
Energy-efficient Path Allocation Heuristic
for Service Function Chaining

Mohammad M. Tajiki1, Stefano Salsano2,3, Mohammad Shojafar2, Luca Chiaraviglio2,3, Behzad Akbari1

1ECE Department, University of Tarbiat Modares, Tehran, Iran - Email: {mahdi.tajiki,b.akbari}@modares.ac.ir
2CNIT, Rome, Italy - Email: mohammad.shojafar@cnit.it

3University of Rome Tor Vergata, Rome, Italy - Email: {stefano.salsano, luca.chiaraviglio}@uniroma2.it

Abstract—Service Function Chaining (SFC) is a service de-
ployment concept that promises cost efficiency and increases
flexibility for computer networks. On the other hand, Software
Defined Networking (SDN) provides a powerful infrastructure
to implement SFC. In this paper, we mathematically formulate
the SFC problem in SDN-based networks. In this way, the
energy consumption of the network is minimized while the
traffic congestion is controlled through network reconfiguration.
Additionally, a low complex heuristic algorithm is proposed
to find a near-optimal solution for the mentioned problem.
Simulation results show that the proposed heuristic reconfigures
the network in a way that the energy consumption is near-optimal
while the SFC requirements are met. Besides, the computational
complexity is very low which makes it applicable for real-world
networks.

Index Terms—Software Defined Network (SDN), Service Func-
tion Chaining, Energy Consumption, Resource Management;

I. INTRODUCTION

In real-world networks, traffic may need to pass through
different hardware middle-boxes like for example Intrusion
Detection Systems (IDS), proxies, firewalls. Network Function
Virtualization (NFV) replaces hardware middle-boxes with
flexible and innovative software applications known as Virtual
Network Functions (VNFs) to reduce the capital and opera-
tional expenditures and increase the flexibility of providing the
services [1]. On the other hand, Software Defined Networking
(SDN) paradigm overcomes the traditional ossification of
computer networks and introduces interesting, flexible, and
novel service abstractions.

The steering of packets across a set of middle-boxes or more
generically across different network functions is called Service
Function Chaining (SFC). A Service Chain represents the set
of network/service functions that need to be associated to a
given flow. Service Chains may be required to process large
amount of traffic with QoS constraints. Failure to provide the
desired QoS to a Service Chain may lead to violating the
service level agreements incurring high penalties for a network
provider. Consequently, there are numerous works which focus
on providing SFC in SDNs. Through this paper, we refer to
Service Functions as VNF. A SFC taxonomy that considers
architecture and performance dimensions as the basis for the
subsequent state-of-the-art analysis is introduced in [2].

A. Related Work

The authors of [3] study the problem of deploying SFCs
over NFV architecture. Specifically, they investigate VNF
placement problem for the optimal SFC design across ge-
ographically distributed clouds. Moreover, they set up the
problem of minimizing inter-cloud traffic and response time
in a multi-cloud scenario as an Integer Linear Programming
(ILP) optimization problem, along with some other constraints
such as total deployment costs and service level agreements
(SLAs).

Moreover, in [4] an optimization model based on the
concept of Γ-robustness is proposed. They focus on dealing
with the uncertainty of the traffic demand. The authors of [5]
propose a heuristic algorithm to find out a solution for Service
Function Chaining. It employs two-steps flow selection when
a SFC with multiple network functions needs to scale out. The
authors of [6] propose a scheme which provides flexibility,
ease of configuration and adaptability to relocate the VNFs
with minimal control plane overhead.

The authors of [7] use ILP to determine the required number
and placement of VNFs that optimize network operational
costs and utilization without violating service level agreements
(SLAs). In [8] an approximation algorithm for path compu-
tation and function placement in SDNs is proposed. Similar
to [7], they proposed a randomized approximation algorithm
for path computation and function placement. In [9] an op-
timization model to deploy a chain in a distributed manner
is developed. Their proposed model abstracts heterogeneity
of VNF instances and allows them to deploy a chain with
custom throughput without worrying about individual VNF’s
throughput. The paper [10] considers the offline batch embed-
ding of multiple service chains. They consider the objectives
of maximizing the profit by embedding an optimal subset of
requests or minimizing the costs when all requests need to be
embedded.

Reference [11] solves a joint route selection and VM
placement problem. They design an offline algorithm to solve
a static VM placement problem and an online solution traffic
routing. They expand the technique of Markov approximation
to gain their objectives. Although aforementioned solutions are
interesting, however, none of the them considers the problem
of service chaining with respect to the energy consumption of



the servers.
The authors of [12] propose a scheme that uses three

different algorithms to do the VNF placement, SFC routing,
and VNF migration in response to changing workload. Their
objective is to minimize the rejection of SFC bandwidth and
reduce the energy consumption. Although their work is pretty
interesting, there are some limitations in their approach. First
of all, their approach is applicable for networks with predicable
traffic, i.e., they suppose that the traffic pattern is repeated in
a time interval. Moreover, they assume the amount of network
traffic demands for all slots of the time interval and based on
this knowledge, they turn on or off servers. Finally, the authors
consider all of the possible physical paths as an input to their
algorithm which is not an applicable assumption for medium
and big networks.

