of the
Application (edge address of the ME App).

- Ping is used to discover the GTP-U Tunnel Endpoint
ID used for traffic coming from the edge (downstream).

- Service Forwarding Function and Chain are intended
to support the chaining of ME Apps.

The RFBs are fully independent, self-contained and
loosely coupled to each other, making them easily
pluggable. The RFBs have been implemented in C
language, over the Linux OS. The TOF architecture allows
each of this RFB either to run all-in-a-box or to be spread
along different nodes (e.g. VMs), depending on the required

performance. In the prototype setup show in Figure 4, a
single VM hosts all the RFBs and an instance of Open
vSwitch (OVS), used to interconnect the data plane RFBs.
Each RFB is executed in a different process, reading and
writing packets on the virtual interfaces provided by Open
vSwitch.

C. Demo Results

The analysis of RFB deployment times is reported in
Figure 5. In the integrated prototype, using OpenStack and
the Ubuntu VM Guest images, the time needed to deploy
the guest VM hosting all the edge RFB components is
around 1 minute, but the first deployment takes almost 2
minutes. This latency can be decomposed in three parts: i)
OpenStack/KVM operations to instantiate the Guest VM, ii)
boot up time of the guest VM, iii) startup and initialization
of the Video Streaming RFB components. A large part of
this time (more than 90%) depends on the boot time of the
Ubuntu VMs (and the OpenStack/KVM latency depends on
the image size of the guest VM). For this reason, we have
implemented the edge Video Streaming RFBs in a Docker
container and compiled with Alpine Linux. In Figure 5 the
startup time of the edge RFBs in such environment is also
reported.

Figure 5 - Deployment time of Edge Video Streaming components

In the following, we focus on two performance metrics
when the Video Streaming service is provided in the edge.
Specifically, Figure 6 and Figure 7 respectively report the
downloading delay for a video chunk and the throughput.
The experiments have been performed using wrt, a HTTP
benchmarking tool [13]. Wrt can generate the load of
multiple connections in parallel (in the specific experiments
reported in Figure 6 and Figure 7, 10 parallel connections
have been used). The results are averaged by wrt over all
chunks transmitted by all connections during an experiment.
Wrt also provides the standard deviation of the evaluated
metric. The corresponding confidence intervals are very
close to the average values, so we have plotted them in
Figure 6 and Figure 7. In the experiments, we analyze three
different setups, namely the CDN setup, the single LT (Late
Transmuxing) setup and the double LT setup. More in
depth, in the CDN setup all segment formats are generated
at the core and cached in the edge. In addition, the single LT
setup only stores byte ranges at the edge and generates the
segments on the edge on the fly. Finally, the double LT
setup is a combination of the previous ones: byte ranges and
segments are stored in the edge and segments are generated
at the edge. We then consider the following conditions: i)
no video was streamed before (denoted as cold cache), ii)

the same video segment was streamed before (denoted as
same form), iii) the same content in a different format was
streamed before (denoted as diff form). We can clearly
observe from Figure 6 and Figure 7 that the LT approach
results in lower latency when video is streamed in a different
format before and also gives a better throughput in this case
compared to the traditional CDN setup. We refer to [2] for
more details and additional results.

Figure 6 - Average latency of requests at the client

Figure 7 – Throughput received at the client

The implemented prototype allows evaluating the
impact of the transitions from core to edge and vice versa
on a running Video Streaming application. Note that the
Video Streaming applications open a new connection for
each video chunk (with intervals in the order of 2-10 [s]),
rather than using a single stream. When a transition is
performed, the active downloads of video chunks can be
blocked. In normal conditions, this does not affect the user,
as a relatively long buffer (e.g. 20-60 seconds) is pre-
fetched in the UE video player. The download is resumed
from the new target (edge or core) before the buffer is
depleted, making the transitions seamless for the users.

