
Performance of IPv6 Segment Routing
in Linux Kernel

Ahmed Abdelsalam∗, Pier Luigi Ventre†, Andrea Mayer†, Stefano Salsano†,
Pablo Camarillo‡, Francois Clad‡, Clarence Filsfils‡

∗Gran Sasso Science Institute, †University of Rome Tor Vergata, ‡Cisco Systems

Abstract—IPv6 Segment Routing (SRv6) is a promising solu-
tion to support advanced services such as Traffic Engineering,
Service Function Chaining, Virtual Private Networks, and Load
Balancing. The SRv6 data-plane is supported in many different
forwarding engines including the Linux kernel. It has been intro-
duced into the 4.10 release of the Linux kernel to support both
endhost and router functionalities. The implementation has been
updated several times, with every new kernel release, to include
new features and also to improve the performance of existing
ones. In this paper, we present SRPerf, a performance evaluation
framework for software and hardware implementations of SRv6.
SRPerf is able to perform different benchmarking tests such
as throughput and latency. The architecture of SRPerf can be
easily extended to support new benchmarking methodologies as
well as different SRv6 implementations. We have used SRPerf
to evaluate the performance of the SRv6 implementation in the
Linux kernel.

Index Terms—Segment Routing, SRv6, Performance, Linux
kernel, Data-Plane

I. INTRODUCTION

Segment Routing (SR) is a network architecture based
on source routing [1]. It delivers all the benefits of source
routing mechanisms required for today’s networks, such as
the flexibility in specifying a forwarding path other than the
regular shortest path [2]. At the same time, it addresses the
security concerns that were the reason for deprecating previous
source routing techniques [3] [4]. In the SR architecture, the
source can insert into a packet an ordered list of instructions,
denoted as segments, to steer the packet through a set of
intermediate nodes in the path towards its final destination.
Each segment is represented with a segment identifier (SID),
which is based on the data-plane implementation of the SR
architecture. Currently, the SR architecture has two different
data-plane implementations: MPLS and IPv6 where SIDs are
respectively represented as MPLS labels and IPv6 addresses.

IPv6 Segment Routing (SRv6) is the instantiation of the SR
architecture over the IPv6 data plane. It defines a new type
of IPv6 routing extension header known as Segment Routing
Header (SRH) [5]. The SRH carries the list of SIDs that
must be traversed by the packet and a pointer to the active
segment in the list. The initial SRv6 architecture is extended
from the simple steering of packets across nodes to a general
network programming approach in [6]. It is possible to encode
instructions and not only locations in a the SIDs list. Each
instruction represents a function to be executed at a specific

This work has been partially supported by the Cisco University Research
Program (URP) fund

location in the network. A set of well-known functions that
can be associated with a SID are defined in [6]. However,
this set is not exhaustive and network operators can define
their own functions. SRv6, as a network underlay technology,
fulfills the needs of the various overlay services, such as traffic
engineering, load balancing, and service chaining of network
functions [2].

The data-plane implementations of SRv6 have been sup-
ported in many different routers implementations including:
open-source software routers such as the Linux kernel and
the Vector Packet Processing (VPP) platform [7], and hard-
ware implementations from different network vendors [5].
The SRv6 implementations have drawn a lot of attention to
researchers from academia and industry. The interoperability
between several software and hardware implementations of
SRv6 is reported in [8]. In this paper, we focus on the SRv6
implementation in the Linux kernel. It has been introduced
into the 4.10 release of Linux kernel to support both endhosts
and router functionalities. The implementation has been up-
dated several times to include new functionalities and also to
improve the performance of supported features with every new
kernel release. Several research activities have leveraged from
the SRv6 capabilities in Linux kernel [9] [10] [11] [12].

The introduction of SRv6 in ISP networks requires the
assessment of its non-functional properties like scalability
and fault tolerance. Hence, it is required to have a realis-
tic performance evaluation framework. The platform should
allow scaling up to the current transmission line rates and
should be available for re-use by academic researchers on any
commodity hardware. However, to the best of our knowledge,
the only reported performance for the SRv6 implementation in
the Linux kernel are in [13] [14]. They are early evaluations
reporting the performance of the very first implementations
of SRv6. Moreover, the works do not provide such required
framework. Therefore, we advocate the need of an open source
reference platform.

