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Abstract— The Network Function Virtualization (NFV) 

technologies are fundamental enablers to meet the objectives 

of 5G networks. In this work, we first introduce the 

architecture for dynamic deployment and composition of 

virtual functions proposed by the Superfluidity project. Then 

we consider a case study based on a typical 5G scenario. In 

particular, we detail the design and implementation of a Video 

Streaming service exploiting Mobile Edge Computing (MEC) 

functionalities. The analysis of the case study provide an 

assessment on what can be achieved with current technologies 

and gives a first confirmation of the validity of the proposed 

approach. Finally, we identify future directions of work 

towards the realization of a superfluid softwarized network. 
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I. INTRODUCTION  

5G networks are characterized by very challenging 
objectives in terms of system capacity and perceived 
Quality of Experience (QoE) for users. Specifically, 5G will 
deliver data rates in the order of tens or hundreds of Mbps 
to a large number of users with high spatial density, while 
connecting a huge number of devices from different 
scenarios, e.g., Internet of Things (IoT) and Machine-to-
Machine (M2M) communication. Not surprisingly, current 
estimates foresee a 1000x increase in the system capacity 
and the performance parameters w.r.t. currently deployed 
networks. In order to cope with the increase of capacity and 
performance, current researches are focusing on the 
Network Softwarization (NS) paradigm. More in depth, NS 
allows decoupling the networking and computing 
functionalities from the hardware equipment physically 
realizing it. This decoupling is also referred to as 
virtualization. In such a context, it is possible to replace the 
traditional monolithic hardware equipment with Virtual 
Functions (VFs). The VFs run on a distributed environment, 
which is made up of general-purpose computing nodes, 
much like virtualized servers that can host services and 
applications in a cloud computing infrastructure.  

The trend towards softwarization is already 
revolutionizing the market of communication equipment 
and services. In particular, Network Function Virtualization 
(NFV) [3] and Software Defined Networking (SDN) [4] are 
two complementary technologies that are part of this trend. 
There are several advantages for a telecom operator in 
adopting softwarization. The use of common off-the-shelf 
(COTS) hardware and the economy of scale related to the 
purchase and the operation of a large number of one-fits-all 
computing devices may allow a substantial decrease in the 
Capital Expenditures (CAPEX) and Operating 
Expenditures (OPEX) to install and manage 5G networks. 
Moreover, the softwarization approach tends to increase the 

openness of the infrastructure, easing the adoption of open 
source solutions and in general the reduction of the “vendor 
lock-in”. In addition, having a geographically distributed 
infrastructure which supports the execution of softwarized 
functions gives the possibility to execute virtual functions 
close to where it is better for performance reasons and in 
general to optimize the allocation of computing resources to 
services, applications, users. Overall, these advantages 
trigger a greater efficiency and/or reduction of CAPEX and 
OPEX costs and are key elements to achieve the required 
increase of capacity and performance for 5G networks. 

Although network softwarization is a very promising 
solution to the deployment of 5G networks, its practical 
realization in operator networks is still an open issue. In this 
context, several questions are arising, like: How to design a 
softwarized 5G network architecture? How to manage the 
5G network functionalities in an efficient way? What is the 
maturity of the current off-the-shelf technology? In this 
paper, we describe the architecture and the vision proposed 
by the Superfluidity project [1] [8] and consider the design 
and implementation of a Video Streaming service as a use 
case. Superfluidity aims at fully exploiting the features and 
opportunities of network softwarization, by achieving a 
dynamic superfluid (i.e., flexible, transparent and fast) 
management of the infrastructure. In this vision, all 
functions of 5G networks can be programmatically 
composed using reusable building blocks, called RFB – 
Reusable Functional Blocks. The main architectural 
concepts of Superfluidity are described in section II. The 
Mobile Edge Computing (MEC) [6] [7] concept, described 
in section III, relies on the enhancement of the infrastructure 
at the network edge, so that it is possible to deploy and 
execute applications taking advantages of the user 
proximity and of a direct interaction with capability and 
services offered by the edge networking equipment. The 
Superfluidity architecture leverages the MEC concepts. As 
a case study for the proposed architecture, we report the 
design and implementation of a Video Streaming service, 
which can be considered among the main 5G use cases. We 
have implemented this case study on a prototype of the 
Superfluidity architecture, exploiting the MEC functionality 
and the RFB concepts. In particular, section IV describes 
how the Video Streaming service can be decomposed in 
RFBs and executed in a virtualized environment. Section V 
provides the details of the prototype architecture and some 
results from a running demo. The presented work relies on 
a previous work [2] on a Video Streaming solution based on 
late transmuxing in the edge node. The contribution of this 
work consists in the integration with the Superfluidity 
architecture and the development of the integrated prototype 
of the Video Streaming components and of the MEC Traffic 
Offloading components. The results confirm the feasibility 
of the proposed approach. In addition, we provide an 



