
 1

Accurate and Efficient Measurements of IP Level

Performance to Drive Interface Selection in

Heterogeneous Wireless Networks
S. Salsano, F. Patriarca, F. Lo Presti, P. L. Ventre, V. Gentile

Abstract— Optimal interface selection is a key mobility management issue in heterogeneous wireless networks. Measuring the physical

or link level performance on a given wireless access networks does not provide a reliable indication of the IP connectivity, delay and loss

on the (bidirectional) paths from the Mobile Host to the node that is handling the mobility, over different heterogeneous networks. In this

paper, we propose, implement and analyze mechanisms for connectivity check and performance (network delay and packet loss)

monitoring over IP access networks. We evaluate the accuracy and timeliness of the performance estimates and provide guidelines for

tuning up the parameters. From the implementation perspective, we show that using application level measurements is highly CPU

intensive, while a kernel based implementation has comparably a very low CPU usage. The Linux kernel implementation results in an

efficient use of batteries in Mobile Hosts and intermediate Mobility Management Nodes can scale up to monitoring thousands of flows.

The proposed solutions have been implemented in the context of a specific mobility management solution, but the results are of general

applicability. The Linux implementation is available as Open Source.

Index Terms—Network monitoring, wireless networking, mobility management, vertical handover.

January 2018 - Accepted for publication in IEEE Transaction on Mobile Computing

1 INTRODUCTION

everal solutions have been proposed in the last years for
mobility management in IP based heterogeneous

networks, working at different protocol levels, from layer 2 up
to application level [1], [2], [3]. Nevertheless, mobility
management is still an open issue for research and
standardization.

We consider a scenario in which the terminals have
multiple and heterogeneous wireless interfaces (e.g. WiFi,
3G/4G, WiMax) that can be active at the same time. Terminals
can conveniently switch from one interface to another
(handover) to optimize some suitable network performance
parameters, e.g., round trip time and packet loss ratio, with
the goal to improve the application level performance and the
user experience in general.

In such a scenario, the handover decision process, that is
the determination of when and on which interface to switch,
plays a key role. Several solutions for the handover decision
process have been proposed and evaluated in the literature
(see [4] for a comprehensive review and discussions of the
research issues). The Mobile Host and/or the network can
take into account several factors to drive the handover
process, from the received signal strength on the radio
interface, to the cost of connectivity, the desired QoS, the
battery usage and so on. Among these, it is relatively easy to
evaluate the radio link performance on a given wireless access
network. Unfortunately, the radio link performance provides
neither a reliable indication on availability of the end-to-end
connectivity nor a meaningful information on the level of
service provided to the Mobile Host and its applications,

should the network flows be handed over that wireless access
network. For example, consider a Mobile Host connected to a
WiFi hot-spot and to a 3G network. The link level performance
on the wireless link between the Host and the WiFi access
point can be very high, while at the same time the connectivity
of the WiFi access point to the Internet can be very poor (or
even not present). Clearly, in this scenario it would not be wise
to take the handover decision between the WiFi and the 3G
access network only relying on the link level measurements
since the terminal will experience poor application level
performance, despite the good WiFI link level quality. To
overcome these limitations, we consider the adoption of
connectivity checks and performance measurements at the IP level
on the path from the Mobile Host up to the intermediate
Mobility Management Node that handles the mobility (or up to
the Correspondent Host if the mobility is handled end-to-
end).

Performing a continuous connectivity check and gathering
the IP performance measurements in a timely, effective and
efficient way is a demanding task. The impact on these
procedures on the processing load of Mobile Hosts and of
Mobility Management Nodes and on the network load needs
to be carefully assessed. From the analysis of the literature on
mobility management (see the surveys [1], [2], [3]) we believe
that these aspects have not been adequately covered so far.
Most of the papers deal with architectural and protocol
aspects of handover management, and/or focus on the
performance of the handover procedure itself, but do not
address the measurements procedures themselves which are
needed to drive the interface selection and their computational
and network load impact.

There has been a considerable amount of work on IP level
performance measurements and several tools are available
(see [5]) to estimate network delays, packet loss ratios, and

————————————————

 S. Salsano, F. Patriarca, P.L. Ventre, V. Gentile are with the Electronic
Engineering Dept., University or Rome Tor Vergata,
E-mail: salsano@ieee.org, fabio.patriarca.2@uniroma2.it.

 F. Lo Presti is with the DICII Department, University or Rome Tor
Vergata, E-mail: lopresti@disp.uniroma2.it.

S

2

available bandwidth. This work has been done mostly from
the perspective of network management. Based on our
analysis of requirements for the needed connectivity check
and performance measurements procedures (see section 3),
we realized that no existing tools provides a solution which is
efficient for our purposes and can be easily integrated into a
handover management system for Mobile Host and Mobility
Management nodes. For this reason, we designed and
implemented the solutions proposed in this paper.
Specifically, the main contributions of our work are:
 Design of optimized connectivity check and IP network

performance measurements procedures for Round Trip
Time and packet loss ratio.

 A theoretical analysis of tradeoffs for the connectivity
check procedure between responsiveness and
processing/network load, with the identification of
optimal parameter selection.

 An Open Source implementation of the proposed
procedures, with different approaches (user space / kernel
space) [6][7]. The code can be reused and integrated into
any mobility management solution.

 Evaluation of the processing load of the different solutions
with real measurements taken in a test bed

 Verification of the accuracy and timeliness of the proposed
network performance measurements, based on the real
implementation.

We base the implementation and analysis of the proposed
mechanisms on a specific mobility management solution
called UPMT (Universal Per-application Mobility
Management using Tunnels) [8]. Nevertheless, our findings are
of general value and not restricted to the UPMT solution. The
proposed mechanism and results are relevant to all mobility
management solutions that combine heterogeneous networks
using IP (e.g. Mobile IP [9], HIP – Host Identity Protocol [10],
DMM – Distributed Mobility Management [11][12]). In facts,
all these solutions share the need of performing connectivity
checks and network performance monitoring.

The paper is organized as follows. Section 2 introduces the
UPMT mobility management solution and its usage scenarios.
Section 3 analyses the requirement for the connectivity check
and network performance monitoring procedures (dealing
with packet delay and loss). Section 4 describes the design of
the proposed procedures. Sections 5 deals with the
implementation aspects, considers some optimizations and
provides an evaluation of the processing cost for different
implementation choices. In section 6, the accuracy and
timeliness of the mechanisms are discussed. Section 7 reports
an analysis of related work and finally conclusions are drawn
in section 8.

2 UPMT BASICS AND USAGE SCENARIOS

UPMT is a solution for mobility management over
heterogeneous networks based on IP in UDP tunneling. In this
section we shortly recall its main features, further details can
be found in [6][8][13]. A Mobile Host establishes IP in UDP
tunnels over its active network interfaces with its
“correspondent” UPMT node. This correspondent UPMT
node can be an “Anchor node” (see Fig. 1) or a correspondent
UPMT aware Host (see Fig. 2). The UPMT solution can be
applied to different scenarios, we consider two of them in this

paper. The first scenario, called Internet access is shown in Fig.
1. A Mobile Host is connected to a mobility management node
denoted as Anchor Node via different access networks and it
has to choose the “best” access network over time. The second
scenario is called peer-to-peer multi-access. It assumes that a set
of devices with multiple network interfaces can communicate
in a peer-to-peer fashion and want to select the best network
interfaces to be used dynamically. A particular example of this
scenario is a mobile ad-hoc network in which the nodes have
multiple WiFi interfaces, as shown in Fig. 2.

The tunnels are used to exchange the IP packets according
to the format shown in Fig. 3. The “external” packet has IP
source and destination addresses corresponding to the IP
addresses of the interfaces of the Mobile Host and of the
correspondent UPMT node. The internal encapsulated packet
can keep the same IP source and destination addresses
irrespective of the interfaces used for sending and receiving
the packet. This allows seamless handovers of flows among
multiple tunnels setup between the Mobile Host and the
correspondent UPMT node.

Fig. 1 Internet Access scenario

Fig. 2 Peer-to-peer multi-access scenario

IP UDP IP UDP or TCP application

Tunnel header

IP src: real_iface_addr

IP dest: AN_addr
Original header

IP src: virtual iface

IP dst: CH_addr

Fig. 3 UPMT packet format

In our Linux implementation of UPMT, the UPMT kernel
module provides a virtual interface called UPMT0 as a regular
networking device, as shown in Fig. 4. A “virtual” IP address
can be assigned to it and the legacy applications will see a
standard networking device. The UPMT encapsulation and

Mobile Host

(MH)

Correspondent

Host (CH)
Anchor Node

(AN)

NAT 1

NAT 2

Anchor

NAT

IP/UDP

Tunnel 2

IP/UDP

Tunnel 1

“ACCURATE AND EFFICIENT MEASUREMENTS OF IP LEVEL PERFORMANCE TO DRIVE INTERFACE SELECTION…” 3

mobility management is completely transparent for the
applications that can use plain sockets to communicate.