The design of a performance evaluation framework for
data-plane implementations is a very challenging task [15].
As they are required to forward packets at an extremely
high rate using a limited CPU budget to process each of
these packets. The IETF has defined the guidelines and the
tests for benchmarking forwarding implementations [16]. The
benchmarking tests include: throughput, latency, jitter and
frame loss rate. Throughput is the most commonly used
benchmarking measure for forwarding implementations [17].
It is defined as the maximum rate at which all received packets

are forwarded by the device and often reported in number of
packet per second (pps). There are different variations of the
throughput including No-Drop Rate (NDR), and Partial Drop
Rate (PDR) [18].

In this paper, we present SRPerf, a performance evaluation
framework for software and hardware implementations of
SRv6. Currently, SRPerf supports only the SRv6 forwarding
in the Linux kernel, but it can be easily extended to support
other forwarding engines such as VPP. It can report different
throughput measures such as NDR and PDR. The current
design relies on TRex as a traffic generator [19]. We have
used SRPerf to evaluate the performance of the SRv6 imple-
mentation in the Linux kernel. In particular, we report the PDR
measures for different SRv6 forwarding behaviors supported
by the Linux kernel. The implementation of SRPerf is open-
source and publicly available at [20].

The paper is structured as follows: Section II presents the
SRv6 support in the Linux kernel. The design of SRPerf and
the evaluation methodology are described in Section III. Sec-
tion IV explains the testbed and elaborates on the experiments
we have performed. Finally, we draw some conclusions and
highlight the directions for future work in Section V.

II. SRV6 SUPPORT IN THE LINUX KERNEL

The SRv6 implementation was merged in Linux kernel
4.10 [14]. It has been improved several times to track the
evolution of the SRv6 network programming concept defined
in [6]. The model defines two different set of SRv6 behaviors,
known as transit and endpoint behaviors. Transit behaviors
steer received packets into the SRv6 policy matching the
packet information. Each SRv6 policy has a list of SIDs to be
attached to the matched packets. On the other hand, an SRv6
endpoint behavior represents a function to be executed on
packets at specific location in the network. Such function can
be a simple routing instruction, but also can be any advanced
network function (e.g., firewall, NAT).

In the Linux kernel, the SRv6 behaviors are implemented
as Linux lightweight tunnel (lwtunnel). The lwtunnel
is an infrastructure that was introduced in Linux kernel 4.3 to
allow for scalable flow-based encapsulation such as MPLS and
VXLAN. In the Linux kernel, SRv6 SIDs are configured as
IPv6 FIB entries into the main routing table, or any secondary
routing table [21]. In order to support adding SIDs associated
with an SRv6 behavior, the iproute2 user-space utility has
been extended [22]. The SRv6 capabilities in the Linux kernel
were improved to include the netfilter framework [23] as well
as the eBPF framework [24]. In the netfilter framework, a
new iptables match extension (srh) was added to support
matching of the SRH fields. The srh match extension is a
part of the SERA firewall [10]. In the eBPF framework, a
new feature is added to support implementing custom SRv6
network functions in eBPF and install them in the kernel.

Several SRv6 transit behaviors are supported in the Linux
kernel, including: T.Insert, T.Encaps, and T.Encaps.L2. The
T.Insert behavior inserts an SRH in the original IPv6 packet,
immediately after the IPv6 header and before the transport

level header. The original IPv6 header is modified, in particular
the IPv6 destination address is replaced with the IPv6 address
of the first segment in the segment list, while the original
IPv6 destination address is carried in the SRH header as the
last SID of the SIDs list. The T.Encaps behavior encapsulates
the original IPv6 packet as the inner packet of an IPv6-in-IPv6
encapsulated packet. The outer IPv6 header carries the SRH
header, which carries the SIDs list. The T.Encaps.L2 behavior
is the same as the T.Encaps behavior, with the difference that
T.Encaps.L2 encapsulates the full received layer-2 frame rather
than the IP packet.