assessment on what can be achieved with current 
technologies in terms of deployment times. Finally, we 
identify the directions of further work.  

II. SUPERFLUIDITY VISION AND ARCHITECTURE 

In the Superfluidity vision, the high-level functions of a 
service provider network are decomposed into components, 
referred to as Reusable Functional Blocks (RFBs). 
Specifically, a RFB is a generalization of the concept of 
Virtual Network Function (VNF) [10], which is under 
standardization within the ETSI NFV group [9]. In the 
current vision, VNFs represent relatively big components, 
offering a complex set of functionality and are mapped to 
Virtual Machines (VMs) or Containers. Although NFV is a 
promising paradigm, this approach lacks granularity and 
flexibility. To solve this issue, in our vision, the RFBs can 
also represent “smaller” components and do not need 
necessarily to be mapped into a VM or a Container. 
Moreover, we apply the decomposition of functions into 
RFBs spanning from radio and access related functions, to 
packet and network processing functions, up to application 
level functions. 

Hereafter we will highlight the main concepts and 
elements of the SUPERFLUDITY architecture, which are 
summarized in Figure 1. We refer the reader to [1] for a 
more detailed description. The different heterogeneous 
environments in which the decomposition can be applied 
are referred to as REEs - RFB Execution Environments. A 
network-wide REE corresponds to the current NFV 
Infrastructure concept, supporting the decomposition of 
Network Services into Virtual Network Functions and 
VNFs into VNF Components (VNFCs). A node-level REE 
can be composed of packet processing blocks, like for 
example in a modular software router, or signal processing 
blocks, like in a software radio implementation. At the 
different levels, the RFBs can be implemented with 
different approaches, from VMs to processes or to software 
modules that are linked together. In this way, a very granular 
and flexible decomposition can be performed. 

 

Figure 1 - SUPERFLUIDITY architecture 

A RFB Description and Composition Language 
(RDCL), is required to describe the RFBs properties and 

their interconnections to realize services or other RFBs. 
However, it is not possible to use a single language to 
describe the different types of RFBs in all the heterogeneous 
environments. Therefore, the proposed architecture 
supports a set of RDCLs, each tailored to a specific 
environment. For example, the ETSI NSD - Network 
Service Descriptor and VNFD - VNF Descriptor (see [10]) 
can be used to describe the VNFs and their combination in 
Network Services. In addition, the Click language can be 
used to describe configurations of the Click modular router 
[12]. In this scenario, Superfluidity provides a holistic 
vision, by extending and orchestrating the RFBs and the 
RDCLs of the different environments.  

In our vision, the MEC applications can benefit from 
being realized using the RFB concepts. Moreover, the edge 
computing infrastructure becomes an extension of the 
network-wide RFB execution environments. 

III. MOBILE EDGE COMPUTING (MEC) ARCHITECTURE 

Among the target Key Performance Indicators (KPIs) 
proposed for 5G networks, one of the most challenging is 
the ‘latency < 1ms’ – actually defying the laws of physics. 
To achieve an under-millisecond end-to-end latency, the 
traditional network topology has to be modified, by moving 
the applications to the network edge, thus closer to end user 
devices [7]. This new paradigm shift is usually known as 
edge computing and is becoming very popular. Not 
surprisingly, the ETSI board created the MEC  [6] Industry 
Specification Group (ISG)  in December 2014. The group 
goal is to standardize a framework for executing 
applications at the edge, by defining management and 
orchestration tools for a multi-edge and multi-party 
environment. 