B. Our Contribution

In this paper, in turn, we jointly consider the problem
of flow rerouting and server energy consumption in SFC
context. Our main objective is to minimize the network energy
consumption while the required VNFs are properly delivered
to the traffic flows. Specifically, we mathematically formulate
the problem in form of ILP and propose an efficient heuristic
algorithm to solve the problem in a real-time manner. Our
main contributions are listed as follows:

∙ We mathematically formulate the resource reallocation
problem which is a cross-layer optimization problem
considering energy and SFC parameters. We use an
Integer Linear Programming formulation.

∙ We propose a suboptimal heuristic to solve the afore-
mentioned optimization problem. The proposed solution
is an adaptive approach that is applicable in real-world
networks.

∙ We compare the optimal resolution and the heuristic
approach in terms of different metrics and computation
time.

The remainder of this paper is organized as follows. Section II
overviews the considered architecture and its main components
while Section III presents the problem definition and related
assumptions. Section IV details the proposed ILP optimal for-
mulation. Section V presents the proposed heuristic algorithm
and its computational complexity. The obtained results are
detailed in Section VI. Finally, Section VII concludes the paper
with some final remarks and outlines open research problems.

II. REFERENCE ARCHITECTURE

Fig. 1 reports a scheme of the considered architecture. We
assume that there is a logically centralized SDN controller
computing the forwarding table of the SDN-enabled switches.
The controller uses a southbound protocol (e.g., OpenFlow) to
dynamically program the switches. The VNFs are executed in
servers that are directly connected to the switches (see Fig. 1).
We consider the pair (switch, server) as a node. The controller
can associate a VNF to a flow by routing the flow through a
node in which the switch is connected to a server that supports
the needed VNF.

Fig. 1: System Architecture.

The switches along with the forwarding of the packets
perform traffic measurements and forward these measurements
to the controller. The controller can obtain the current flow
matrix, network topology, and servers status via querying the
SDN switches and servers.

In order to dynamically adapt the network configuration
with respect to the traffic variations, the controller exploits the
traffic information to optimally reroute the flows. As can be
seen in Fig. 1, the controller includes the following modules:

∙ Configuration Module: when a new flow enters to the
network, this element assigns the required resources to
the flow. This element does not reroute existing flows
and focus on the newly arrived flow.

∙ Reconfiguration Module: This module uses the current
status of the network and reconfigures the network in a
way that minimizes the servers’ power consumption while
the flow requirements are guaranteed to be met. This
procedure may be applied either periodically or when a
link is congested.

In this work we focus on the Reconfiguration module, which
represents the more general case. Starting from the algorithms
for the Reconfiguration module, it is possible to cover also the
the Configuration module with some adaptations (e.g. only one
flow is considered in the optimization).

III. SYSTEM MODEL AND ASSUMPTIONS

The network is (re)configured in order to optimize the
energy consumption, while meeting the SFC requirements (i.e.
each flow requires to receive a set of VNFs in its path from
the source to the destination switch). Moreover, the maximum
link utilization and maximum server load should be less than
predefined thresholds. Since different VNFs impose different
processing loads on the servers, the maximum server load is
evaluated considering the rate of the flows and the type of
the VNFs. From the point of view of energy consumption,
we consider that a server is ON if there is at least one VNF
running on it. If no VNF is active on a server, the server is



TABLE I: Main Notation.

Symbol Description
𝒩 Set of switches, ∣𝒩 ∣ ≜ 𝑁

ℱ Set of flows, ∣ℱ∣ ≜ 𝐹

𝒳 Set of functions, ∣𝒳 ∣ ≜ 𝑋
𝐸 Number of links
𝜓 Maximum number of required functions per flow
𝐵(𝑖,𝑗) Matrix of link bandwidth between 𝑖-th and 𝑗-th

switches
𝜇 Maximum link/node utilization

P
ar

am
et

er
s 𝐶𝑓 Bandwidth requirement vector for the 𝑓 -th flow

𝑠𝑓 Vector of source switch for the 𝑓 -th flow
𝑑𝑓 Vector of destination switch for the 𝑓 -th flow
𝐹𝑃𝑥 Required processing load for the 𝑥-th VNF
𝑁𝐶𝑖 Processing capacity for the 𝑖-th server
𝐹𝑁(𝑖,𝑥) VNF 𝑥 is available in 𝑖-th node
𝜖 Factor of power consumption in IDLE mode
𝑅𝑓

𝑥 Requested VNFs for the 𝑓 -th flow
ℰ𝑖 Power consumption for 𝑖-th server

V
ar

ia
bl

e 𝐴𝑓
(𝑖,𝑗)

Rerouting matrix between 𝑖-th and 𝑗-th switches
with the flow 𝑓

𝑈𝑓
(𝑖,𝑥)

Used VNFs for the 𝑖-th switch with the flow 𝑓
that runs the function 𝑥

𝑂𝑖 Power state of a server: 1 if the i-th server is
powered ON, 0 if it is in IDLE mode

IDLE and its energy consumption will be a fraction 𝜖 of the
one in the ON mode.

Table I summarizes the notation used in this paper. Consider
a network with 𝑁 SDN-capable switches, we represent the net-
work topology with a matrix 𝐵𝑁×𝑁 where 𝐵(𝑖,𝑗) determines
the bandwidth of the link from the switch 𝑖 to the switch 𝑗.
The number of flows in the network is 𝐹 .