The Linux kernel also supports several SRv6 endpoint be-
haviors including: End, End.T, End.X, End.DX2, End.DT6, and
End.DX6. The End behavior represents the most basic SRv6
function. It replaces the IPv6 destination address of the packet
with the next active SID from the SIDs list. Then, forwards the
packet based on a FIB lookup using the updated destination
address. The End.T behavior is a variant of the End behavior
relying on the multiple tables lookup functionality: the FIB
lookup is performed in a specific IPv6 table associated with
the SID rather than the main FIB table. The End.X behavior
is another variant of the End behavior where the packet is
forwarded to one of the layer-3 adjacencies bound to the
SID rather than the IPv6 destination address. The End.DX2,
End.DT6, and End.DX6 behaviors are variants of the End
behavior that require removing the SRv6 encapsulation (outer
IPv6 header and its extension headers) before forwarding the
packet. They are used to implement the termination of different
types of layer-2 and layer-3 VPN use-cases. The End.DX2
behavior pops out the SRv6 encapsulation and forwards the
resulting frame via the output interface associated to the SID.
The End.DT6 behavior pops out SRv6 encapsulation and
perform a FIB lookup with the IPv6 destination address of
the exposed inner packet in an IPv6 table associated with the
SID. The End.DX6 behavior removes the SRv6 encapsulation
from the packet and forwards the resulting IPv6 packet to one
of the layer-3 adjacencies bound to the SID.

Another set of SRv6 endpoint behaviors were defined
in [25] to the chaining of SR-unaware network functions.
Some of these behaviors are implemented in an external Linux
kernel module such as End.AD and End.AM [26]. The details
and performance evaluation of these behaviors as well as other
SRv6 endpoint behaviors, not listed above, have not been
considered in this work and are left for future works.

III. SRPERF

In this section, we illustrate our performance evaluation
framework (SRPerf). At first, we describe the internal design
and the high level architecture of SRPerf (Section III-A).
Then, Section III-B elaborates on our evaluation methodology
which leverages the PDR to characterize the performance of
a forwarding node.

A. Design and high level architecture

We designed SRPerf following the network benchmarking
guidelines defined in RFC 2544 [16]. The architecture of

SRPerf is composed of two main building blocks: testbed and
orchestrator as shown in Figure 1. The testbed is composed
of two nodes, the tester and the System Under Test (SUT).
The nodes have two network interfaces cards (NIC) each
and are connected back-to-back using both NICs. The tester
sends traffic towards the SUT through one port, which is
then received back through the the port, after being forwarded
by the SUT. Accordingly, the tester can easily perform all
different kinds of throughput measurements as well as round-
trip delay and jitter. In our current design, we chose the open
source project TRex as Traffic Generator (TG) that supports
both transmitting and receiving ports [19].

The orchestrator is responsible for the automation of the
performance evaluation process. It controls the TG (deployed
in the tester) through the high level API provided by TG
driver. The TG driver translates the calls coming from the
other modules in commands to be executed on the python
client of the TRex automation API [27]; such API provides
the means to generate different traffic patterns (e.g., layer-3
traffic) at different rates (up to the line rate of the TG sending
port). It also provides the means to extract statistics from the
traffic generator after each successful run.

The cfg manager controls the forwarding engine in the SUT.
It is responsible for enforcing the required configuration in the
forwarding engine. The orchestrator implements a mapping
between the supported forwarding behaviors and required
configuration for each behavior. Hence, the orchestrator is
able to properly instruct the cfg manager. For example, to
test the End behavior, the cfg manager has to configure the
forwarding engine in the SUT with two FIB entries; one as
an SRv6 SID with End behavior and the second as plain
IPv6 FIB entry to forward the packet once performed the End
function. The configuration can be as simple as adding a FIB
entry to forward the received packets back to the tester, but it
can also be more complex configuration that manipulate the
incoming packets before forwarding them back to the tester.
The orchestrator implements another mapping between the
supported forwarding behaviors and the type of traffic required
to test each behavior. For example, to test the End behavior,
it is necessary to use an SRv6 packet with an SRH containing
a SIDs list of at least two SIDs and the active SID must not
be the last SID.