The applications running on MEC (referred as ME Apps 
in the ETSI MEC terminology) take advantage of a cloud 
environment (NFV-like), where they can be managed by 
on-demand, flexible and agile paradigms. ME Apps benefit 
of local services, which are available at the edge, to leverage 
the building of complex applications based on information 
like location, or network information, among others. ME 
Apps can be managed in their lifetime (i.e., deployment, 
scaling, disposal, etc.) and centrally orchestrated in order to 
define where the different instances are running at a certain 
moment in time. 

A MEC environment is characterized by the following 
properties: End User Proximity, delivering services at the 
end user vicinity; Ultra-low Latency, benefiting from end 
user physical proximity; Efficient Bandwidth Utilization, 
reducing the traffic sent/received to/from the core; Real-
time Access to Local Services, accessing to a platform of 
locally provided services. 

Figure 2 shows the architecture proposed by the ETSI 
MEC ISG [11]. Specifically, the following macro blocks are 
identified: Data Plane Forwarding (DPF), Applications and 
Services (AS), Management and Orchestration (MO). We 
now describe each macro block in more detail. 

The DPF macro block is located on top of the mobile 
network data plane, usually between the e-NodeB (eNB) 
equipment and the core network. This block is responsible 
for inspecting, identifying and offloading (i.e., redirecting) 
the user traffic to be exchanged with local ME Apps running 
on the edge. This action is expected to be transparent both 
to the end user and to the network. The DPF comprises a 



component called Traffic Offloading Function (TOF), 
which can be further decomposed as shown in Figure 2. The 
motivation for this Traffic Offloading approach is that most 
services will still be provided in the core and that a smooth 
transition from current architecture is needed. The TOF can 
offload traffic to the edge only for services that can benefit 
of it and only if the edge infrastructure has been deployed 
by the operator. 

In addition, the AS macro block is a NFV infrastructure, 
which supports the execution of ME Apps. It includes an 
ME platform that exposes APIs to ME Apps to get context 
and user information like network conditions, location, etc. 
Finally, the MO macro block manages ME Apps and the 
ME Platform, and orchestrates the whole environment.  

The MEC technology can take advantage of existing 
NFV deployments, reusing the IT infrastructure at the edge 
(e.g. the one devoted for Cloud Radio Access Networks – 
C-RAN). It is remarkable that the edge computing concept 
can also be applied to other access networks (DSL, GPON, 
Wi-Fi, etc.), by sharing the same edge data centres that can 
be located in the traditional Central Offices (COs). In fact, 
in phase 2 of ETSI MEC standardization activity, MEC will 
mean Multi-access Edge Computing, expanding the scope 
to other networks than mobile ones.  

IV. VIRTUALIZATION AND DECOMPOSITION OF VIDEO 

STREAMING FUNCTIONS 

A key application in mobile networks is Video 
Streaming. From a technological perspective, Video 
Streaming is converging to an approach based on HTTP and 
adaptive bit-rate streaming. Specifically, the video content 
is divided in small segments (with typical duration of 2-8 
seconds) of independently decodable video content that are 
requested by clients with the HTTP GET method. This 
approach has the advantage of making Video Streaming 

transparent to the network, so that the same infrastructure 
can be shared with any other service transferred over HTTP. 
The basic operations of Video Streaming in a typical 
deployment are shown in the top half of Figure 3.  