Virtual

interface

eth0 wifi0 pp0
Physical

interfaces

IP yIP x IP z

Physical IP

addresses

upmt0

Virtual IP

address

Fig. 4 UPMT virtual interface vs. physical interfaces

Considering for example the Internet access scenario, if a
tunnel over a given access network is used and the
connectivity towards the Anchor Node through such tunnel
fails, the active flows should be immediately handed over
another tunnel on the second access network. If the failure
happens on the radio access interface, it could be detected by
monitoring of the radio link. If the failure happens on any
node or link behind the radio access point in the path toward
the Anchor Node, it is undetectable using the radio link
monitoring. The same applies to the peer-to-peer multi access
scenario when considering the end-to-end tunnels among the
mobile hosts: the radio link monitoring is not enough to assess
the liveliness and the quality of the end-to-end connection.

Therefore, the only option is to perform a continuous
monitoring at IP level, checking which tunnels provide
connectivity towards the correspondent UPMT nodes and
what is the performance (delay and loss ratio) of the connected
tunnels. Efficient mechanisms are needed to detect a sudden
loss of connectivity or a sharp decrease in performance on a
connected tunnel.

3 ANALYSIS OF THE REQUIREMENTS

Let us proceed from the ground-up by analyzing the
requirements for the connectivity check and performance
monitoring procedures. For simplicity, we will also globally
refer to these procedures as Keep alive procedures (because
they can rely on sending periodic messages referred to as keep
alive messages). The Keep alive procedures are required to
perform at the same time: i) the evaluation of Round Trip Time
(RTT [ms]); ii) the evaluation of One Way Loss (OWL) ratio in
the two directions; iii) the connectivity check, used to monitor
the state of the connectivity on the paths over the different
interfaces and to detect failure conditions as soon as possible.
The RTT is a “bidirectional” delay measurement, as it takes
into account the transit delay in the tunnel in both directions.
For most services, like conversational real-time
communications, client-server requests, TCP based data
transfer, the RTT is the most important performance
parameter (as shown in [14], TCP throughput is proportional
to 1/(�����_
���)). Only for a small subset of services like
unidirectional real-time broadcast, it could be rather of
interest to measure the One Way Delay (OWD) in one of the
directions. Unfortunately, this would require clock
synchronization between the two ends of the tunnel.
Therefore, in this work we only consider RTT measurements.

The key specific functional and non-functional
requirements that we have envisaged are listed in Table 1. We

highlight the importance, among the non-functional
requirements, of minimizing the CPU load and the amount of
state information. In Mobile Hosts this corresponds to
minimizing the power consumption, while in Mobility
Management nodes this will maximize the number of Mobile
Hosts supported with a given amount of resources.

Table 1 Functional and Non-Functional requirements

Functional requirements

1 Detection of loss of connectivity (the responsiveness should be
configurable)

2 Measurement of delay (round trip)

3 Measurement of one way loss in the two directions

4 Configurable time accuracy in the evaluation of the performance
parameters

5 Estimation of averages of performance over configurable time
scales

Non-Functional requirements

1 Resilience to packet loss and jitter for all measurement
procedures

2 Minimal memory footprint (i.e. minimize state information for
each interface/remote end-point to be monitored)

3 Minimal CPU load

4 Combined solution for all the measurements to minimize the
packets to be sent and processed.

5 Self-contained code, no dependency on external libraries or
modules

In general, the connectivity check and performance

monitoring can be done using an active approach (i.e. sending
probe packets) or with a passive approach (i.e. trying to infer
connectivity status and tunnel performance from the
observation of existing traffic). In theory, the passive approach
is preferable because it does not introduce additional traffic
into the network. On the other hand, inferring the
performance from existing traffic can be more complex and
CPU intensive and in any case it is not feasible to rely on
purely passive measurements for certain tasks like
connectivity check. Considering the fundamental requirement
that measurements and connectivity check must be available
also in absence of traffic, we decided to focus on the active
approach.

The measurements collected by the Keep Alive procedures
will be processed by the entities that performs the handover
decision in a given mobility management architecture. The
decision process is logically separated and independent from
the Keep alive procedures; the premise is that the IP level
measurements of the paths over the different wireless access
network provide valuable information to take the optimal
handover decisions for all the types of applications (and also
different decisions for each type of application if the mobility
management architecture supports this approach). The
proposed approach gives the possibility to take handover
decisions based on the combination of RTT and loss metrics.

4 DESIGN OF CONNECTIVITY CHECK AND

PERFORMANCE MONITORING PROCEDURES

In this section we describe the proposed procedures for the
evaluation of RTT, OWL and for performing the connectivity
check. The three procedures are combined in a common

4

framework, in which for each tunnel1, one end of the tunnel
plays the client role while the other end plays the server role.
The client role is taken by the end that starts the tunnel
establishment with a tunnel setup request. The other end, that
receives the tunnel setup request message, will play the server
role. The client-end periodically executes the keep alive
procedure each TKA seconds by sending a probe request packet
towards the server-end for each active tunnel. The server-end
sends back a probe response packet. The procedures described
in this section can be applied to both scenarios described in
section 2. The two involved entities (client end and server end)
will be respectively a Mobile Host and a Mobility
Management node in the Internet Access scenario, or two
peers in case of an end-to-end Mobility Management solution.

4.1 RTT evaluation

We assume that both ends are interested to evaluate the
RTT. With reference to Fig. 5, we define as tSc the time instant
when the probe request is sent by the client-end, tRs the time
instant when the server-end receives the probe request, tSs the
time instant when the server-end sends the probe response, tRc
the time instant when the client receives the probe response.
Note that the client and server clocks do not need to be
synchronized, therefore tSc and tRc represent the times as
measured by the client clock, while tRs and tSs the times as
measured by the server clock.

The probe request messages include 3 parameters:
tSc(k), tSs(kprev), tC(k) = tSc(k)-tRc(kprev)

where tSs(kprev) and tRc(kprev) represent the most recently
received values for these state variable.

The probe response messages include 3 parameters:
tSs(k), tSc(k), tS(k) = tSs(k)-tRs(k)

In this way, both ends of the tunnel can evaluate the RTT
delay from the probe packets without keeping a state
information, as follows:

On the client-end:
RTTc(k) = tRc(k) – tSc(k) – tS(k)
On the server-end:
RTTs(k) = tRs(k) – tSs(kprev) - tC (k)
The client-end needs to explicitly store the tSs state variable

until it sends the next probe request, which typically happens
on a timer basis. The server-end does not need to store the tSr
state variable because the probe response is sent immediately
after receiving the probe request and this state variable is local
to the procedure that handles the probe request. In section 5.3
we will propose an optimization of the procedure, in which
the probe response can be sent after a delay, in such case the
explicit storage of the tSr state variable for later retrieval is
needed.

RTT(k) can potentially assume a different value each time a
new probe packet is received. This information can be
accumulated using an EWMA (Exponentially Weighted
Moving Average) procedure so that a single state variable per
tunnel can represent the RTT performance of the tunnel
during the recent past (e.g. the last minute or so). The
proposed EWMA algorithm is explained in Appendix I. It
takes into account that the samples to be averaged are
available at time intervals that are not regular, due to the
variation of the RTT itself and that some RTT samples could
be missing (because of the loss of probe packets). The

1 In the terminology we refer to a tunnel based mobility solution like UPMT,

algorithm is characterized by its time constant RTT. A smaller
time constant means that the EWMA reacts faster to the
changes of the estimated parameter, but also that it takes into
account only the more recent values of the parameter.

tRc(1)

tRs(1)

tSs(1)

tSc(2)

tRs(2)

tSs(2)

tRc(2)

tSc(1)

tSs(0), tSc(1)-tRc(0)

tSs(1)

tSc(1), tSs(1)-tRs(1)

tSc(2)

tSs(1), tSc(2)-tRc(1)

RTTc(1)

RTTs(1)

RTTc(2)

tSc(1)

tSc(2), tSs(2)-tRs(2)

tSs(2)

Fig. 5 Time sequence for RTT evaluation procedure

Actually, it is also possible to maintain different EWMA
state variables with different time constants in order to
accumulate the information at different time scales (for
example a shorter time scale in the order of few seconds and a
relatively longer time scale in the order of few tens of seconds
or few minutes). The RTT state variable(s) are needed in both
sides if both sides are interested in evaluating the RTT.

In the described solution, both the client and the server-
ends independently evaluate the RTT. There can be scenarios
in which only the client-end is interested to evaluate the RTT,
for example in a client-server application driven by the client.
In this case, no state information is needed in the server-end,
minimizing the server side resources needed to handle the
Keep-Alive procedure.