The input parameters 𝑠𝑓 and 𝑑𝑓 are used to store the source
and destination of each flow, respectively. The routing matrix
𝐴𝑁×𝑁×𝐹 specifies the path selected for each flow, e.g., if
𝐴𝑓

(𝑖,𝑗) ∈ {0, 1} is equal to 1, then the flow 𝑓 ∈ ℱ crosses the
link 𝑖 to 𝑗 (i.e., 𝑖 → 𝑗).

In addition, 𝐶𝐹 stores the capacity required by each flow.
Considering 𝑋 different VNFs, each flow can request for at
most 𝑌 ≤ 𝜓 VNFs.

The required processing power of each VNF is denoted by
𝐹𝑃𝑋 where 𝐹𝑃𝑥 ∈ 𝐹𝑃𝑋 specifies the required processing
power of 𝑥𝑡ℎ function. Besides, the vector 𝑁𝐶𝑁 states the
processing capacity for each server. In addition, we introduce
the binary input parameter 𝑅𝑓

𝑥, which takes value 1 if the 𝑥-
th function is requested by the 𝑓 -th flow, 0 otherwise. Note
that we are not considering ordering constraints, that is in this
model the VNFs can be crossed by the flow in any order. In
addition, 𝐹𝑁(𝑖,𝑥) is a binary input parameter, taking value 1 if
function 𝑓 is supported by node 𝑖, 0 otherwise. Finally, 𝑈𝑓

(𝑖,𝑥)
is a binary variable, taking the value 1 if flow 𝑓 receives VNF
𝑥 on node 𝑖, 0 otherwise.

Focusing on energy consumption, The vector ℰ𝑁 states the
energy consumption of nodes where ℰ𝑖 specifies the energy
consumption of nodes 𝑖. 𝑂𝑁 specifies the modes of nodes
(ON/IDLE) in which 𝑂𝑖 = 1 means that the 𝑖-th node is ON
mode, otherwise it is IDLE mode.

IV. OPTIMAL NETWORK RECONFIGURATION (ONR)

In this section, we present the SFC-aware resource realloca-
tion system that aims at minimizing energy consumption of the
servers. The objective functions and the considered constraints
are described by the following equations (1)-(10):

min
𝑂

𝑁∑

𝑖=1

𝑂𝑖 ⋅
(
(1− 𝜖) ⋅ ℰ𝑖

)
, (1)

Subject to:

𝑁∑

𝑖=1

𝑈𝑓
(𝑖,𝑥) ≥ 𝑅𝑓

𝑥, ∀𝑥 ∈ 𝒳 , ∀𝑓 ∈ ℱ , (2)

𝑁∑

𝑖=1

𝐴𝑓
(𝑖,𝑗) ≥ 𝑈𝑓

(𝑗,𝑥), ∀𝑥 ∈ 𝒳 , 𝑓 ∈ ℱ , ∀𝑗 ∈ 𝒩 − {𝑠𝑓}, (3)

𝑈𝑓
(𝑖,𝑥) ≤ 𝐹𝑁(𝑖,𝑥), ∀𝑓 ∈ ℱ , ∀𝑖 ∈ 𝒩 , ∀𝑥 ∈ 𝒳 , (4)

𝑁∑

𝑖=1

𝑈𝑓
(𝑖,𝑥) ≤ 1, ∀𝑓 ∈ ℱ , ∀𝑥 ∈ 𝒳 , (5)

𝐹∑

𝑓=1

𝑋∑

𝑥=1

(𝑈𝑓
(𝑖,𝑥) ⋅ 𝐹𝑃𝑥 ⋅ 𝐶𝑓 ) ≤ 𝜇 ⋅𝑁𝐶𝑖, ∀𝑖 ∈ 𝒩 , (6)

𝐹∑

𝑓=1

(
𝐴𝑓

(𝑖,𝑗) ⋅ 𝐶𝑓
)
≤ 𝜇 ⋅𝐵(𝑖,𝑗), ∀𝑖, 𝑗 ∈ 𝒩 . (7)

𝑁∑

𝑗=1

𝐴𝑓
(𝑖,𝑗) −

𝑁∑

𝑗=1

𝐴𝑓
(𝑗,𝑖) =

⎧
⎨
⎩

1 if 𝑖 = 𝑠𝑓

−1 if 𝑖 = 𝑑𝑓

0 else

,

∀𝑓 ∈ ℱ , ∀𝑖 ∈ 𝒩 , (8)

𝑁∑

𝑗=1

𝐴𝑓
(𝑖,𝑗) ≤ 1, ∀𝑖 ∈ 𝒩 , ∀𝑓 ∈ ℱ , (9)

(1 + 𝐹 ⋅𝑋)𝑂𝑖 ≥
𝐹∑

𝑓=1

𝑋∑

𝑋=1

𝑈𝑓
(𝑖,𝑥), ∀𝑖 ∈ 𝒩 , (10)

𝑈𝑓
(𝑖,𝑥), 𝐴

𝑓
(𝑖,𝑗) ∈ {0, 1} , ∀𝑖, 𝑗 ∈ 𝒩 , ∀𝑓 ∈ ℱ , ∀𝑥 ∈ 𝒳 .