More in detail, the original video content is compressed 
by an encoder, which can be a live encoder for live video. 
Alternatively, compressed video can be retrieved from a 
dedicated storage. In order to support adaptive bit-rate 
streaming the encoder provides content encoded in different 
bit-rates or the file is encoded with different bit-rates and 
then stored. The encoded video is sent to a Just-In-Time 
(JIT) packager. This entity is in charge of making the video 
available in small segments that can be independently 
requested by the clients. More in depth, the JIT packager 
generates segments for different protocols such as Apple 
HLS, MPEG DASH, Microsoft HTTP Smooth Streaming 
HSS, Adobe HTTP Dynamic Streaming HDS. These 
protocols typically work by making the references (URL’s) 
to these small video segments available in a textual manifest 
file. A client can then parse and interpret this manifest and 
download each of the segments from different locations to 
realize playback. The segments in different protocols use 
different container formats (such as MPEG-4 ISO Base 
Media File in MPEG-DASH or MPEG-2 TS in Apple HLS) 
to encapsulate the encoded media samples. In this context, 
the operation of generating different segments and container 
formats for the same video is called trans-multiplexing 
(transmuxing). The Content Delivery Network (CDN) then 
performs caching of the different multiplexed segments, 
preferably as close as possible to the end user to reduce 
delay. Each end user device requests video using one of the 
protocols and decides which bit-rate segments to request 
based on locally available information such as reception 
statistics as well as playback status. 

In addition to these basic functions, let us consider a set 
of advanced functions that can extend the Video Streaming 
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Figure 2 - MEC Software Architecture 



services. More in detail, content encryption is typically 
exploited by content owners and distributors. In addition, 
content customization is of fundamental importance to 
allow monetization of the streaming service using 
advertisement content. Specifically, with this approach the 
videos generated from different sources are stitched 
together, resulting in new segments or streams. Moreover, 
transcoding is sometimes needed to generate additional bit-
rates that were not produced by the origin encoder. Stream 
recording is used for storing streams in the network for later 
playback. Finally, up-sampling of media content is used for 
example when users have a high resolution Ultra HD 
device, but the high resolution content is not available. In 
this case, pixels can be interpolated to create a high 
resolution version of the video for playback. On the other 
hand, down-sampling can convert high resolution content to 
lower resolution content. 
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Figure 3 - Video Streaming deployment and decomposition in RFBs 

A. Allocation of functions: Core vs. Edge. 

In current networks, most of Video Streaming functions 
are performed by origin servers in the core of the network, 
while only caching is typically performed at the edge. 
Moreover, the HTTP caching infrastructure is re-used 
transparently to all these video specific network functions. 
In our vision instead, the idea of Superfluid and location 
independent orchestration using RFBs could enable the 
deployment of functions on the most suitable hardware and 
on the most suitable location. Specifically, a subset of the 
Video Streaming network functions benefit from hardware 
acceleration while others benefit from being close to the end 
user (location). Let us consider the packaging/transmuxing 
function, which generates the HTTP segments for the 
different protocols implemented in the end user devices. If 
this function is implemented in the origin node, and 
assuming that four different protocols need to be supported 
for a given video stream, the packager will send up to four 
versions of a given video content to the CDN cache function 
running in an edge node. On the other hand, if the packaging 
function is implemented in the edge, and the edge node 
caches the encoded video before the packaging, the amount 
of traffic from the core to the edge can be divided by four, 
thus achieving relevant savings. We call this solution late 
transmuxing, as the packaging/transmuxing is performed 
late in the delivery chain, i.e., closer to the end user. In the 
following sections, we describe the design aspects and 
discuss the results of a prototype implementation of the late 
transmuxing solution. In principle, the same approach of 

executing a function in the edge rather than in the core can 
be applied to the other advanced functions and it can result 
in large saving of network capacity and in reduction of the 
latency perceived by the end user. The design 
considerations and the discussed results also hold for the 
migration of the other functions to the Edge. 