4.2 Loss evaluation (One Way Loss)

Let us consider now the estimation of loss ratio. We define
the One Way Loss (OWL) ratio as the fraction of lost packets
with respect to the transmitted packet. This can be measured
both for the packets that are transmitted from the client-end to
the server-end of a tunnel and from the server-end to the
client-end. The former will be denoted as OWLc, the latter as
OWLs. The time interval TL [s] over which this percentage is
evaluated is arbitrary and characterizes the OWL
measurements. The exchange of probe requests/responses
happens on a periodic basis with period TKA [ms]. The OWL
evaluation interval TL is chosen as a multiple of TKA: TL =
N*TKA. The factor N should be chosen so that the number of
transmitted packets during the interval allows evaluating a
meaningful ratio. The OWL can only be evaluated when
receiving the first probe response (for the client-end), or the
first probe request (for the server-end) after the TL expiration.
The sequence of evaluated OWL values will be denoted as
OWL(m).

We assume that both ends are interested to evaluate the
OWL. With reference to Fig. 6, we define as Sc and Rc the total
number of packets sent and received by the client-end on the
tunnel, Ss and Rs the number of packets sent and received by
the server-end. These counters include both the data and the

but the concepts can be adapted to solutions not using tunnels.

“ACCURATE AND EFFICIENT MEASUREMENTS OF IP LEVEL PERFORMANCE TO DRIVE INTERFACE SELECTION…” 5

probe packets. More precisely, the client-end increases the Sc
variable for each packet sent in the tunnel and the Rc variable
for each received packet. Likewise, the server-end increases
the Ss variable for each sent packet and the Rs variable for each
received packet.

The probe request messages include 3 parameters:
Sc(k), Ss(kprev), Rc(kprev)

The probe response messages include:
Ss(k), Sc(k), Rs(k)

After the TL timer expires, both ends of the tunnel evaluate
the OWL ratio, as soon as they receive a probe packet. The
received probe packet has the index k, and will produce the
evaluation of the mth OWL value.

On the client-end:

OWLc(m) = 1 – ((Rs(k) – Rs_last) / (Sc(k) – Sc_last))
Sc_last Sc(k)
Rs_last Rs(k)

On the server-end:

OWLs(m) = 1 - ((Rc(k) – Rc_last) / (Ss(k) – Ss_last))
Ss_last Ss(k)
Rc_last Rc(k)

Where Sc_last and Rs_last on the client-end, and Ss_last and
Rc_last on the server-end respectively store the Sc, Rs, Ss and
Rc values as they will be needed for the next evaluation of
OWL. Obviously all _last variables are initialized to zero for
the first OWL evaluation.

Considering that probe packets can suffer a variable delay
or can be lost, the OWL evaluation will not happen exactly
every TL. It can even occur that no probe packets are received
for a whole TL duration, in this case the OWL evaluation for
the given interval will be missing, but this is not critical as the
OWL evaluation in the next TL will take into account the
packets that have been lost. In general, the sequence number
m of the evaluated OWL values will be such that m <= k/N
(where TL = N*TKA and the equality holds if all probes have
been received).

Sc(1)

Ss(1)

Sc(1), Rs(1)

Ss(1), Rc(1)

OWLc(1)

OWLs(1)

Sc(1) Sc_last

Rs(1) Rs_last

Sc_last

Rs_last

Ss(1) Ss_last

Rc(1) Rc_last

Sc Rc
Ss_last

Rc_last
Ss Rs

Ss_tmp

Rc_tmp

TKASs(1) Ss_tmp

Rc(1) Rc_tmp

Sc(2)

Ss(2)

Sc(2), Rs(2)

Fig. 6 Time sequence for OWL evaluation procedure

Both ends needs to maintain 4 state variables: 2 variables to
continuously update the number of sent and received packets
and 2 variables which will be updated every time the OWL is
evaluated and are denoted with the _last pedix. In addition,
the client-end needs to explicitly store the Ss and the Rc state
variables, respectively in the Ss_tmp and Rc_tmp variables,

until it sends the next probe request, which happens on a timer
basis.

It is important to observe that the client-end and server-end
clocks do not need to be synchronized because each end is able
to evaluate independently the OWL over each TL period. In
principle, the time period TL for the OWL evaluation can even
be different in the client-end (TLc) and in the server-end (TLs),
but for simplicity we considered a single period (TL=TLc= TLs).

Rather than keeping the whole sequence of OWL(m), it is
possible to accumulate them using an EWMA procedure,
exactly as already discussed for the RTT measurement. In this
way, a single state variable per tunnel represents the OWL
performance at a given time scale (and it is possible to keep
multiple state variable using different time constants in order
to consider different time scales).

Finally, we observe that a Round Trip Loss (RTL) metric
could be used instead of OWLc and OWLs, if it is acceptable
to have an aggregated estimation of the loss in the two
directions. As discussed in Appendix III, this brings a
simplification of the measurement procedure and a reduction
of the required state information.

4.3 Connectivity check

In the active procedure, we perform the connectivity check
as follows. On the client side every TKA [ms] we check if we
have received at least a keep-alive response in the last TTO =
KTKA [ms]. If not, we declare the tunnel down. TTO is the
“tunnel time out” interval and it is directly related to the
“responsiveness” of the connectivity check procedure, that we
define as the time TR needed to detect a faulty tunnel. As a
measure of the responsiveness, we can use either the worst
case delay TRmax for declaring a tunnel down after a fault, or
the average delay TRavg, as defined in eq. (1) and (2) (see
Appendix II).

TRmax=(K+1)TKA+ RTTmax = TTO+TKA+RTTmax (1)
TRavg= (K+1/2)TKA+ RTTavg/2=
 = TTO+TKA/2+RTTavg/2

(2)

Even if the tunnel is active some consecutive keep-alive

packets could be lost and this could lead to declaring the
tunnel down (leading to a “false positive” event). Every time
that a probe is sent, there is the probability pfp of declaring a
tunnel down when it is still alive. This is equal to the
probability of having K probe requests not acknowledged by
the server-end; a probe request could be not acknowledged
because either the probe request has been lost (which happens
with probability ploss-req) or the probe response has been lost
(which happens with probability ploss-res).

For the sake of simplicity, let us assume that max RTT <
TKA, that is, the maximum round trip time RTT is smaller than
the keep alive period TKA. Under this assumption, we can
detect the loss of the probe request or of the probe reply TKA
ms after sending the probe request: either the probe request
has been received or a loss event has happened, because it is
not possible that the probe response is delayed more than RTT
< TKA.

Let also assume that OWLc=OWLs=ploss, i.e. the loss
probability of the channel between the client-end and the
server-end is the same in both directions (the analysis can be
easily extended to the case where OWLcOWLs): ��������� = �����

6

���������� = (1 � �����) ∗ ����� ��� = (��������� � ����������)� = (2����� � ������)� (3)

Eq. (3) relates the tunnel loss probability ploss with the false
alarm probability pfp for different values of K, the number of
consecutive probes that need to be lost before declaring the
tunnel down (TTO = K TKA). Obviously for a given K, pfp
increases with ploss. The false alarm probability pfp is not suited
to be directly used as performance metric of the connectivity
check procedure as the perceived impairment is proportional
to the frequency of false positive events Ffp:
 ��� = p ! ∗ 1 ��"⁄

Therefore, we consider the reciprocal of Ffp, i.e. the average
time Tfp between two false positive events as the main
performance metric of the connectivity check procedure:

 ��� = 1 ���⁄ = ��" p !⁄ = ��" (2����� � ������)�⁄ (4)

The resource consumption (CPU processing and network
capacity) of the connectivity check procedure is directly
proportional to the frequency of keep alive packets; therefore,
the probe interval TKA should be as large as possible. In order

to have a good responsiveness TRavg should be as small as
possible; in order to limit the impairments due to false positive
events, Tfp should be as large as possible. NB: we choose to
refer to the average case using TRavg modeled by eq. (2), but it
would be possible to consider TRmax and the worst case
modeled by eq. (1), with very similar results.

By fixing a maximum keep alive rate (i.e. a minimum TKA= �$%&'() we can consider the tradeoff between responsiveness
TRavg eq. (2) and the average interval between false positive
events in declaring a tunnel down Tfp eq. (4) for different
values of K. We also need to provide estimates of round trip
time RTTavg and loss probability ploss. As shown in Fig. 7
(�$%&'(= 100 ms, RTTavg = 100 ms, ploss < 5%), by increasing K we
have a linear increase of TRavg (which corresponds to a
worsening of the responsiveness) and an exponential increase
of Tfp (which means an improvement of the performance)

Fig. 7 Tradeoff between TRavg

max and Tfp
min (TKA and RTT fixed)

On the other hand, if we require the responsiveness TRavg to be
smaller than a target �)*+,&-. and that average time between two

false positive events Tfp to be longer than a target ���&'(, we can

define the following optimization problem for TKA:

max TKA | /T)*+, 1 �)*+,&-.
���&'(1 T ! (5)

The maximization problem (5) can be rewritten as:

 max TKA | /(K � 1/2) ��" � ���-34 2⁄ 1 �)*+,&-.
���&'(1 ��" p !⁄

(6)

max TKA | /��" 1 5�)*+,&-. � ���-34 2⁄ 6 (K � 1 2⁄)⁄
 ���&'(∗ (2����� � ������)� 1 ��"

 (7)

TKA is constrained by two inequalities: (6) is related to the
responsiveness and (7) to the interval between false positive
events in considering a tunnel down. Assuming a given
maximum loss probability ploss and average round trip time
RTTavg, the combination of eq. (6) and (7) provides the
admissible range for TKA depending on K. For example, let us
assume RTTavg = 100 ms, ploss < 5%, �)*+,&-. = 500 ms, ���&'(= 105
s (27,8 h). Fig. 8 plots the eq. (6) and (7) respectively labeled
“Resp.” and “FPev.” and displays the admissible range for
TKA.
The optimal TKA

* constrained the by target performance
parameters ���&'(and �)*+,&-. can be found combining eq. (6) and
(7) into

 ���&'(∙ (2����� � ������)� 1 8�)*+,&-. � 9::;<=
� > 8K � ?