where objective function (1) minimizes the number of servers
that are required to be turned ON. The constraint (2) indi-
cates that each flow crosses all the required VNFs (i.e. a
flow crosses a node in which the required VNF is active).
Moreover, constraint (3) imposes that for a given flow, if
a VNF is provided in a node, the node is crossed by the
flow. Constraint (4) imposes that for a given flow, if a VNF
is provided in a node, the node supports this type of VNF.
Constraint (5) prevents using a VNF more than once for each
flow. Constraint (6) provides a threshold on the maximum load
of a node, considering the processing load of all VNFs that
are run in the node (which in turn depends on the sum of
the rates of the flows that use each VNF). Focusing on the
link bandwidth, constraint (7) enforces a threshold on the link
utilization between each pair of the switches. Equation (8)



provides the typical flow conservation constraints. In order to
prevent loops, constraint (9) is applied for each flow. Finally,
constraint (10) specifies which servers must be ON (those that
deliver at least one VNF to a flow).

V. HEURISTIC NETWORK RECONFIGURATION (HNR)
ALGORITHM

The computational complexity of the optimal solution does
not allow finding a solution in a reasonable time for realisti-
cally sized networks. Therefore, We design a new algorithm,
called Heuristic Network Reconfiguration (HNR), to reallocate
the resources in an online manner. For each flow, we consider
the set of VNFs to be supported which is denoted with K in the
Algorithm. Among all instances of the VNFs (that could be
located in different nodes) we select the VNF and node which
minimizes the incremental energy consumption of the network.
If there are multiple options that have equal incremental energy
consumption, then the node which is closer to the current
node is selected (to this end we use shortest path algorithm
considering the link delay as the cost function). Once the first
VNF and node is selected, the shortest path from source to
the node is evaluated. If there are other required VNFs in the
chosen node or on a node along the path which is already in
ON state, the VNFs are selected and removed from the set
of VNFs to be supported. As an example, consider the flow
𝑓 requested VNFs 1 and 2 and the selected node and VNF
are node 𝑎 and VNF 1. If node 𝑎 supports both VNFs 1 and
2 and it has enough processing capacity, then flow 𝑓 meets
both VNFs in node 𝑎. If there are still VNFs required for the
flow, the procedure is repeated, starting from the chosen node
until there are no more VNFs in the set. Algorithm 1 presents
pseudo code of the proposed HNR algorithm.

In algorithm 1, SP is the selected path for each flow, e.g.,
SP1 = [𝑛1,𝑛2,𝑛3] means that flow 1 starts from switch 𝑛1 and
then moves to 𝑛2 and 𝑛3, respectively. It should be considered
that HNR algorithm reroutes the existing flows one-by-one, in
other words, it reroutes one flow in each step (line 2). To this
end, until all of the requested VNFs are delivered for one flow
(line 4) the following steps takes place:

1) links that have available capacity less than the flow rate
are removed from consideration (see line 5 the function
𝑃𝑟𝑢𝑛𝑒 𝐿𝑖𝑛𝑘𝑠);

2) the shortest distance of the current node/switch (i.e.,
current place of the flow) to all other nodes/switches are
calculated (see line 6 the algorithm 𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎). It should
be mentioned that just those links that have bandwidth
greater than the size of the flow are considered as valid
links;

3) nodes that have not enough processing capacity or
support non of required functions are removed by setting
the distance of reaching them as infinity (see line 7
the function 𝑃𝑟𝑢𝑛𝑒 𝑁𝑜𝑑𝑒𝑠). Note that distance is the
number of the path hobs;

4) the amount of extra energy that would be imposed
by each node is calculated (see line 8 the function

Algorithm 1 Heuristic Network Re-configuration (HNR)

INPUT: 𝐹,𝐾,𝐵,𝑁,𝐶,𝑁𝐶
OUTPUT: 𝑆𝑃 ⊳ 𝑆𝑃 : selected path for each flow

1: 𝑆𝑃 = 𝐸𝑚𝑝𝑡𝑦 𝑀𝑎𝑡𝑟𝑖𝑥(𝐹 );
2: for each flow 𝑓 in ℱ do
3: 𝐶𝑁 = 𝑠; ⊳ 𝐶𝑁 : current node
4: while 𝐾 is not empty do ⊳ 𝐾: requested VNFs
5: 𝐺 = 𝑃𝑟𝑢𝑛𝑒 𝐿𝑖𝑛𝑘𝑠(𝐵);
6: 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 = 𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎(𝐶𝑁,𝐺);
7: 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 = 𝑃𝑟𝑢𝑛𝑒 𝑁𝑜𝑑𝑒𝑠(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠);
8: −−−−→𝑒𝑛𝑒𝑟𝑔𝑦 = 𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛(𝒩 );
9: [𝑠𝑛, 𝑠𝑝, 𝑠𝑓 ] = 𝐸𝑁𝑆(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠, 𝑒𝑛𝑒𝑟𝑔𝑦);