V. PROTOTYPE DEMONSTRATION  

Our prototype demonstrates a simple case study in 
which a common infrastructure is able to concurrently 
support application level RFBs (for the Video Streaming) 
and network level RFBs (implementing the TOF). 
Moreover, following the MEC concept, the application 
level RFBs can be executed in the core or dynamically 
deployed in the edge. The demo scenario considers a 
standard compliant 4G network setup, with User Equipment 
(UE), e-Node B, Baseband Units (BBU) and Evolved 
Packet Core (EPC). Figure 4 shows an overview of the 
considered architecture. In this scenario, the UE starts 
getting the video streaming from a central server, as there is 
no edge server available. Based on operator/service rules, 
the set of Video Streaming RFBs are deployed in the edge. 
Then the Traffic Offloading Function (TOF) module starts 
offloading the video traffic requests coming from the UE 
towards the edge. Again, based on operator/service rules, 
the video front-end instance at the edge is disposed and the 
TOF enforces the traffic to follow the standard path, making 
the UE to be served from the core Video Streaming RFB 
instances. 

The testbed used for this prototype is hosted at Altice 
Labs in Aveiro (Portugal) and it is composed of one 
powerful server, with 16 cores Xeon E5 v2 CPUs running 
at 2.00GHz and 96GB RAM. The host operating system 
runs an Ubuntu 16.04.1 LTS Linux. In addition, the cloud 
management is the OpenStack (Kilo) version and KVM is 
used as hypervisor for the virtualization of computing 
nodes. Hereafter we first describe some design aspects 
related to the softwarization of Video Streaming and TOF 
components, then we report the obtained results. 

A. RFBs for Late Transmuxing and Implementation 

We decompose the functional blocks shown in the top 
half of Figure 3 into a set of RFBs, as shown in the bottom 
half of Figure 3 and in Figure 4, mapped into the prototype 
architecture. More in detail, the multi-bit rate encoder 
performs the raw encoding of the bit-stream and is used for 
live video. The video content storage provides storage of the 
media asset and is used for video on demand services. The 
manifest generation provides the appropriate manifest for 
the protocol in use. The Apache transmux app packages the 
video content in the proper format. The last two RFBs can 
be executed in the back end or in the edge end (i.e. with late 
transmuxing). When executed in the back end, the video 
streams to the edge-end are already packaged in a specific 
protocol format. In the late transmuxing case, the original 
encoded or stored media information are transmitted 
between the core and the edge. A “byte range” 
communication mechanism has been designed, meaning 
that the HTTP requests indicate specific ranges of the video 
files to be streamed (details in [2]). The Nginx byte range 
cache RFB is able to cache the original raw compressed 
video content before the packaging operation. The Apache 
Edge Transmux App performs the packaging/transmuxing. 



The caching of the packaged video segments in the edge 
network is performed by the Nginx CDN cache proxy. In 
addition, we implement a front end player page to test the 
solution. The platforms used for implementation include a 
VM running the back end and a VM running the edge end. 
An alternative implementation was performed where each 
of the blocks run in a separate Docker container, using the 
Docker images for Apache and Nginx. Finally, the Unified 
Origin server was compiled for Alpine Linux, enabling a 
tiny Docker based transmux container that can run in the 
Network.  

 

Figure 4 – Prototype architecture 

B. Implementation of the Traffic Offloading as RFB(s) 

The TOF module of the MEC data plane forwarding 
macroblock is decomposed into a set of RFBs. The 
decomposition is also shown in Figure 4. More in detail, the 
TOF control agent RFB is the central entity that controls a 
chain of data plane RFBs, performing a sequence of actions 
on the user traffic (orange). The data plane RFBs are the 
following ones: 

- GTP-U Filter filters GTP-U traffic and forwards to the 
core other traffic (GTP-C or non-GTP). 

- GTP-U Encap Decap decapsulates GTP-U packets, 
extracting the user IP traffic in upstream direction; it 
encapsulates the user IP traffic into GTP-U packets, 
forwarding it towards the eNB in downstream direction. 

- User IP Filter inspects the user IP traffic and decides 
whether it is to be forwarded towards the EPC, according to 
the 3GPP usual standards, or must be offloaded towards the 
edge datacenter (ME App). The filtering rules are defined 
by the management layer. 

- DNAT is used to translate the user destination IP 
(global address of the ME App) to the local IP of the 
Application (edge address of the ME App). 

- Ping is used to discover the GTP-U Tunnel Endpoint 
ID used for traffic coming from the edge (downstream). 