� >@ (8)

Let K* be the minimum value for which the inequality (8)
holds, we can chose the optimal TKA by using eq. (6):

TKA
= 5T)+,&-. � ���-34 2⁄ 6 (K∗ � 1 2⁄)⁄

Looking at Fig. 8, K* is the smallest K for which the FPev. curve
goes below the Resp. curve, while TKA

* is the value of the Resp.
curve for K= K*. In our example, K* =7 and the TKA

* = 60 ms.
The graphs in Fig. 9, Fig. 10 and Fig. 11 report the optimal K

and TKA by varying respectively ploss (from 0.5% to 8%), ���&'(

(from 100 s to 106 s, which corresponds to 11.5 days) and �)*+,&-.

(from 80 ms to 2 s), keeping all the other parameters as in the
previous example.

Fig. 8 Evaluation of K* and TKA

*

Fig. 9 K* and TKA

* vs. ploss

“ACCURATE AND EFFICIENT MEASUREMENTS OF IP LEVEL PERFORMANCE TO DRIVE INTERFACE SELECTION…” 7

Fig. 10 K* and TKA

* vs. Tfp
min

Fig. 11 K* and TKA

* vs. TRavg
max

5 IMPLEMENTATION DETAILS AND PERFORMANCE

ASPECTS

The UPMT software is composed of a kernel module
dealing with encapsulation of packets into tunnels and of a
Java application that offers a GUI to the user and manages the
signaling messages between the UPMT remote entities. The
signaling, including the setup of the UPMT tunnels, is based
on the SIP protocol and implemented using the Open Source
MjSip stack [15].

The Keep-Alive procedures described in the previous
sections have been implemented using different approaches:
1) a user space implementation leveraging the SIP protocol
already used for tunnel setup signaling to carry the Keep-
Alive information; 2) a kernel space implementation
extending the UPMT tunneling module; 3) a more efficient
user space solution in Java based on a UDP packet; 4) a
reference stand-alone user space implementation in C also
based on UDP. In [16] we have compared the performances of
the SIP user space solution and of the kernel space solution in
terms of processing cost. Here, we also consider the
performance of the user space implementations based on UDP
packets.

We emphasize that the source code of our implementation
is available at [17]. On the UPMT project home page [6], we
also provide a ready-to-go Virtual Machine to make our
experiments more easily replicable.

5.1 User Space Implementations

In the SIP based implementation, the Keep-Alive probe
packets are realized using SIP MESSAGE methods [18], a type
of SIP request messages that do not create a session, but can
be used to transfer any information. The receiving entity
replies with a SIP 200 OK message according to the SIP
protocol rules. The SIP protocol implementation manages
multiple retransmission of the request if no reply comes in
within a timeout. We enhanced the SIP stack adding a new SIP
header to the messages, called Timestamp. When performing

the Keep-alive procedure, the Mobile Host will send a SIP
MESSAGE toward the correspondent UPMT node, adding the
Timestamp header (time is expressed in millisecond since Jan
1 1970). The initial part of the SIP MESSAGE is reported in Fig.
12, showing the new Timestamp header. This solution was
easy to implement because we reused functionality available in
the SIP stack, but it suffers from poor performance.
The Java UDP based user space solution avoids the processing

overhead introduced by the SIP protocol. The probe packet is a
UDP packet encapsulated within the tunnel (Fig. 13-A). The
external IP destination address and UDP destination port are
the ones of the tunnel. The internal IP destination address is
the same of the tunnel, specific UDP source and destination
ports are used to distinguish Keep-Alive probe packets from
regular UDP packets. In our implementation, we have
reserved these ports so that they are never allocated to UDP
sockets.

As we will discuss in section 5.4, the performance of this
Java UDP based solution in terms of processing load is still too
poor compared to the kernel based solution. Therefore we
decided to prepare a reference user space implementation of
the Keepalive procedures in C, operating as a stand-alone
client server application (i.e. not integrated in the UPMT
implementation). We refer to this application as karle (Keep
Alive with Rtt and Loss Estimation). Karle is a minimalistic
single threaded application that executes the Keep alive
procedures between a single client and a single server, reading
and writing on a UDP socket. It does not handle the
monitoring of multiple connections in parallel, keeping only
the state information for a single connection. As such, it
provides an upper bound in terms of packet processing
capacity of an application capable of handling multiple
connections. Being available as open source [7], karle code base
can be used as a library to be integrated in other mobility
management solutions.

MESSAGE sip:160.80.103.66:5060 SIP/2.0

Via: SIP/2.0/UDP 5.6.7.8:40000;rport;branch=z9hG4bK809f

Max-Forwards: 70

To: <sip:160.80.103.66:5060>

From: <sip:1.2.3.30>;tag=251807832719

Call-ID: 314335872631@5.6.7.8

CSeq: 1 MESSAGE

Expires: 3600

User-Agent: mjsip 1.7

Timestamp: 1339598185957

Fig. 12 SIP MESSAGE for the Keep alive probe

IP UDP header IP UDP header
Measurement

probe data

Tunnel header
Original header

B) Measurement probe piggybacked in existing Tunneled Packet

A) Measurement probe sent as Tunneled UDP packet

Specific UDP ports for measurements

IP version number

IP UDP header IP UDP header
Measurement

probe data

Tunnel header

Payload

Fig. 13 Probe packet formats

The format of the measurement probe data is shown in Fig.
14. It allows to perform the RTT and loss evaluation in a
combined way, three 32 bits words are used for the RTT and
three 32 bits words for the loss evaluation (the total is 24

8

bytes). Even if not used in the algorithms, in the
implementation we also number all sent packets with a 32 bit
sequence number, so that the actual number of sent bytes is
28.

RTT evaluation

32 bit 32 bit 32 bit

tSc tSs △t

LOSS evaluation

32 bit 32 bit 32 bit

Sc Ss R

Fig. 14 Content of measurement probe data

5.2 Kernel Space Implementation

In the kernel space implementation, the Keep-Alive
procedures with RTT and loss ratio evaluation are performed
within the UPMT Linux kernel module. Linux kernel timers
are used to schedule the sending of probe packets for each
active tunnel. It is possible to activate/deactivate the Keep-
Alive procedures for each tunnel by sending configuration
commands from a user space application.

We implemented the algorithms described in section 4 and
used the packet format of Fig. 13-A. When originating a probe
packet, the kernel module encapsulates the inner probe packet
into a UDP packet and sends it. When receiving a probe
packet, the kernel module decapsulates the packet like any
other packet received on the tunnel. Then a matching with
UDP destination and source ports is performed to recognize
the probe packets. If the packet is recognized as a probe, it will
not be forwarded to a UDP socket to be delivered to user space
but it will be analyzed in the kernel. In this case, the kernel
module generates the probe reply packet (copying the
timestamp from the received packet) and encapsulates it into
a UDP packet to be sent back to the sender of the probe. We
have further improved this solution with the possibility to
piggyback the measurement information inside data packets,
as described in the next subsection.

The current UMPT kernel module provides the evaluated
RTT(k) and OWL(k) to the Java user space application. The
EWMA algorithm (whose details are discussed in the
Appendix I) is performed by the Java user space application.
This leaves a further optimization margin as the EWMA could
be moved in kernel space. In this case, the arbitrary
exponentiation operations in eq. (13) needs to be properly
replaced by multiplications and divisions considering that
floating point operations in kernel are discouraged or not
allowed by kernel configuration.

5.3 Optimization with Piggybacking

The Keep-Alive procedures described in section 4 are based
on sending periodic probes with period TKA (active approach).
Assuming that it is possible to piggyback keep-alive
information on existing packets, we propose an improved
mechanism, referred to as active-pb. The basic idea in the active-
pb approach is to ensure that for each TKA period a probe
request (or probe response) is sent by the client-end (or by the
server-end). The packet tunneling module in the kernel tries
to piggyback the probe information in existing packets during
the TKA time interval. If it is not possible to piggyback the
probe information during the TKA interval, an active probe
packet is sent at the TKA expiration.