The orchestrator supports different algorithms for calcu-
lating the throughput and the delay measurements. Each
algorithm provides an API through which the orchestrator
can run an experiment. An example of currently supported
throughput measurement algorithms is the Partial Drop Rate
(PDR), described in Section III-B.

The configuration file depicted in the upper part of the
Figure 1 represents the necessary input to run the experiments.
It defines the forwarding engine in the SUT node, the set of
SRv6 behaviors to be tested, the type of test to be performed
and the algorithm for calculating it and number of runs.
The configuration file can be represented in any configuration
language. Currently, SRPerf supports only YAML [28] for
the configuration format. The orchestrator leverages the cfg

NIC1

NIC2

NIC1

NIC2

TG
(TRex) Forwarding

cfg
manager

PDR MRR

TG Driver
(TRex)

cfg{
 Forwarding = “linux”
 behaviour = “IPv6”
 Test = “PDR”
 Runs = “10”
 }

Orchestrator

Tester SUT

Cfg
parser

Testbed

Fig. 1: SRPerf architecture.

parser to extract the configuration parameter and to initialize
the experiment variables. The SRPerf implementation is open
source and available at [20]. It supports another API for
the automatic generation of the configuration files. Moreover,
it provides a different configuration scripts to to deploy an
experiment using SRPerf on any commodity hardware.

The framework is modular and can be expanded in different
directions. For example, it can be extended to support new
traffic generators by simply creating a new driver for each. A
new forwarding behavior can be added by updating the cfg
manager with the configuration required for such behavior.
New algorithms for calculating throughput and delay can be
developed and plugged into the orchestrator. It can support
different forwarding engines in the SUT, which only requires
the cfg manager to be updated to recognize them.

B. Evaluation methodology and PDR finder algorithm

Throughput, defined in RFC 1242 [17], is the maximum
rate at which all received packets are forwarded by the device.
It is used as a standard measure to compare performance of
network devices from different vendors. Throughput can be
reported in number of bits per second (bps) as well as number
of packet per second (pps). The precision of throughput
measurement depends on type of the traffic to be forwarded.
Some protocols can not tolerate even the loss of one frame,
while others can tolerate a certain percentage of packets loss.
Hence, there are two variations of the throughput, No-Drop
Rate (NDR) and Partial Drop Rate (PDR). NDR is the highest
throughput achieved without dropping packets. PDR is the
highest throughput achieved without dropping more than a pre-
defined threshold [29]. NDR can be described as PDR with
threshold of 0%. Here, we consider only the PDR since it is
more generic than the NDR. Moreover, in certain conditions
it is not feasible to measure a zero loss rate.

Finding the PDR of a given forwarding behavior is a time
consuming process since it requires the scanning of a broad
range of possible traffic rates. In order to explain the process,

0 250 500 750 1000 1250 1500 1750 2000
Incoming Packet Rate [kpps]

0

200

400

600

800

1000

1200

1400
Ou

tg
oi

ng
 P

ac
ke

t R
at

e
[k

pp
s]

Net Throughput
Delivery Ratio

0.4

0.5

0.6

0.7

0.8

0.9

1.0

De
liv

er
y

Ra
tio

Fig. 2: Throughput of plain IPv6 forwarding

we plotted the IPv6 forwarding in the Linux kernel as shown
in Figure 2. The figure reports a set of different sending rates
along with the throughput and the Delivery Ratio (DR) for
each rate. DR is the ratio between the input and the output
packet rates of a device. It should be always be 100% for
all data rates less than the device throughput. Initially, the
throughput increases linearly with the increase in the sending
rate. This region is often referred to as no drop region where
the DR is always 100%. The CPU usage at the SUT node
increases with the increase in traffic sending rate by the
tester. Ideally, the SUT node should be able to forward all
received packets until it becomes 100% CPU saturated. After
the saturation point, the SUT node starts to drop some of
the received packets. Once the drop threshold is reached, the
process should terminate and report the calculated value as
PDR. The same logic is valid for calculating the NDR, by
having a drop threshold of 0%.