10: add 𝑠𝑝 to 𝑆𝑃 𝑓

11: remove 𝑠𝑓 from 𝐾
12: 𝐶𝑁 = 𝑠𝑛;
13: 𝐵 = 𝑅𝑒𝑑𝑢𝑐𝑒 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ(𝐵,𝐶𝑓 , 𝑠𝑝);
14: 𝑁𝐶 = 𝑅𝑒𝑑𝑢𝑐𝑒 𝑁𝑜𝑑𝑒 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝑁𝐶,𝐶𝑓 , 𝑠𝑓);
15: end while
16: 𝑝 = 𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑃𝑎𝑡ℎ(𝐶𝑁,𝑃𝑟𝑢𝑛𝑒(𝐵));
17: add 𝑝 to 𝑆𝑃 𝑓

18: 𝐵 = 𝑅𝑒𝑑𝑢𝑐𝑒 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ(𝐵,𝐶𝑓 , 𝑝);
19: 𝑁𝐶 = 𝑅𝑒𝑑𝑢𝑐𝑒 𝑁𝑜𝑑𝑒 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝑁𝐶,𝐶𝑓 , 𝑠𝑓);
20: end for
21: return 𝑆𝑃

𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛). Accordingly, if node 𝑖 is cur-
rently idle, then the variable 𝑒𝑛𝑒𝑟𝑔𝑦𝑖 ∈ −−−−→𝑒𝑛𝑒𝑟𝑔𝑦 is a
fraction of the energy consumption in ON mode.

5) ENS (standing for Energy-aware Nearest Service) finds
the nearest ON node which supports one of the required
VNFs (see line 7). If there is not such a node, ENS
seeks nodes that are in idle mode. In this way, it finds
the node with minimum energy consumption. In line 9,
𝑠𝑛 is the selected node, 𝑠𝑝 is the shortest path to the
selected node, and 𝑠𝑓 is the set of functions that are
selected to be delivered to the flow in the selected node
or on an already ON node along the path;

6) the shortest path from 𝑠𝑝 to the selected node is
added to 𝑆𝑃 𝑓 (see line 10) and the current status
is updated to the selected node (see line 12). Be-
sides, the available bandwidth and processing power
of the links and nodes that are used in the selected
path are reduced by the size of the flow (see lines
13 and 14 the functions 𝑅𝑒𝑑𝑢𝑐𝑒 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ and
𝑅𝑒𝑑𝑢𝑐𝑒 𝑁𝑜𝑑𝑒 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦, respectively).

When all required VNFs have been included in the path of a
flow, the algorithm uses shortest path to directly move to the
destination (lines 16-19).

A. Computational Complexity

ONR: The problem can be reduced to capacity-aware multi
commodity problem which is categorized as an NP-hard
problem.
HNR: The computational complexity of lines 2 and 4 of
algorithm 1 are in order of 𝑂(𝐹 ) and 𝑂(𝜓), respectively.



TABLE II: Hardware Configuration.

Name Description

Processor Intel-Core(TM) i5-2410M-CPU 2.30GHz
IDE Standard-SATA AHCI Controller
RAM 4.00 GB
System Type 64-bit Operating System, Windows 10

The order of the computational complexity of lines 5, 13,
and 18 are 𝑂(𝐸) while it is 𝑂(𝑁) for lines 7, 8, 14, and
19. Similarly, the computational complexity of lines 6 and
16 is 𝑂(𝑁 ⋅ log𝑁 + 𝐸) while it is 𝑂(𝜓 + 𝑁) for line
9. Therefore, the total computational complexity of HNR is
𝑂
(
𝐹 ⋅ 𝜓 ⋅ [𝑁 ⋅ log𝑁 + 𝐸 + 𝜓]

)
.

VI. NUMERICAL RESULTS

In this section, the proposed schemes are evaluated under
different network traffic patterns and a real-world network
topology. We also discuss the traffic-demand/resource gener-
ator and the simulation setup. We use CVX toolbox [13] to
solve the ONR which is an ILP problem.

A. Simulation Setup

In order to investigate the performance of the proposed
algorithm, a traffic-demand/resource generator is proposed. It
generates the set of demands and resources with all the needed
characterizations. Considering the demands, it generates for
example the flow specifications (i.e., rate, source, destination,
VNF requirements). Considering the resources, it generates the
server processing capacity, the energy consumption parame-
ters, the link capacity and so on. It is important to note that
the proposed generator deals with traffic demands (not traffic
packets). In the following, the system configuration and the
network topology used in our simulations is described. Table II
reports the PC configuration of the simulation environment.
Table III presents the list of simulation parameters.

Fig. 2: Abilene Network Topology.

The considered network topology is the Abilene one [14],
which is shown in Fig. 2. We set the link capacity 𝐵(𝑖, 𝑗) =
1 [Gbps] for all the links that interconnect the switches.
In addition, the links that connect a servers to a switch
in a node have a capacity equal to the sum of the other
links of the switch, so that there is no bottleneck in the
local communication between a switch and a server. Each
server has two states: ON (i.e., working with full rate energy

TABLE III: Simulation Parameters.