Fig. 15 illustrates the active-pb approach. Note that the client
and server clocks do not need to be synchronized because they

can measure the TKA interval independently. The maximum
time interval between two probe requests is 2*TKA and the
maximum delay introduced by server due to the passive
piggybacking attempt is TKA. The same RTT and OWL
evaluation procedures described for the active approach can be
reused in the active-pb approach.

In the active-pb approach, time stamps and packet counters
information are added to packets in transit on a tunnel. This
information is added only to IP packets with a length shorter
than a threshold, so that the addition will not cause the packet
to exceed the Maximum Transmission Unit (MTU) of crossed
links. Note that this optimization is only possible when the
mobility management solution is based on some form of
tunneling that can be enhanced with this mechanism. In our
implementation, the information is piggybacked and
extracted by the UPMT tunneling module while encapsulating
and de-capsulating the packets in the tunnel (this is performed
in kernel space with a minimal CPU overhead). The packet
format used for the piggybacked packets is shown in Fig. 13-
B. The measurement data are added at the end of the packet.
In the first byte of IP header the version field is normally used
to indicate the IP version used in the packet. Since this field is
4 bit length, we set the value of 15 (all the bit are set to 1) in
case of piggybacked packet. In the packet receiving procedure
we use the version field of the inner IP header (the original
header) to check if the current packet is piggybacked or not. If
yes, we restore the normal value of this field (the number 4 for
IPv4 packets), we remove the measurement information and
the packet is sent to the upper levels of the networking stack.
Clearly this is possible because our UPMT tunnels are only
meant for IPv4 packets (the approach can be easily extended
to support IPv6 packets in the tunnel).

TKA

PASSIVE

APPROACH

Piggybacking

request

TKA

PASSIVE

APPROACH

piggybacking

response
ACTIVE

SENDING

keep-alive

request
ACTIVE

SENDING

keep-alive

response

Client end Server end

Fig. 15 Active-pb approach

The active-pb approach can achieve a saving of the capacity,
especially in wireless technologies which are not efficient in
sending small packets. For example in 802.11b the air time for
sending 24 bytes of data (corresponding to the Keep Alive
payload) is in the order of 800 s (including an average backoff
and assuming no collisions), of which only 17 s are used for
the 24 bytes of payload. Piggybacking the keep alive
information saves 98% of the additional capacity needed for
the Keep Alive procedures.

5.4 Processing Performance

Setting the Keep alive rate at the highest possible value
allows to have a more precise estimation of RTT and of Round

“ACCURATE AND EFFICIENT MEASUREMENTS OF IP LEVEL PERFORMANCE TO DRIVE INTERFACE SELECTION…” 9

Trip loss ratio and to react in a faster way to changing network
conditions. Unfortunately, there are two factors that limit the
increase of the Keep alive rate: the CPU load on the Mobile
Hosts and intermediate mobility management nodes, if
present and the network load. Of these two factors, the CPU
load is the most critical one since in both the Internet access and
the Peer-to-peer multi-access scenarios it affects the battery
usage. Even if the CPU load due to the monitoring of few
tunnels would be low in absolute terms, a reduction of this
load has a positive impact on battery duration, as the
performance monitoring procedure needs to be continuously
executed when the Mobile Host is connected. Considering a
mobility management node (i.e. the Anchor Node) in the
Internet access scenario, the CPU processing due to the
monitoring procedures can even be the bottleneck for the
node. As a rule of the thumb, a Keep alive rate in the order of
2-3 Keep alive per second could be enough to fulfill the
requirements of a precise and timely estimation of RTT & loss
and of a timely detection of connectivity losses. From the
network load perspective, this would correspond to few
hundred bit/s, i.e. one order of magnitude less than a VoIP
call. On the other hand, we show hereafter that the CPU load
may become critical even at these relatively low rates.

We set up our testbed with virtual machines running on
VirtualBox [19] in a PC with an Intel® Core™2 Quad CPU
Q8400 processor running at 2.66Ghz (4GB RAM). We focused
on the Internet access scenario and considered the CPU
utilization in the Anchor Node. One virtual machine was
acting as an Anchor node, while the Mobile Hosts were
running in different virtual machines. We executed the Keep
alive procedures at different rates both for the user space and
for the kernel space implementations. We measured the CPU
utilization using the sar command, a part of the sysstat
package. Further results and more details on the experiments
can be found in [13][16]. The CPU utilization grows linearly
with the sending rate of the probes. We were able to estimate
the maximum Keep alive rate within a given CPU utilization
threshold (e.g. 50%) for the Anchor node, reported in Table 2.

For the SIP-based user space implementation, the
maximum keep-alive rate in our experiments is 100 (s-1). The
UDP based user space java implementation improves this
performance by almost a factor of 3. In the same conditions the
karle C application is able to manage a keep-alive rate of
around 3000 (s-1) at 50% CPU load. The kernel space
implementation is one order of magnitude more efficient than
the user space karle application.

If we assume 2 Keep-alive per second per tunnel and 2
tunnels per client the maximum number of clients for a
mobility management node corresponds to the maximum
keep alive rate reported in Table 2 divided by 4. This would
roughly lead to a number of 25, 70, 750 or 11.600 supported
users for the four different implementations. Clearly, these
results are dependent on the specific hardware that we have
used for the experiment, but what is of general interest is the
empirical evaluation of the ratio between the supported
number of flows in the user space solutions and the one in the
kernel space solution.

Table 2 Maximum Keep-alive rate for 50% CPU utilization

 SIP UDP Java UDP C karle Kernel

Max rate (msg/s) 100 278 3000 46512

As we mentioned above, this is an important indication also
for the CPU processing load in the Mobile Host side, which we
have not explicitly measured. Such a large reduction of the
processing load for the kernel-based solution has a benefic
impact on the battery duration.

6 ESTIMATION ACCURACY AND TIMELINESS

In this section, we discuss the accuracy and timeliness of
the methodologies described in section 4 for the monitoring of
round trip time (RTT). Additional details and some results
related to the evaluation of loss ratio (OWL) are reported in
Appendix IV. We provide design guidelines to tune the
parameters of the proposed mechanisms. We evaluate how
much the provided measurements are close to the real
network conditions and how the algorithms react to the
variation of network quality (delay and loss). The accuracy of
the measurements is very important as it is used to drive the
handover procedures: a bad estimation of the RTT and loss
probability would lead to sub-optimal handover decisions,
impairing the QoE perceived by the user.

The RTT and OWL measurement samples are accumulated
using the generalized EWMA algorithm described in eq. (13)
of Appendix I. For the delay estimation (RTT) the samples are
available on average every TKA seconds (assuming that there
are no losses of probe packets). For the loss measurement
(OWL) the samples are available every TL = N·TKA seconds.

The time constant of the generalized EWMA, defined in
Appendix I, determines how the measured samples of RTT
and OWL are averaged over time; the choice of the
appropriate value for is a critical design choice. A longer
provides an average over a longer period of time but it makes
the EWMA slower to react to changes. A shorter makes the
system more responsive to changes but it includes in the
EWMA only the more recent measurements.

We can relate the time constant to the
responsiveness/timeliness of the estimator, Ttml as the time
required for the RTT/OWL estimate to fall within an interval
smaller than 10% of the RTT/OWL variation when a change
occur. As shown in Appendix IV, we have that:

�B&� = log 10 ≈ 2.3

Faster detection implies smaller values of Ttml which

translates to smaller value of . For instance, a timeliness of
Ttml=2sec, results into a time constant sec. Hereafter,

since we are interested in the measurements we will refer to

the time constant rather than to the timeliness Ttml.

We have performed a set of experiments over the final
version of our prototype implementation (described in section
5.2) and collected the measurements results reported in this
section. In all the experiments we use two UPMT hosts
connected though a Linux PC acting as a router. We used the
netem [20][21] module of the Linux kernel in the Linux router
to generate tunable delay and loss ratio on the outgoing
interfaces. In the first experiment (RTT step variation) we start
with an RTT delay of 100 ms and then we sudden increase the
delay to 200 ms (this happens at time t=3.75 s in Fig. 16). Fig.
16 plots the EWMA estimate of the RTT compared to the thin
dotted line that represents the reference RTT (i.e. the RTT that
we have imposed on the path) using four different time

10

constants. The figures also report the duration of the time
constants and of the TKA interval in scale with the x axis. In Fig.
16 the keep alive procedure for RTT measurement has TKA =
200 ms, the four values of the time constant are 124, 218, 392
and 896 ms. We used eq. (13) with reference time interval
T=TKA, and four decreasing values of (0.8, 0.6, 0.4, 0.2) to
obtain the reported time constants. As expected, using
relatively small time constants the EWMA quickly follows the
step variation of the RTT, but the EWMA significant
contribution is coming only from the last 2 or 3 measurement
values.