The TOF prototype has been conceived for functional
evaluation rather than as production-ready data plane
element. Nevertheless, we have roughly evaluated its
performance, in the configuration of Figure 4 (all RFBs
implemented as components within a single guest VM). The
TOF is able to sustain without any loss flow rates in the
order of 3 [Mbps] per each user (i.e., the maximum quality
of the video in use) and we tested it up to aggregate rates in
the order of 100Mbit/s.

VI. DISCUSSION AND CONCLUSIONS

We have described the implementation of a Video
Streaming service in a softwarized networking
environment, representative of a 5G network. The prototype
infrastructure offers computing resources both in the core

and in the edge, realizing the MEC paradigm. Both the
application level functions needed for the Video Streaming
and the traffic offloading networking functions needed for
MEC have been decomposed in software RFBs, according
to the architectural principles designed in the Superfluidity
project. The implemented RFBs can be allocated to the core
or edge computing resources in a flexible way, offering the
possibility to optimize the network efficiency and/or the
performances. The results show that, once the required
components (RFBs) have been allocated in the edge, the
transitions from core to edge and vice versa are seamless for
the user. In addition, we have observed that implementing
late transmuxing in the edge is beneficial for the perceived
user performance and for the utilization of network
resources.

On the other hand, the performance in terms of
deployment time of RFBs in our prototype are still not
optimal for highly dynamic deployment scenarios. Such
deployment performance depends on the set of selected
technologies (e.g., cloud management system, hypervisor,
guest Operating System) utilized for implementing and
running the RFBs. In order to improve the performance, we
are both tuning the configurations of the selected
technologies, and we are considering alternative
technologies. Eventually, the availability of a complete
prototype of the Video Streaming services and of the MEC
infrastructure and RFBs will allow us the comparison of the
different solutions based on a realistic reference scenario.

ACKNOWLEDGEMENTS

This work has been partially funded by the EC under
project Superfluidity (H2020 grant 671566).

REFERENCES

[1] G. Bianchi, et al., “Superfluidity: a flexible functional architecture
for 5G networks”, Trans. on Emerging Telecommunication
Technologies, Wiley, 2016

[2] R.Mekuria, J. Fennema, D. Griffioen, “Multi-Protocol Video
Delivery with Late Trans-Muxing” ACM Multimedia, 15 - 19
October 2016, Amsterdam, The Netherlands

[3] R. Mijumbi, et al. “Network Function Virtualization: State-of-the-
Art and Research Challenges”, IEEE Communications Surveys &
Tutorials, vol. 18, no. 1, pp. 236-262

[4] D. Kreutz, et al., “Software-Defined Networking: A Comprehensive
Survey”, in Proceedings of the IEEE, vol. 103, no. 1, pp. 14-76, Jan.
2015

[5] 5G PPP Architecture Working Group, “View on 5G Architecture”,
White Paper, Version 1.0, July 2016

[6] Y. C. Hu, et al. “Mobile Edge Computing—A Key Technology
Towards 5G”, ETSI White Paper 11 (2015)

[7] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and
its role in the internet of things”, 2nd Workshop on Mobile Cloud
Computing (MCC), ACM, 2012.

[8] SUPERFLUIDITY project home page, http://superfluidity.eu/

[9] ETSI Industry Specification Group (ISG) for NFV Home Page,
http://www.etsi.org/technologies-clusters/technologies/nfv

[10] ETSI NFV ISG, “Network Functions Virtualisation (NFV);
Architectural Framework”, ETSI GS NFV 002 V1.2.1 (2014-12)

[11] ETSI MEC ISG, “Mobile Edge Computing (MEC); Framework and
Reference Architecture”, ETSI GS MEC 003 V1.1.1 (2016 - 03)

[12] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The
Click modular router”, ACM Transactions on Computer Systems
18(3), August 2000, pages 263-297

[13] W. Glozer, “wrk - a HTTP benchmarking tool”,
https://github.com/wg/wrk

