SR-Snort: IPv6 Segment Routing Aware IDS/IPS

Ahmed Abdelsalam™, Stefano SalsanoT, Francois Cladi, Pablo Camarilloi, Clarence Filsﬁlsi,
*Gran Sasso Science Institute, TUniversity of Rome Tor Vergata, *Cisco Systems

Abstract—Service Function Chaining (SFC) allows the delivery
of advanced end-to-end services composed of one or more
network functions. IPv6 Segment Routing (SRv6) is a network
architecture based on source routing, where a list of segments is
attached to packets to enforce different path from the shortest
one. SRv6 supports SFC by assigning each network function
a segment and combining these segments into a segment list.
In order to fully leverage the SRv6 network programming
capabilities, network functions are required to be SR-aware. In
this paper, we present our implementation of SR-Snort, a SR-
aware intrusion detection system (IDS) and intrusion prevention
system (IPS). We extended the open-source implementation of
Snort, so it can apply the configured rules to the inner packet of
SR traffic. SR-Snort can handle both inner IPv4 and inner IPv6
traffic. It can work in either IDS or IPS mode.

Index Terms—Service Function Chaining (SFC), NFV, SR,
SRv6, Snort

I. INTRODUCTION

Network Functions Virtualization (NFV) offers an agile
way to design and deploy network services [1]. In an NFV
infrastructure, traditional specialized physical appliances are
being replaced with software modules, known as Virtual
Network Functions (VNFs). Service Function Chaining (SFC)
is the process of forwarding packets through a set of VNFs
required to deliver an end-to-end service. SFC requires a steer-
ing mechanism which can be offered through IPv6 Segment
Routing (SRv6). SRv6 is the instantiation of the Segment
Routing (SR) architecture over the IPv6 data plane. It defines a
new IPv6 Routing Extension header type, known as Segment
Routing Header (SRH), that includes a list of segments to
be traversed by the packet [2]. Each segment represents a
function to be called at a specific location in the network.
A SRv6 encapsulated packet is as shown in Figure 1. SFC
can be achieved with SRv6 by associating each VNF with a
segment and combining such segments in segment list.

VNFs can be categorized into SR-aware and SR-unaware,
depending on their ability to process SR encapsulated pack-
ets [3]. SR-unaware VNFs are not able to process SR traffic
and require an SR-proxy to be included in a SR based SFC [4].
SR-aware VNFs are able to process SR traffic, which imply
being able to process the original packet despite the fact that
it has been encapsulated within a SR packet. SR-aware VNFs
can fully leverage the SRv6 network programming capabilities
to implement advanced SFC features, such as conditional
branching and jumping to arbitrary segment in the segment list
and exchanging information between network functions [5].

This work has been partially supported by the Cisco University Research
Program (URP) fund

In this paper, we show a demo of SR-Snort, a SR-aware
Intrusion Detection System (IDS) and Intrusion Prevention
system (IPS). SR-Snort extends the open-source implemen-
tation of Snort, so it can apply Snort rules to inner packets
of SRv6 encapsulated traffic. Section II presents the archi-
tecture of Snort. The architecture of SR-Snort is explained
in section IIl. In section IV, we show a demo for SR-Snort
included in a SRv6 based SFC.

' OuterIPv6 |
| Header |

Transport

IPv4/IPv6
Header

Header | Payload |

Fig. 1: SRv6 encapsulated packet

II. SNORT

Snort is an open-source network IDS and IPS. It is the
world’s most widely deployed IPS technology [6]. Snort can
be used as a packet sniffer (like tcpdump) to read packets from
a specific network interface and prints their headers fields. It
can also be used to perform analysis of network traffic for
detecting different security attacks [7]. The design of Snort
was initially relying on direct calls to the libpcap library
functions to acquire network packets. Then, it was changed in
Snort 2.9 by introducing the Data Acquisition library (DAQ),
which provides an abstraction layer between Snort and the
different types of network interfaces [8]. DAQ offers a variety
of modes for packets acquisition that can be chosen at run
time.

Figure 2 shows the packet processing architecture of Snort.
In a Linux environment, the DAQ module runs on top of the
Linux network stack. First, Snort acquires packets from the
DAQ module by using the Acquire module. Next, the Decoder
module decodes packets and builds up the Snort’s main data
structure (SFSnortPacket), which contains the information
required to process the packet. Then, the Snort preprocessors
plugins (if any) are invoked. The Preprocessors provide a
modular way to easily extend the functionalities of Snort by
developing custom plugins. The Log module logs the packet’s
information. After that, the Detection module compares the
SFSnortPacket against the configured Snort rules. Finally,
the Verdict module returns the action to be performed on the
packet (e.g., accept or drop).