The choice of the time constant depends on the variability
of the RTT and on the dynamicity of the control decisions that
can be taken based on the measured RTT. If it is possible to
react in the order of seconds, the time constant should be small
enough to measure the performance of the last seconds, but
such small time constants are not useful if the
reactions/decisions are taken in the order of tens of seconds.

In the second experiment (RTT 3-levels, Fig. 17), we create
an RTT with a periodic behavior. It has a period of 20 seconds,
in which it alternates among 3 levels: 200 ms for 5 s, 300 ms for
5 s, 200 ms for 5 s, 100 ms for 5 s. In Fig. 17, TKA = 2 s , the
EWMA is plotted for time constants of 1.24 and 8.96 s. It can
be seen here that with a time constant of 8.96 s it is not possible
to track the variations of RTT, which changes every 5 s and the
resulting EWMA filters out the maximum and minimum
values of RTT, oscillating around the average.

Fig. 16 - RTT step variation (TKA = 200 ms), different time constants

Fig. 17 - RTT 3-levels (TKA = 2 s) with different time constants

Fig. 18 - Asymmetric RTT approach, TKA = 2 s

By looking at Fig. 17, we realized that in some scenarios it
is not bad that the EWMA does not decrease too quickly. In
particular, when a parameter like the RTT decreases for a short
interval and then it increases again it could be misleading that
the EWMA algorithm reports the improvement, only to
counteract few seconds after and report a new increase of the
delay. We think that a shorter time constant can be used to
process an RTT sample that reports a worsening of the
network performances (i.e. an increase of the RTT), while a
longer time constant can be used to process the samples that
report an improvement (i.e. a decrease of the RTT). Using this
new approach in the experiment (RTT 3-levels) reported
above, we obtain the results shown in Fig. 18. It can be seen
that the transitions with an increase of RTT are followed
promptly, while the transitions with a decrease of the RTT are
followed more slowly. In particular, it can be seen from Fig. 18
(a scenario in which the EWMA estimation cannot accurately
follow the RTT variation) that the EWMA of the RTT that is
reported in this case is more realistic as it follows more closely
the higher RTT delays. In fact, in case of an RTT oscillation
more frequent than our capability to capture it, it is much
better to report a value close to the maximum of the RTT in the
period rather than its average value.

7 RELATED WORK

Accurate performance monitoring mechanisms at one or
more of the protocol layers are fundamental to any mobility
management system over heterogeneous networks and
several articles and solutions have been proposed.

As previously observed, the physical layer measurements,
e.g., the Receiver Signal Strength, while providing key
information on the wireless link status, do not reflect the
corresponding end-to-end performance. Link layer statistics,
as the Transmission Error Detector proposed in [22] provide
the upper layers with information about the reception of
packets at the wireless AP to drive interface selection. They
show good performance, but are only effective when the
bottleneck is represented by the wireless access links.

At the network layer, a number of metrics can be measured,
from the simpler ones like bandwidth, delay and packet loss
to more complex ones like network reliability, security, cost,
and load. Most approaches (see [3] and references therein)
focus on the architectural and protocol aspects of mobility
management and provide little or no details on the underlying
measurements procedure. For instance, in [23] the authors
consider an architecture for network mobility within the
context of the IETF NEMO (Network Mobility) WG and only

“ACCURATE AND EFFICIENT MEASUREMENTS OF IP LEVEL PERFORMANCE TO DRIVE INTERFACE SELECTION…” 11

mention that “There are a number of metrics that can be
measured, with the most common being QoS metrics such as
bandwidth, delay and packet loss”. Other approaches
exclusively rely on measurements taken on user traffic. In [24],
to setup a connection to a peer, a node sends multiple SYN
packets, one for each interface. The node only completes the
three-way handshake with the first received SYN-ACK packet
thus implicitly selecting the interface with the current smallest
RTT. After the connection has been setup, no further
monitoring is considered.

Similar in scope to our work, the WiOptiMo [25] solution
aims to provide seamless and continuous connectivity by
adaptively selecting the best internet connection among all
wireless access providers available, guaranteeing persistence
in case of signal and/or performance degradation. To this end,
ICMP control packets (ping) are periodically sent to the access
points to estimate the connection performance on the basis of
the experienced Round-Trip-Time (RTT). The link
disconnections are detected whenever 3 consecutive ping
packets are not responded within a predefined timeout (based
on empirical evidence that the failure of a connection can be
robustly assessed after three consecutive timeouts [26]).

In the context of the SHIM6 approach to Multi-homing [27],
the Failure Detection and Locator Path Exploration Protocol
(REAchability Protocol, REAP for short) [28] has been
designed to detect failures in the currently used path and to
identify a new path. The protocol relies on two timers driven
by upper layers traffic and by the so called Keep Alive
messages when traffic is sporadic, to detect failures. The Keep
Alive timer is started whenever a data packet is received and
stopped and reset each time the node sends a data packet to
the peer. A Keep Alive message is sent whenever the Keep
Alive timer expires. The Send Time timer is started when the
peer send a packet and stopped whenever a packet is received.
When the Send Timer expires, a fault is detected. The
specification [28] suggests to use a Send Timer timeout larger
than 10 seconds to avoid reacting to temporary failures. This
high timeout value clearly impacts the fault detection efficacy.
In [29] the authors show how the Send Timer greatly affects
the traffic recovery time in case of failures, with a simple
simulation approach. In [30] the authors propose an analytical
model of REAP and derive analytical expression for the
recovery time from a path failure as seen by the upper layers
in different scenarios. The work in [31] does not focus on the
performance of the REAP recovery procedure seen by the host,
but on the scalability of the solution in large scale network.

Differently from REAP, our proposed approach caters for
temporary failures and/or packet loss by requiring the loss of
multiple packets before declaring a link down. As shown in
Section 4.3, this allows us to trade-off the detection
responsiveness with the probability of a false positive by
adjusting the value of the TKA and K parameters. Another
difference is that REAP monitors the active path and starts a
recovery procedure if it fails, while in our approach we can
monitor the active and alternate paths (tunnels) in parallel to
perform a seamless handover when possible.

RTT and one way delay estimation have been also
investigated in the literature in the broader context of network
performance measurements. In [32] the author compares the
implementation of three RTT estimation algorithm: Jacobson’s
algorithm based on EWMA and commonly used by TCP,
Expert Framework and Eifel algorithm. The last two are

examined more deeply in [33] and [34] respectively, and they
are considered as a starting point to build complex solution
about RTT estimation. In [35], the authors analyze EWMA
parameters in TCP retransmission timeout estimation.

In [36] and [37], the authors consider techniques to monitor
the One Way Delay in a passive way with minimal overhead.
A similar approach is used in [38], dealing with passive RTT
measurement. In our scenario, such solutions would require
sending lists of packet hashes and timestamps over the wire
and additional processing load to compute hashes and to
search matches among the packet hash lists.

Some works consider the performance monitoring from the
perspective of overall network management rather than from
the perspective of mobility management/ vertical handover
for Mobile Hosts. For example in [39] a complete tool for
evaluation of network performance in terms of various metrics
is described, while in [40] the focus is given to RTT for TCP
flows.

Multipath TCP (MPTCP, [42]) is a solution for exploiting
multiple network paths among to two end-points. MPTCP is
meant for TCP based applications and it is a complete solution
offered to the application. In the course of its operations,
MPTCP needs to take measurements of the network
performance. Our proposed Keep Alive procedures work at IP
level and are meant to support all types of applications,
providing a tool that needs to be integrated in a mobility
management architecture.

In order to overcome the limitation of performing
networking related operation in user space, frameworks for
fast packet I/O have been proposed, see for example [43]. A
direction for future work is to design and implement the Keep
Alive procedures within such frameworks.

Finally, we mention the ITU-T recommendation on
operation and management for Ethernet [41]. It describes a
“continuity check” procedure for protection switching and a
set of functions for performance monitoring, in particular
frame loss ratio, whose requirements are very similar to our
needs.

8 CONCLUSIONS

In this paper, we have presented novel solutions for the
performance monitoring of wireless access network interfaces
to support the handover decision process. Our solution
include computationally and memory efficient procedures for
the timely estimation of the Round Trip Time and of Round
Trip and One Way loss ratio.

We have proposed a connectivity check procedure,
addressing the important issue of the trade-off between
responsiveness and false alarm probability and proposing an
analytic approach to find the optimal setting of the
parameters.

We have implemented the proposed solutions on the Linux
OS in user space and in kernel space and performed
comparative measurements of CPU utilization. As expected,
the kernel space solution is more efficient in terms of
computational load and thus energy consumption.
Consequently, the kernel version is the implementation of
choice both for a mobility management node that is expected
to handle thousands of Mobile Hosts concurrently and for the
Mobile host where battery duration is the main concern. As an
alternative, the fast I/O frameworks or the so called kernel

12

bypass solutions should be considered to avoid the bottleneck
of user-to-kernel communication.

The source code of our implementation is publicly
available. For an easier reproducibility of the results, we have
also provided a ready-to-go Virtual Machine with scripts and
instructions for the setup of the experiments.