- Service Forwarding Function and Chain are intended 
to support the chaining of ME Apps. 

The RFBs are fully independent, self-contained and 
loosely coupled to each other, making them easily 
pluggable. The RFBs have been implemented in C 
language, over the Linux OS. The TOF architecture allows 
each of this RFB either to run all-in-a-box or to be spread 
along different nodes (e.g. VMs), depending on the required 

performance. In the prototype setup show in Figure 4, a 
single VM hosts all the RFBs and an instance of Open 
vSwitch (OVS), used to interconnect the data plane RFBs. 
Each RFB is executed in a different process, reading and 
writing packets on the virtual interfaces provided by Open 
vSwitch. 

C. Demo Results 

The analysis of RFB deployment times is reported in 
Figure 5. In the integrated prototype, using OpenStack and 
the Ubuntu VM Guest images, the time needed to deploy 
the guest VM hosting all the edge RFB components is 
around 1 minute, but the first deployment takes almost 2 
minutes. This latency can be decomposed in three parts: i) 
OpenStack/KVM operations to instantiate the Guest VM, ii) 
boot up time of the guest VM, iii) startup and initialization 
of the Video Streaming RFB components. A large part of 
this time (more than 90%) depends on the boot time of the 
Ubuntu VMs (and the OpenStack/KVM latency depends on 
the image size of the guest VM). For this reason, we have 
implemented the edge Video Streaming RFBs in a Docker 
container and compiled with Alpine Linux. In Figure 5 the 
startup time of the edge RFBs in such environment is also 
reported. 

 
Figure 5 - Deployment time of Edge Video Streaming components 

In the following, we focus on two performance metrics 
when the Video Streaming service is provided in the edge. 
Specifically, Figure 6 and Figure 7 respectively report the 
downloading delay for a video chunk and the throughput. 
The experiments have been performed using wrt, a HTTP 
benchmarking tool [13]. Wrt can generate the load of 
multiple connections in parallel (in the specific experiments 
reported in Figure 6 and Figure 7, 10 parallel connections 
have been used). The results are averaged by wrt over all 
chunks transmitted by all connections during an experiment. 
Wrt also provides the standard deviation of the evaluated 
metric. The corresponding confidence intervals are very 
close to the average values, so we have plotted them in 
Figure 6 and Figure 7. In the experiments, we analyze three 
different setups, namely the CDN setup, the single LT (Late 
Transmuxing) setup and the double LT setup. More in 
depth, in the CDN setup all segment formats are generated 
at the core and cached in the edge. In addition, the single LT 
setup only stores byte ranges at the edge and generates the 
segments on the edge on the fly. Finally, the double LT 
setup is a combination of the previous ones: byte ranges and 
segments are stored in the edge and segments are generated 
at the edge. We then consider the following conditions: i) 
no video was streamed before (denoted as cold cache), ii) 



the same video segment was streamed before (denoted as 
same form), iii) the same content in a different format was 
streamed before (denoted as diff form). We can clearly 
observe from Figure 6 and Figure 7 that the LT approach 
results in lower latency when video is streamed in a different 
format before and also gives a better throughput in this case 
compared to the traditional CDN setup. We refer to [2] for 
more details and additional results. 

 
Figure 6 - Average latency of requests at the client 

 
Figure 7 – Throughput received at the client 

The implemented prototype allows evaluating the 
impact of the transitions from core to edge and vice versa 
on a running Video Streaming application. Note that the 
Video Streaming applications open a new connection for 
each video chunk (with intervals in the order of 2-10 [s]), 
rather than using a single stream. When a transition is 
performed, the active downloads of video chunks can be 
blocked. In normal conditions, this does not affect the user, 
as a relatively long buffer (e.g. 20-60 seconds) is pre-
fetched in the UE video player. The download is resumed 
from the new target (edge or core) before the buffer is 
depleted, making the transitions seamless for the users. 