In order to automate the PDR finding process, we have
designed and developed the PDR finder algorithm. It scans a
range of traffic rates with the objective of estimating the PDR
value. The algorithm performs a combination of both expo-
nential and logarithmic search. It returns an interval [a, b] of
traffic rates for the PDR value. The maximum interval distance
(ε) is an configurable option to tune the algorithm precision.
The algorithm terminates when the difference between a and
b is less or equal than ε (b− a ≤ ε).

The exponential search is the first phase of the PDR finder
algorithm. Firstly, the algorithm defines a searching window
[start, end] where start is the initial sending rate, which can
be any values that guarantees no loss, and end is the maximum
sending rate that the TG can not go beyond and usually based
on the sending NIC capabilities. The algorithms defines β
as the threshold of drop rate that can be tolerated. For each
sending rate the algorithm calculates the throughput and DR.
If the DR ≥ (100 − β)%, the new sending rate is set to be
twice the current sending rate. Otherwise, the algorithm starts
the logarithmic search phase.

The logarithmic search leverages the output of the exponen-
tial search as an input. The algorithm starts to decrease the
amplitude of the searching window until such value becomes
less than the minimum interval width (ε). At each iteration,

the size of the searching window is halved and the DR is
evaluated for the window middle point, which is considered
to be the current traffic rate. If the DR of the middle point is
less than the threshold, the upper bound of the window is set to
the current rate. Otherwise, the lower bound of the searching
window is set with the current rate. This process is iterated
until the exit condition is triggered.

IV. SRV6 PERFORMANCE IN THE LINUX KERNEL

We deployed our testbed illustrated in Figure 1 on Cloud-
Lab [30]. Each of the testbed nodes (Tester and SUT) is
powered by a bare metal server equipped with an Intel Xeon
E5-2630 v3 processor with 16 cores (hyper-threaded) clocked
at 2.40GHz and 128 GB of RAM. Each bare metal server
has two Intel 82599ES 10-Gigabit network interface cards to
provide back-to-back connectivity between the testbed nodes.
The tester is running TRex in the stateless mode and has the
TRex python automation libraries installed. The SUT machine
is running Linux kernel 4.18.5 vanilla. It has the 4.18.0 release
of the iproute2 [22] installed, which provides the means to
program the SRv6 behaviors. In addition, ethtool (release 4.18)
is installed to provide the means to configure the NIC hardware
capabilities such as offloading [31].

Performance evaluation of forwarding behaviors often in-
cludes performance for both single as well as well multiple
CPU cores. Here we show only the performance of SRv6
behaviors for the case of single CPU core. The single CPU
measures provide the base performance for a given behavior.
In order to force the single CPU core processing of all
received traffic we rely on the Receive-Side Scaling (RSS) and
SMP IRQ affinity features. RSS is responsible for distributing
the received packets across several hardware-based receive
queues. The number of receive queues scales with the number
of CPU threads. Each receive queue is assigned a CPU thread
to process its packets. The distribution of packets across the
receive queues is based on a hash function which assigns
packets of the same traffic flow to the same receive queue,
hence being processed by the same CPU thread. However,
we also used the SMP IRQ affinity feature to assign all the
receive queues to the same CPU core to guarantee the single
CPU processing independently from the hash function feature.
Moreover, in order to get the base performance independent
of the NIC hardware capabilities, we disabled all the NIC
hardware offloading capabilities such as large receive offload
(LRO), generic receive offload (GRO), generic segmentation
offload (GSO), and all checksum offloading features. Finally,
we disabled the hyper-threading feature of the SUT node from
the BIOS settings.