9 ACKNOWLEDGEMENTS

The authors wish to thank Marco Bonola for his work on
the design of UPMT and his precious suggestions and Marco
Galvagno for the implementation of the Java user space
monitoring solution.

10 REFERENCES

[1] D. Le, X. Fu, D. Hogrere, “A Review of Mobility Support Paradigms

for the Internet”, IEEE Communications surveys, 1s t quarter 2006,

Volume 8, No. 1

[2] A. Gladisch, R. Daher, D. Tavangarian, “Survey on mobility and

multihoming in future internet”, Wireless personal communications,

74(1), 2014

[3] S. Ferretti, V. Ghini, F. Panzieri, “A survey on handover management

in mobility architectures”, Computer Networks, 94, 2016

[4] Meriem Kassar, Brigitte Kervella, Guy Pujolle, “An overview of vertical

handover decision strategies in heterogeneous wireless networks”,

Computer Communications, 31(10), 2008, Pages 2607–2620

[5] Les Cottrell, “Network Monitoring Tools”, available on line at

http://www.slac.stanford.edu/xorg/nmtf/nmtf-tools.html

[6] UPMT homepage: http://netgroup.uniroma2.it/UPMT

[7] Karle application – “Keep Alive with Rtt and Loss Evaluation”,

https://github.com/netgroup/karle.git

[8] M. Bonola, S. Salsano. “UPMT: Universal Per-Application Mobility

Management using Tunnels”, IEEE GLOBECOM 2009

[9] C. Perkins, Ed., “IP Mobility Support for IPv4, Revised”, IETF RFC 5944,

November 2010

[10] R. Moskowitz, P. Nikander, T. Henderson, “Host Identity Protocol”, IETF

RFC 5201, April 2008

[11] Distributed Mobility Management, IETF Working Group home page

http://datatracker.ietf.org/wg/dmm/
[12] H. Chan et al., “Requirements for Distributed Mobility Management,” IETF

RFC 7333, Apr. 2014.
[13] S. Salsano, M. Bonola, F. Patriarca, “The UPMT solution (Universal Per-

application Mobility Management using Tunnels)”, technical report available

at http://netgroup.uniroma2.it/TR/UPMT.pdf

[14] M. Mathis, et al. “The macroscopic behavior of the TCP congestion

avoidance algorithm”, ACM SIGCOMM Computer Communication

Review 27.3, 1997.

[15] MjSip home page: http://www.mjsip.org

[16] F. Patriarca, S. Salsano, F. Fedi, “Efficient Measurements of IP Level

Performance to Drive Interface Selection in Heterogeneous Wireless

Networks”, PE-WASUN’12, October 21 – 25 2012, Paphos, AA, Cyprus
[17] UPMT source code, https://github.com/StefanoSalsano/UPMT
[18] B. Campbell (Editor),“Session Initiation Protocol (SIP) Extension for Instant

Messaging”, IETF RFC 3428, December 2002

[19] Oracle VM VirtualBox, http://www.virtualbox.org

[20] Netem module in Linux kernel

http://www.linuxfoundation.org/collaborate/workgroups/networking/

netem
[21] S. Hemminger, “Network Emulation with NetEm”, Linux Conf Au 2005,

Camberra, Australia, 2005

[22] V. Ghini, S. Ferretti, F. Panzieri, “The “Always Best Packet Switching”

architecture for SIP-based mobile multimedia services”, Journal of Systems

and Software Vol. 84, Issue 11, Nov. 2011.

[23] I. Alsukayti, C. Edwards, “Multihomed Mobile Network Architecture”, IFIP

Networking Conference, Tolouse, May 20-22, 2015.

[24] T. Yamaguchi et al., “An Optimal Route Selection Mechanism for Outbound

Connection on IPv6 Site Multihoming Environment”, IEEE COMPSACW

2013, Japan.

[25] G. A. Di Caro, et al., “A Cross-Layering and Autonomic Approach to

Optimized Seamless Handover”, WONS 2006, Les Ménuires (France), 2006.

[26] H. Velayos and G. Karlsson, “Techniques to Reduce IEEE 802.11b MAC

Layer Handover Time”, Vol. 3, TRITA-IMIT-LCN, KTH, Sweden, 2003.

[27] E. Nordmark, M. Bagnulo, “Shim6: Level 3 Multihoming Shim Protocol for

IPv6”, IETF RFC 5533, June 2009.

[28] J. Arkko, I. van Beijnum, “Failure Detection and Locator Pair Exploration

Protocol for IPv6 Multihoming”, IETF RFC 5534, June 2009.
[29] A. de la Oliva, et al., “Performance analysis of the REAchability protocol for

IPv6 multihoming”, NEW2AN 2007, St. Petersburg, Russia, 2007

[30] A. De la Oliva, et al., “Analytical characterization of failure recovery in

REAP”, Computer Communications 33.4 (2010): 485-499

[31] H. Naderi, B. Carpenter, “A performance study on reachability protocol in

large scale ipv6 networks”, IEEE ICCNT 10, Karur, India, 2010.

[32] S. Lukin, “A Comparison of Round-Trip Time Estimation Algorithms”,

Loyola University Maryland, UCSC SURF-IT Research, 2010.

[33] B. A. Nunes, et al. “A Machine Learning Approach to End-to-End RTT

Estimation and its Application to TCP”. IEEE ICCCN 2011.

[34] R. Ludwig, K. Sklower, “The Eifel retransmission timer”, ACM SIGCOMM

Computer Communication Review, 2000.

[35] M. Allman, V. Paxson, “On estimating end-to-end network path properties”,

ACM SIGCOMM Computer Communication Review, 1999

[36] S. Zander, G. Carle, T. Zseby, “Evaluation of Building Blocks for Passive

One-way-delay Measurements”, Passive Active Measurement Workshop

(PAM 2001), Amsterdam, Netherlands, 23-24 April 2001

[37] S. Niccolini, et al. “Desing and implementation of a one way delay passive

measurement system”, IEEE/IFIP NOMS 2004.

[38] S. Zander, G. Armitage, “Minimally Intrusive Round Trip Time

Measurements Using Synthetic Packet-Pairs”, IEEE LCN 2013.

[39] J. Prokkola, et al. “Measuring WCDMA and HSDPA Delay Characteristics

with QoSMeT,” IEEE ICC 2007, Glasgow, Scotland

[40] P. Romirer, et al. “Network-wide measurements of TCP RTT in 3G”, TMA

2009, published in LNCS vol. 5537.

[41] ITU-T Recom. G.8013/Y.1731, “OAM functions and mechanisms for

Ethernet based networks”, 07/2011

[42] D. Wischik, C. Raiciu, A. Greenhalgh, M. Handley, “Design,

Implementation and Evaluation of Congestion Control for Multipath TCP”,

in NSDI, vol. 11, pp. 8-8. 2011

[43] L. Rizzo, “Netmap: a novel framework for fast packet I/O”, 21st USENIX

Security Symposium (USENIX Security 12). 2012.

“ACCURATE AND EFFICIENT MEASUREMENTS OF IP LEVEL PERFORMANCE TO DRIVE INTERFACE SELECTION…” 13

11 APPENDIX I: EWMA EVALUATION

The definition for the EWMA Sk of a variable x available at
regular time intervals {tk} with period T (tk = k·T) is:

JK = L ∙ MK � (1 � L) ∙ JK�?JN = MN (9)

where Sk is the EWMA of x at time tk = k·T, and (0<<1) is
the “smoothing factor”. A higher implies a higher weight of
more recent observations of x. Instead of we can use the time
constant to characterize the EWMA computation. We define
the time constant as the time needed for the EWMA to decay
to 1/e of its initial value when all the new observations are 0.
Let x0 = c > 0, xk=0 k>0. Then, from (9):

Sk = c (1-)k (10)

According to (10), the EWMA will exponentially decay to 0. To
evaluate the time constant , we first evaluate OP (11) and then
use it to evaluate in eq. (12):

Q(1 �)KP = Q R⁄ OP ln(1-) =-1 OP =-1/ln(1-) (11)

 = OPT = -T/ln(1-) (12)

We generalize the EWMA and definition for the case in
which the values of the variable x are available at non-regular
intervals. Let {tk} be the sequence of time instants at which an
observation xk is available. Let ∆tk = tk - tk-1. Given a reference
time interval T, we define the generalized EWMA with
smoothing factor and reference interval T as follows:

JK = S1 � (1 � L)∆UV :@ W ∙ MK � (1 � L)∆UV :@ ∙ JK�?
JN = MN

 (13)

According to (13), the smoothing factor used to take into
account a given observation xk into the EWMA Sk now
depends on the time elapsed from the previous observation. If
∆tk = T the smoothing factor is exactly .