The TOF prototype has been conceived for functional 
evaluation rather than as production-ready data plane 
element. Nevertheless, we have roughly evaluated its 
performance, in the configuration of Figure 4 (all RFBs 
implemented as components within a single guest VM). The 
TOF is able to sustain without any loss flow rates in the 
order of 3 [Mbps] per each user (i.e., the maximum quality 
of the video in use) and we tested it up to aggregate rates in 
the order of 100Mbit/s. 

VI. DISCUSSION AND CONCLUSIONS 

We have described the implementation of a Video 
Streaming service in a softwarized networking 
environment, representative of a 5G network. The prototype 
infrastructure offers computing resources both in the core 

and in the edge, realizing the MEC paradigm. Both the 
application level functions needed for the Video Streaming 
and the traffic offloading networking functions needed for 
MEC have been decomposed in software RFBs, according 
to the architectural principles designed in the Superfluidity 
project. The implemented RFBs can be allocated to the core 
or edge computing resources in a flexible way, offering the 
possibility to optimize the network efficiency and/or the 
performances. The results show that, once the required 
components (RFBs) have been allocated in the edge, the 
transitions from core to edge and vice versa are seamless for 
the user. In addition, we have observed that implementing 
late transmuxing in the edge is beneficial for the perceived 
user performance and for the utilization of network 
resources.  

On the other hand, the performance in terms of 
deployment time of RFBs in our prototype are still not 
optimal for highly dynamic deployment scenarios. Such 
deployment performance depends on the set of selected 
technologies (e.g., cloud management system, hypervisor, 
guest Operating System) utilized for implementing and 
running the RFBs. In order to improve the performance, we 
are both tuning the configurations of the selected 
technologies, and we are considering alternative 
technologies. Eventually, the availability of a complete 
prototype of the Video Streaming services and of the MEC 
infrastructure and RFBs will allow us the comparison of the 
different solutions based on a realistic reference scenario.  

ACKNOWLEDGEMENTS 

This work has been partially funded by the EC under 
project Superfluidity (H2020 grant 671566). 

REFERENCES 

[1] G. Bianchi, et al., “Superfluidity: a flexible functional architecture 
for 5G networks”, Trans. on Emerging Telecommunication 
Technologies, Wiley, 2016 

[2] R.Mekuria, J. Fennema, D. Griffioen, “Multi-Protocol Video 
Delivery with Late Trans-Muxing” ACM Multimedia, 15 - 19 
October 2016, Amsterdam, The Netherlands 

[3] R. Mijumbi, et al. “Network Function Virtualization: State-of-the-
Art and Research Challenges”, IEEE Communications Surveys & 
Tutorials, vol. 18, no. 1, pp. 236-262 

[4] D. Kreutz, et al., “Software-Defined Networking: A Comprehensive 
Survey”, in Proceedings of the IEEE, vol. 103, no. 1, pp. 14-76, Jan. 
2015 

[5] 5G PPP Architecture Working Group, “View on 5G Architecture”, 
White Paper, Version 1.0, July 2016 

[6] Y. C. Hu, et al. “Mobile Edge Computing—A Key Technology 
Towards 5G”, ETSI White Paper 11 (2015) 

[7] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and 
its role in the internet of things”, 2nd Workshop on Mobile Cloud 
Computing (MCC), ACM, 2012. 

[8] SUPERFLUIDITY project home page, http://superfluidity.eu/  

[9] ETSI Industry Specification Group (ISG) for NFV Home Page, 
http://www.etsi.org/technologies-clusters/technologies/nfv 

[10] ETSI NFV ISG, “Network Functions Virtualisation (NFV); 
Architectural Framework”, ETSI GS NFV 002 V1.2.1 (2014-12) 

[11] ETSI MEC ISG, “Mobile Edge Computing (MEC); Framework and 
Reference Architecture”, ETSI GS MEC 003 V1.1.1 (2016 - 03) 

[12] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The 
Click modular router”, ACM Transactions on Computer Systems 
18(3), August 2000, pages 263-297 

[13] W. Glozer, “wrk - a HTTP benchmarking tool”, 
https://github.com/wg/wrk 

 