III. SR-SNORT

SR-Snort is an extended SR-aware version of Snort. It can
apply Snort rules to inner packets of SRv6 encapsulated traffic.
The packet processing architecture of SR-Snort is shown in
Figure 3. We extended the packet processing architecture

s

[}

0

0

[

> » '
| Preprocessors |
0

0

0

0

n
'

o

0

il 0

i
Il
|
i
i
i
Il
!
! A
i
i
Il
i
i
i
Il
|
i

i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i

[DAQ (Data Acquisition Library) |
l Linux Network Stack l

Fig. 2: Snort architecture

of Snort by adding two new modules: SR preprocessor and
Expose Inner pkt. The SR preprocessor module is invoked
immediately after the Decoder to detect SRv6 encapsulated
packets, and hence classify packets into SRv6 and non SRv6.
Non SRv6 packets are processed as described in section II.
SRv6 packets are encapsulated as shown in Figure 1. In order
to be able to apply Snort rules to the inner packet, the SRv6
encapsulation (i.e, Outer IPv6 Header and SRH) has to be
removed before invoking the Preprocessors, the Log, and the
Detection modules. SRv6 packets are directed to the Expose
Inner pkt module, which removes the SRv6 encapsulation from
packets and feeds them to the Snort Decoder to build up a
new SFSnortPacket. The new SFSnortPacket has the
information of the inner packet and is processed by the packet
processing architecture as described in section II. Accordingly,
Snort rules are applied to the inner packet. SR-Snort can be
included in an SRv6 policy, where it uses the same set of
legacy Snort rules and applies them to the exposed inner
packet. The implementation of SR-snort is open-source and
publicly available on GitHub [9]. It supports inner IPv4 and
IPv6 packets and can work in either IDS or IPS mode.

IV. DEMO DESCRIPTION

The demo showcases the integration of SR-Snort in a
SRv6 NFV Infrastructure deployed as a virtualized Linux
environment. We run the demo on a simple network topology
composed of three Linux nodes representing the Ingress, NFV,
and Egress nodes of SRv6 domain. The Ingress node is
configured with an SRv6 NFV policy to steer traffic from
Site A towards Site B through VNF1 and VNF2, which results
in having SRv6 encapsulated packets with an SRH containing
segments for the two VNFs. Node 3 is configured with SRv6
decapsulation SID to remove the SRv6 encapsulation from
packets as they leave the SRv6 domain. VNF1 and VNF2 run
SR-Snort in IDS mode and IPS mode respectively.

Using iperf, we generate UDP traffic, with different des-
tination port numbers (5000 and 6000 in this demo), from
Site A destined to Site B, which is SR encapsulated at the
Ingress node. VNF1 is configured with a snort rule to raise
alert for UDP traffic with destination port number of 5000.
VNF?2 is configured with a snort rule to drop UDP traffic with
destination port number of 6000. SR-Snort at VNF1 and VNF2

s

i SR-Snort

i

i

i H) /

i i a

! H o

i H H

i P 7 0

i / 0

i > ; Preprocessors |

: L preprocessor / i

3 A < |
0

! 0

| 1

i

: '

! 1

i o
0

i

i

i

i

l DAQ (Data Acquisition Library)
l Linux Network Stack l

Fig. 3: SR-Snort architecture

o

Site B

gl —(O)—CJ
Site A Ingress NFV Egress

Fig. 4: SR-Snort demo

is able to apply Snort rules to the inner packets without the
need to run on top of a SR-Proxy. The demo is open-source
and can be replicated on any commodity hardware. Scripts and
instructions to deploy the demo are available on GitHub [10].

V. CONCLUSIONS

In this paper, we have presented our implementation of SR-
Snort, a SR-aware IDS/IPS able to apply a set of legacy Snort
rules to the inner packets of SRv6 encapsulated traffic. We
have shown the integration of SR-Snort in an SRv6 NFV
policy both as IDS and IPS. We provided an open-source
implementation of SR-Snort and scripts to deploy the demo.

REFERENCES

[1] B. Han et al. , “Network function virtualization: Challenges and oppor-
tunities for innovations,” IEEE Communications Magazine, 2015.

[2] C. Filsfils et al, “IPv6 Segment Routing Header
(SRH),” June 2018. [Online]. Available: https://tools.ietf.org/html/
draft-ietf-6man-segment-routing-header- 14

[31 . Clad et al, “Service Programming with Segment
Routing,” July 2018. [Online]. Available: https://tools.ietf.org/html/
draft-xuclad-spring-sr-service- programming-00

[4] A. Abdelsalam et al., “Implementation of Virtual Network Function
Chaining through Segment Routing in a Linux-based NFV Infrastruc-
ture,” in 3rd IEEE Conference on Network Softwarization (NetSoft 2017).

[5] A. Abdelsalam et al., “SERA: SEgment Routing Aware Firewall for
Service Function Chaining scenarios,” in IFIP Networking 2018.

[6] “Snort: The world’s most widely deployed IPS technology.”
[Online]. Available: https://www.cisco.com/c/en/us/products/collateral/
security/brief_c17-733286.html

[7] M. Roesch et al., “Snort: Lightweight intrusion detection for networks.”
in Lisa, vol. 99, no. 1, 1999, pp. 229-238.

[8] “Snort Users Manual.” [Online]. Available: http://manual-snort-org.
s3-website-us-east- 1.amazonaws.com/

[9] “SR-Snort: IPv6 Segment Routing Aware Snort.” [Online]. Available:

https://github.com/SRouting/SR-Snort

“Demo: IPv6 Segment Routing Aware Snort”” [Online]. Available:

https://github.com/SRouting/SR-Snort-demo

[10]