A. Performance evaluation of SRv6 behaviors

We performed three experiments as follows: i) SRV6 transit
behaviors; ii) SRv6 endpoint behaviors with no decapsulation
(no-decap); iii) SRv6 endpoint behaviors with decapsulation
(decap). The decap behaviors are required to remove the
SRv6 encapsulation from packets before forwarding them.
Conversely, the no-decap behaviors forwards SRv6 packets

IPv6 T.Insert T.Encaps T.Encaps.L2

200

400

600

800

1000

1200
PD

R
(k

pp
s)

(a) SRv6 transit behaviors.

IPv6 End End.T End.X

200

400

600

800

1000

1200

PD
R

(k
pp

s)

(b) SRv6 endpoint behaviors (no-decap).

IPv6 End.DX2 End.DT6 End.DX6

200

400

600

800

1000

1200

PD
R

(k
pp

s)

(c) SRv6 endpoint behaviors (decap)

Fig. 3: SRv6 performance in the Linux kernel.

IPv6 T.Insert T.Encaps T.Encaps.L2 End End.T End.X End.DX2 End.DT6 End.DX6
Mean 1119.25 973.437 922.625 809.031 869.875 946.937 140.406 1196 938.875 135.375
CV 0.003% 0.053% 0.015% 0.024% 0.1% 0.013% 0.838% 0.041% 0.037% 1.138%
CI95 0.002% 0.033% 0.01% 0.015% 0.063% 0.008% 0.53% 0.026% 0.023% 0.72%

TABLE I: SRv6 performance in the Linux kernel (kpps). Mean, CV and CI95

without removing the SRv6 encapsulation from packets. In the
first experiment, we use an IPv6 packet of size 64 bytes. While
in experiments 2 and 3, we use an SRv6 packet of size 64
bytes plus SRv6 encapsulation. The SRv6 encapsulation is 80
bytes representing 40 bytes of outer IPv6 header and 40 bytes
of SRH with two SIDS. The results of the experiments are
plotted in Figure 3. We compare the performance of the SRv6
behaviors with the plain IPv6 forwarding, which represents the
baseline in our experiments, to provide a characterization of
the scalability of SRv6 forwarding in the Linux kernel. We use
the PDR described in Section III-B as a metric to report our
results. The trail period in our experiments is 10 seconds. We
use the boxplot to plot our results, where each boxplot repre-
sents 10 PDR values. Table I reports respectively the average,
the Coefficient of Variation (CV) and the 95% Confidence
Interval (CI95) of each analyzed forwarding behavior.

In the first experiment we evaluated the performance of the
three different SRv6 transit behaviors: T.Insert, T.Encaps, and
T.Encaps.L2. The results are shown in Figure 3a along with the
IPv6 base line. The T.Insert shows a forwarding performance
of ≈ 973 kpps compared to ≈ 922 kpps for T.Encaps. For the
T.Encaps.L2 behavior, the SUT node is able to forward ≈ 809
kpps. The performance of T.Insert behavior is a slightly better
compared to T.Encaps since the former needs to push only
an SRH while the latter needs to push an outer IPv6 header
along with the SRH. In general, the SRv6 transit behaviors
have shown very stable performance as witnessed by the low
values for the CV.

Experiment 2 reports the performance of the no-decap SRv6
endpoint behaviors. We evaluated the performance of the
End, End.T, and End.X behaviors. The performance of these
behaviors is compared to IPv6 base line in Figure 3b. In case
of the End behavior the SUT node is able to forward ≈ 869
kpps with 20% decrease in the performance compared to plain
IPv6. The End.T performs better than the End since the the
routing table used for the lookup is defined by the control
plane, hence the kernel saves the cost of performing IP rules

lookup that are executed in case of the End behavior. The
End.T forwarding performance is ≈ 946 kpps with 13% of
performance drop compared to plain IPv6 and 7% of increase
in performance compared to the End. The End.X shows a very
poor performance of ≈ 140 kpps with around 87% drop in the
performance compared to plain IPv6. The performance is less
stable with the respect to the other behaviors. We explain the
reason for such bad performance in Section IV-B.