Parameter Value

𝑁 11
𝐸 14
𝑋 10
𝐹 {35, 41}
ℰ𝑚𝑖𝑛 200 𝐽
ℰ𝑚𝑎𝑥 400 𝐽
𝜇 0.8
𝜓 5
𝐵 1 𝐺𝑏𝑝𝑠

consumption) and IDLE (in which case it is using a fraction
𝜖 of the full rate energy consumption). We assume that the
processing power of a server 𝑁𝐶 is proportional the sum
of the capacity of all incoming links. We assume that the
energy consumption of a server ℰ𝑖 is related to its processing
power. In particular, we define as parameters the maximum and
minimum energy consumption (ℰ𝑚𝑎𝑥, ℰ𝑚𝑖𝑛) of a server. We
assign ℰ𝑚𝑎𝑥 to the server(s) that have the maximum processing
power, ℰ𝑚𝑖𝑛 to the server(s) that have the minimum processing
power, and intermediate value between ℰ𝑚𝑖𝑛 and ℰ𝑚𝑎𝑥 to
the other servers (scaled linearly). In our simulation we set
ℰ𝑚𝑖𝑛=200𝐽 and ℰ𝑚𝑎𝑥=400𝐽 .

The algorithms are examined in a sequence of five different
time slots. We generate a set of traffic demands corresponding
to the first time slot. The set of flows (i.e. the number of flows
and their source and destination node) and the set of required
VNFs for each flow are chosen according to the model
reported in [15]. The rate of each flow is generated using a
uniform distribution between 𝑏𝑚𝑖𝑛 ⋅𝐵(𝑖,𝑗) and 𝑏𝑚𝑎𝑥 ⋅𝐵(𝑖,𝑗). We
considered 𝑏𝑚𝑖𝑛=0 and selected two different values for 𝑏𝑚𝑎𝑥

to differentiate the traffic scenarios. After the first generation
of traffic demands, we progressively increase the flow rates
(and consequently the load on the network and servers) in
four time slots. In each time slot, we randomly increase the
rates of each flow so that on average the increase factor is 𝛼. In
particular, we multiply the rate of each flow by a factor which
is chosen between 0 and 2 ∗ 𝛼 with a uniform distribution.
For each time slot, the ONR optimal solution and the HNR
heuristic are used to assign resources to the flows. In our
experiment, four different traffic scenarios are considered by
varying 𝑏𝑚𝑎𝑥 and 𝛼, as shown in IV.

TABLE IV: Traffic Generator Notation and Inputs.

Parameter Scenario 1 Scenario 2 Scenario 3 Scenario 4

𝑏𝑚𝑎𝑥 0.02 0.02 0.05 0.05
𝛼 0.1 0.3 0.1 0.3

On average, the four scenarios are ordered by increasing
load. In scenarios 1 and 2 the initial load is lower (𝑏𝑚𝑎𝑥 =
0.02) and rate of increase in the time slots (iterations) is low
for scenario 1 (𝛼 = 0.1) and high for scenario 2 (𝛼 = 0.3). In
scenarios 3 and 4 the initial load is higher (𝑏𝑚𝑎𝑥 = 0.05) and
the rate of increase (in each iteration) is low for scenario 3
and high for scenario 4. Note also that the average rate of the



flows is bigger in scenario 3 and 4 with respect to scenarios
1 and 2.

B. Simulation Results

The proposed heuristic algorithm and the optimal solution
are compared via five different metrics: power consumption,
path length, server/link utilization, and computational com-
plexity.

1) Power Consumption and Path Length: The comparisons
of the energy consumption and the average path length of
the different traffic scenarios are presented in Fig. 3. As it
can be seen in this figure, in all traffic scenarios, the HNR
algorithm is able to ensure a power consumption close to the
one of the ONR algorithm. On the other hand, the average
path length of HNR is less than ONR, since the focus of ONR
is on minimization of the energy consumption.

1 2 3 4
Scenario Label

0

500

1000

1500

2000

2500

P
ow

er
 C

on
su

m
pt

io
n 

(J
)

ONR HNR

(a) Power Consumption.

1 2 3 4
Scenario Label

0

2

4

6

8

10

A
ve

ra
ge

 P
at

h 
Le

ng
th

ONR HNR

(b) Path Length.

Fig. 3: ONR vs. HNR Comparisons.

2) Link and Server Utilization: In this section, the proposed
schemes are compared based on the link and server utilization
measurements. To this end, the average and maximum utiliza-
tion of both links and servers are measured in different traffic
scenarios (depicted in figures 4-7).

1 2 3 4 5
Iteration

5

10

15

20

A
ve

ra
ge

 L
in

k 
U

til
iz

at
io

n 
(%

) ONR HNR

(a) Link Utilization

1 2 3 4 5
Iteration

0.25

0.3

0.35

0.4

0.45

A
ve

ra
ge

 S
er

ve
r 

U
til

iz
at

io
n 

(%
) ONR HNR

(b) Server Utilization

1 2 3 4 5
Iteration

20

25

30

35

M
ax

im
um

 L
in

k 
U

til
iz

at
io

n 
(%

) ONR HNR

(c) Maximum Link Utilization

1 2 3 4 5
Iteration

1

1.5

2

2.5

M
ax

im
um

 S
er

ve
r 

U
til

iz
at

io
n 

(%
)

ONR HNR

(d) Maximum Server Utilization

Fig. 4: Scenario 1: Utilization Comparisons.