We can evaluate again the time constant from (13):

Q(1 �) :⁄ = Q R⁄ �⁄ ln(1-)=-1 =-T/ln(1-) (14)

The reference time interval T and in eq. (13) do not
constitute two independent degrees of freedom, because the
behavior of (13) only depends on the time constant =-T/ln(1-
). In fact, we can rewrite the factor in eq. (13) that depends on
T and as follows:

(1 � L)∆UV :@ = (1 � L)∆UV � XY(?�Z)@ =

= [(1 � L)�?/XY(?�Z)\∆UV
 @

The term in square brackets can be evaluated:

(1 � L)� ?XY(?�Z) = R�(](?�Z)^ _`a(_^b)c = R� ?XY(?�Z)∗�(5(?�Z)6 =

= R�?

Therefore

(1 � L)∆UV :@ = R�∆UV
@

and eq. (13) can be rewritten as follow, only depending on the

time constant

JK = S1 � R�∆UV
@ W ∙ MK � R�∆UV

@ ∙ JK�?

12 APPENDIX II: RESPONSIVENESS

In section 4.3, we used the delay before declaring a tunnel
down after the actual loss of connectivity as a measure of the
responsiveness of the connectivity check procedure. We
defined the worst-case delay TRmax and the average delay TRavg
and provided their expressions in terms of TTO, TKA, RTTmax in
eq. (1) and (2). Fig. 19 helps clarifying how these expressions
have been derived. The timeout TTO before declaring the
tunnel down is TTO = KTKA [ms], as an example in Fig. 19 we
let K=2. As shown in Fig. 19, in the worst case a fault can
happen in the outgoing path immediately after the sending of
a probe packet. The probe response can come back (after RTT
ms) immediately after the sending of another probe packet. In
this case, K+1 TKA time intervals are needed before declaring
the tunnel down, as in eq. (1). The average case is derived in a
straightforward way, assuming that the fault can happen with
uniform probability in any point of the outgoing and incoming
paths and that the last response probe can be received with
uniform probability in any point of a TKA interval.

TKA

TKA

TTO = KTKA

here K=2

TKA

RTT Fault

Received OK

Status: OK

Lost

Status: KO (1)

Status: KO (2)

Lost

Lost

Fault detected

Fig. 19 Worst case delay before declaring a tunnel down

14

13 APPENDIX III: ROUND TRIP LOSS EVALUATION

Let us consider a generic request going from client to
server, which expects a reply from the server. We can define
as Round Trip Loss (RTL) ratio the fraction of lost replies with
respect to the transmitted requests. The RTL takes into account
that a packet can be dropped when travelling from the client-
end to the server-end or in the way back from the server-end
to the client-end.

RTL can be expressed as function of the “uplink” loss
OWLc (from client-end to server-end) of the “downlink” loss
OWLs (from server-end to client-end):
RTL = OWLc + OWLs – (OWLc * OWLs)

When OWLc and OWLs are small:
RTL OWLc + OWLs

We now describe a simplified RTL evaluation procedure
that does not require the evaluation of OWLc and OWLs.
Obviously, knowing RTL is suboptimal in case one needs a
separate estimation of OWLc and OWLs but there is a saving
in the complexity of the procedure and in the state information
to be maintained.

The client-end evaluates the Round Trip Loss ratio over a
time interval equal to TL = N·TKA where TKA is the configured
interval for the Keep Alive procedure. Using the same
notation of the previous section, we define as Sc and Rc the
total number of probe requests sent and probe response
received by the client-end on the tunnel. More precisely, the
client-end increases the Sc variable for each probe packet sent
and the Rc variable for each probe response received in the
tunnel.

The RTL is evaluated on the client-end when receiving the
first probe response after the TL expiration. For each RTL
evaluation, the client-end sends the RTL value to the server
using the first available probe request.

The sequence of evaluated RTL values will be denoted as
RTL(m).
On the client-end:
RTL(m) = max[1 – ((Rc(k)–Rc_last)/(Sc(k)–Sc_last));0]
Sc_last Sc(k)
Rc_last Rc(k)–max[((Rc(k)–Rc_last)-(Sc(k)–Sc_last));0]

The definition of m and k and their relation are the same of

the previous section.

RTL(1)

Sc(1) Sc_last

Rc(1) Rs_last

Sc_last

Rc_last
Sc Rc

TKA

RTL(1)

Fig. 20 Round Trip Loss (RTL) evaluation procedure

2 Indeed, while is the time for the exponential estimate to settle to 1/e, Ttml

Note that every time the RTL(m) is evaluated, the counter
of received packets Rc_last can be decreased to take into
account that during an evaluation interval the number of
received packets has been greater than the number of sent
packets. In this way the number of received packets in the next
evaluation interval will be correspondingly increased. In fact,
let us assume that N probe packets are sent over an
observation interval TL. Due to the RTT delay a probe reply
could be received during the next TL interval (in this case the
algorithm will measure a loss event over the first observation
interval). If the RTT remains constant, in the next interval the
number of probe requests and probe responses will match and
no loss will be detected. If the RTT decreases, one can receive
a number of replies larger than N in an observation interval
TL. In this case, the excess probe replies received are accounted
for in the next interval.

The Round Trip Loss ratio that is evaluated on each interval
can be accumulated using an EWMA, as described for the
OWL and the RTT. In this case, only another state variable is
added per each tunnel.

Overall, for the simplified RTL evaluation, the state
variables that need to be maintained in the client-end per each
tunnel to be monitored are Rc, Sc, Rc_last, Sc_last, RTL, RTL-
EWMA. On the server-end, only the RTL-EWMA state
variable needs to be maintained.

14 APPENDIX IV: ADDITIONAL RESULTS ON

ESTIMATION ACCURACY AND TIMELINESS

In this Appendix we study the relationship between the
estimation accuracy and timeliness. Assuming for simplicity
that the RTT change in a step-wise manner, we can define the
responsiveness of the estimator as the time the EWMA
estimate is within a interval of the new value RTT value. More
precisely, if we denote RTTold and RTTnew the previous and the
current value of the RTT, we define the timeliness of the
estimate, Ttml as the time required for the EWMA estimate to
fall within a small interval of new value RTTnew. More
precisely, in order to have a definition which does not depends
on the actual value of RTT, we define Ttml as the time required
for the EWMA to fall within an interval smaller than 10% of
the RTT variation, that is, the time required for |EWMA-
RTTnew|≤ 0.1*| RTTold-RTTnew| to hold true. If we consider the
example in Fig. 21, where the RTT has a sharp rise from 100ms
to 200ms, the timeliness of the estimate is the time required for
the EWMA to reach the value of 190ms, (10% of the 100ms
RTT variation).

We can readily compute Ttml from the time constant . From
the definition, we have that

 R�:Ude

@ = 0.1

from which we obtain

�B&� = log 10 ≈ 2.3
As expected the timeliness is directly proportional to time

constant 2 (and does not depend on the Keep Alive period).
We expect that, for timely detection, performance requirement
to be expressed in terms �B&� from which we derive the time

is the time for the estimate to settle to 1/10.

“ACCURATE AND EFFICIENT MEASUREMENTS OF IP LEVEL PERFORMANCE TO DRIVE INTERFACE SELECTION…” 15

constant to be used in the EWMA estimate computation.

We repeated the measurements reported in Fig. 16 with a
different Keep Alive period. In Fig. 21 TKA = 2 s and the four
values of the time constant are: 1.24, 2.18, 3.92, 8.96 s (we used
TKA as reference time interval T and the same four values for
).

Fig. 21 - RTT step variation (TKA = 2s), different time constants

We repeated the measurements reported in Fig. 17 with a
different Keep Alive period. In Fig. 22, TKA = 200 ms, the
EWMA is plotted for time constants of 124 and 896 ms. In
this case, also with the highest considered time constant of 896
ms the EWMA follows quite reasonably the Reference RTT,
with a delay in the order of 2-3 s.

Fig. 22 – RTT 3-levels (TKA = 200 ms) with different time constants

We repeated the measurements reported in Fig. 18 with a
different Keep Alive period.

Fig. 23 - Asymmetric RTT approach, TKA = 200 ms

14.1 OWL evaluation

Considering the evaluation of loss ratio (OWL), we
proceeded in a similar way as in section 6 to verify the
functionality and the performance of the implemented
solution. We imposed deterministic (and piecewise constant)
values for the loss ratios to packets crossing the testbed router

and we measured the output of the loss estimation modules.
In Fig. 24 the piecewise constant loss ratio was generated
according to this periodic profile: 0.1% for 15 s, 10% for 15 s,
20% for 15 s, 10% for 15 s and then start again. According to
the definitions given in section 4.2 the loss evaluation interval
TL is equal to N*TKA. In these experiment we always set N=10.
Hence, for TKA = 200 ms, TL = 2 s. Fig. 24 show the measured
loss ratio (EWMA) compared with the generated loss ratio
(“Reference”), for a small time constant of 1.24 s, which let
the EWMA estimate follow the measured loss ratios with
negligible delay.

Fig. 24 - OWL 3-levels variation, TKA = 200 ms, N=10, alpha = 0.8