In our simulation, we set the maximum allowed links/server
utilization 𝜇 to 0.8. In Figs. 4 (Scenario 1) and 5 (Scenario
2), the maximum link/server utilization always remains well
below 𝜇, therefore, increasing the flow rate in different iter-
ations constantly increases both the average and maximum
link/server utilization. As it can be seen, the average and
maximum link utilization and server utilization of HNR is
lower than ONR algorithm. This is due to the fact that the main
goal of ONR is to minimize the network energy consumption.
As a result, the ONR algorithm is more effective in reducing
the energy consumption, therefore there will be less servers
in ON state. This will clearly increase their utilization (and
this is a positive effect). On the other hand, the optimization
of energy consumption comes at the price of increasing
the network load, but this can be controlled by setting the
maximum utilization threshold for the links.

Actually, in the last time slot of Fig. 5, the server utilization
of ONR has a sharp increase (while for the HNR there is
a regular increase). This means that the ONR has found a
solution with a different set of active servers. This may result
in a higher average and maximum server utilization because
some servers with smaller maximum capacity can be selected.
We recall that we assigned to a server a maximum capacity
proportional to the sum of the link rates of the node that it is
hosting the server.

1 2 3 4 5
Iteration

0

10

20

30

40

A
ve

ra
ge

 L
in

k 
U

til
iz

at
io

n 
(%

) ONR HNR

(a) Link Utilization

1 2 3 4 5
Iteration

0

1

2

3

4

A
ve

ra
ge

 S
er

ve
r 

U
til

iz
at

io
n 

(%
) ONR HNR

(b) Server Utilization

1 2 3 4 5
Iteration

20

30

40

50

60

70

M
ax

im
um

 L
in

k 
U

til
iz

at
io

n 
(%

) ONR HNR

(c) Maximum Link Utilization

1 2 3 4 5
Iteration

0

5

10

15

20

25

M
ax

im
um

 S
er

ve
r 

U
til

iz
at

io
n 

(%
)

ONR HNR

(d) Maximum Server Utilization

Fig. 5: Scenario 2: Utilization Comparisons.

In Fig. 6 we are considering the Scenario 3 which has a
higher load. In this case, the maximum link utilization for
the ONR algorithm approaches the maximum allowed link
utilization. This results in a rerouting of the flows to avoid the
bottleneck link(s) and the different solutions that are found for
the different time slots can have a decrease in the maximum
link utilization. This happens between the first and the second
time slot and between the third and the fourth time slot in
Fig. 6 (c). Due to this rerouting, the set of servers which



are used to deliver the VNFs to the flows can be changed.
With a new set of servers the server utilization (average and
maximum) can decrease. This can be seen between the third
and fourth time slot in Fig. 6 (b) and (d).

1 2 3 4 5
Iteration

10

20

30

40

A
ve

ra
ge

 L
in

k 
U

til
iz

at
io

n 
(%

) ONR HNR

(a) Link Utilization

1 2 3 4 5
Iteration

0

1

2

3

4

A
ve

ra
ge

 S
er

ve
r 

U
til

iz
at

io
n 

(%
) ONR HNR

(b) Server Utilization

1 2 3 4 5
Iteration

40

50

60

70

80

M
ax

im
um

 L
in

k 
U

til
iz

at
io

n 
(%

) ONR HNR

(c) Maximum Link Utilization

1 2 3 4 5
Iteration

0

5

10

15

20

M
ax

im
um

 S
er

ve
r 

U
til

iz
at

io
n 

(%
)

ONR HNR

(d) Maximum Server Utilization

Fig. 6: Scenario 3: Utilization Comparisons.

In Fig. 7, we report the scenario 4 which has the highest
load. The maximum link utilization of ONR reaches 𝜇 in
the second time slot and remains steadily at the threshold
(Fig. 7 (c)). This means that the considered optimal solutions
will load the network up to the defined constraint in order
to minimize the energy consumption. In fact, the server
utilization for ONR is higher then HNR, because either less
servers are ON, or the selected servers have a lower energy
consumption and therefore lower capacity. Having lower ca-
pacity, they will achieve a higher utilization to serve the same
flows.

3) Computational Complexity: Table V compares the exe-
cution time of HNR and ONR algorithms for different number
of flows. As can be seen, the execution time of HNR algorithm
is very low and it can be used in realistic network size.

TABLE V: Computational Complexity.

Flow ONR (s) HNR (s)

10 16 0.007
250 1382 0.080
500 > 61000 0.163
750 > 61000 0.250

1000 > 61000 0.346
1500 > 61000 0.502
2000 > 61000 0.755

VII. CONCLUSION AND FUTURE WORKS

In this paper, we formulate the problem of service function
chaining in an SDN-based network, with the goal of reducing
the overall energy consumption as an Integer Linear Program-
ming (ILP) problem. In our formulation, we control the link

1 2 3 4 5
Iteration

10

20

30

40

50

60

A
ve

ra
ge

 L
in

k 
U

til
iz

at
io

n 
(%

) ONR HNR

(a) Link Utilization

1 2 3 4 5
Iteration

0

1

2

3

4

A
ve

ra
ge

 S
er

ve
r 

U
til

iz
at

io
n 

(%
) ONR HNR

(b) Server Utilization

1 2 3 4 5
Iteration

40

50

60

70

80

M
ax

im
um

 L
in

k 
U

til
iz

at
io

n 
(%

) ONR HNR

(c) Maximum Link Utilization

1 2 3 4 5
Iteration

0

10

20

30

M
ax

im
um

 S
er

ve
r 

U
til

iz
at

io
n 

(%
)

ONR HNR

(d) Maximum Server Utilization

Fig. 7: Scenario 4: Utilization Comparisons.

and server congestion by putting constraints on their maximum
utilization. The resolution of the ILP problem using a solver
tool (CVX) is referred to as ONR. Since the computational
complexity of the proposed optimal solution ONR is high
for networks of realistic size, a near-optimal heuristic called
HNR is proposed. The proposed ONR and HNR solutions
were compared in terms of power consumption, average path
length, link/server utilization, and computational complexity.
It is shown that HNR reconfigures the network achieving a
near-optimal energy consumption, while it is still applicable
for real-world networks.

In our ongoing work (see also [15]) we are considering the
ordering constraints in the chain of VNFs and QoS parameters
such as end-to-end delay in the formulation. Additionally, we
are considering three modes for the servers (ON, OFF, and
IDLE), allowing a node to be completely switched off. Another
future direction of work is to consider switch failure proba-
bility in the routing algorithms, for example to enforce that
the end-to-end probability of failure is less than a predefined
threshold.

VIII. ACKNOWLEDGMENT

This work has received funding from the Horizon 2020 EU
project SUPERFLUIDITY (grant agreement No. 671566).

REFERENCES

[1] A. Fischer, J. F. Botero, M. T. Beck, H. De Meer, and X. Hesselbach,
“Virtual network embedding: A survey,” IEEE Communications Surveys
& Tutorials, vol. 15, no. 4, pp. 1888–1906, 2013.

[2] A. M. Medhat, T. Taleb, A. Elmangoush, G. A. Carella, S. Covaci, and
T. Magedanz, “Service Function Chaining in Next Generation Networks:
State of the Art and Research Challenges,” IEEE Communications
Magazine, vol. 55, no. 2, pp. 216–223, 2017.

[3] D. Bhamare, M. Samaka, A. Erbad, R. Jain, L. Gupta, and H. A. Chan,
“Optimal virtual network function placement in multi-cloud service
function chaining architecture,” Computer Communications, vol. 102,
pp. 1–16, 2017.



[4] V. S. Reddy, A. Baumgartner, and T. Bauschert, “Robust embedding of
vnf/service chains with delay bounds,” in Network Function Virtualiza-
tion and Software Defined Networks (NFV-SDN), IEEE Conference on.
Palo Alto, CA, USA: IEEE, 2016, pp. 93–99.

[5] B. Zhang, P. Zhang, Y. Zhao, Y. Wang, X. Luo, and Y. Jin, “Co-Scaler:
Cooperative scaling of software-defined NFV service function chain,” in
Network Function Virtualization and Software Defined Networks (NFV-
SDN), IEEE Conference on. Palo Alto, CA, USA: IEEE, 2016, pp.
33–38.

[6] S. Kulkarni, M. Arumaithurai, K. Ramakrishnan, and X. Fu, “Neo-
NSH: Towards scalable and efficient dynamic service function chaining
of elastic network functions,” in Innovations in Clouds, Internet and
Networks (ICIN), 2017 20th Conference on. Paris, France: IEEE, 2017,
pp. 308–312.

[7] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba, “On orches-
trating virtual network functions,” in Network and Service Management
(CNSM), 2015 11th International Conference on. Barcelona, Spain:
IEEE, 2015, pp. 50–56.

[8] G. Even, M. Rost, and S. Schmid, “An Approximation Algorithm for
Path Computation and Function Placement in SDNs,” in International
Colloquium on Structural Information and Communication Complexity.
Helsinki, Finland: Springer, 2016, pp. 374–390.

[9] M. Ghaznavi, N. Shahriar, R. Ahmed, and R. Boutaba, “Service function
chaining simplified,” arXiv preprint arXiv:1601.00751, pp. 1–7, 2016.

[10] M. Rost and S. Schmid, “Service chain and virtual network embed-
dings: Approximations using randomized rounding,” arXiv preprint
arXiv:1604.02180, pp. 1–27, 2016.

[11] J. W. Jiang, T. Lan, S. Ha, M. Chen, and M. Chiang, “Joint vm placement
and routing for data center traffic engineering,” in INFOCOM, 2012
Proceedings IEEE. Orlando, FL, USA: IEEE, 2012, pp. 2876–2880.

[12] V. Eramo, E. Miucci, M. Ammar, and F. G. Lavacca, “An Approach
for Service Function Chain Routing and Virtual Function Network
Instance Migration in Network Function Virtualization Architectures,”
IEEE/ACM Transactions on Networking, 2017.

[13] M. Grant, S. Boyd, and Y. Ye, “Cvx: Matlab software for disciplined
convex programming,” 2008.

[14] internet2.edu, “Abilene network,” Jun 2017, [On-
line; posted 24-March-2012]. [Online]. Available:
https://web.archive.org/web/20120324103518/http://www.internet2.edu/
pubs/200502-IS-AN.pdf

[15] M. M. Tajiki, S. Salsano, M. Shojafar, L. Chiaraviglio, and B. Akbari,
“Joint Energy Efficient and QoS-aware Path Allocation and VNF
Placement for Service Function Chaining (extended version).” [Online].
Available: http://arxiv.org/pdf/1710.02611