Finally, last experiment compares the performance of the
SRv6 decap endpoint behaviors. The results are compared to
the plain IPv6 forwarding in Figure 3c. The End.DX2 behavior
has a throughput of ≈ 1196 kpps which is 7% better than
the plain IPv6. The reason why End.DX2 is performing better
than IPv6 is that the kernel does not need to perform Layer-
3 lookup once the packet has been decapsulated. Instead,
it pushes the packet directly into the transmit queue of the
interface towards the next-hop. As for End.DT6 and End.DX6
we have a performance drop respectively of 27% and of
86%. Moreover, the latter shows more instability compared
to the other behaviors with a CV ≈ 1.14%; we shed some
lights in the following section (IV-B) for such decrease in the
performance.

B. Analysis of cross-connect behaviors

The End.X and End.DX6 behaviors exhibit poor perfor-
mances and much higher variance across the runs compared
to the other SRv6 endpoint behaviors as shown in Figure 3
and Table I. Figure 4 focuses the y-axis in the range from 100
to 200 kpps to show a zoomed view of the PDR values of
their performance. The two behaviors share the same logic,
they perform different variations of Layer 3 cross-connect to
an adjacency set by the control plane. Since the next-hop is
already known, the lookup in the routing tables has to be
bypassed. Typically, when a packet has to be forwarded, the
routing subsystem needs to find a route in the routing tables
and returns a structure rt6_info as results of the lookup.
Caches are widely used to avoid a lookup in the routing tables

and further memory allocations for each packet. However,
when the aforementioned behaviors activated caches are not
used and a structure rt6_info is allocated for each packet
to emulate the lookup process. The memory allocation has
a huge performance impact leading to a performance drop
around 90% compared to the default IPv6 forwarding.

End.X End.DX6
100

120

140

160

180

200

PD
R

(K
pp

s)

Fig. 4: Performance of cross-connect behaviors

V. CONCLUSIONS

In this paper, we have described the design and implementa-
tion of SRPerf, a performance evaluation framework for SRv6
implementations. SRPerf has been designed to be extendable:
it can support different forwarding engines including software
and hardware forwarding, but can also be extended to support
different traffic generators. We have used SRPerf to evaluate
the performance of some SRv6 behaviors in the Linux ker-
nel. Results show a reasonable performance for some SRv6
behaviors compared to the plain IPv6 forwarding. However,
some other behaviors such as End.X and End.DX6 show a
decrease of around 90% in the forwarding performance due
to some implementation issues that require memory allocation
operation for each packet.

Potential directions for future work include evaluating
the performance of the SRv6 behaviors such as End.DX4,
IPv4 variant of T.Encaps, End.AD, End.AM, End.B6 and
End.B6.Encaps. Moreover, we plan to extend SRPerf to sup-
port VPP as alternative SRv6 forwarding engine, so we can
provide a comparison between the Linux kernel and the VPP
implementations.

REFERENCES

[1] C. Filsfils et al., “Segment Routing Architecture,” Internet Requests
for Comments, RFC Editor, RFC 8402, July 2018. [Online]. Available:
https://tools.ietf.org/html/rfc8402

[2] S. Previdi et al., “Source Packet Routing in Networking (SPRING)
Problem Statement and Requirements,” Internet Requests for
Comments, RFC Editor, RFC 7855, May 2016. [Online]. Available:
https://tools.ietf.org/html/rfc7855

[3] F. Gont et al., “Recommendations on Filtering of IPv4 Packets
Containing IPv4 Options,” Internet Requests for Comments,
RFC Editor, RFC 7126, February 2014. [Online]. Available:
https://tools.ietf.org/html/rfc7126

[4] J. Abley et al., “Deprecation of Type 0 Routing Headers in IPv6,”
Internet Requests for Comments, RFC Editor, RFC 5095, December
2007. [Online]. Available: https://tools.ietf.org/html/rfc5095

[5] C. Filsfils et al., “IPv6 Segment Routing Header (SRH),” IETF, Internet-
Draft, June 2018. [Online]. Available: https://tools.ietf.org/html/draft-
ietf-6man-segment-routing-header-14

[6] C. Filsfils et al., “SRv6 Network Programming,” IETF, Internet-Draft,
July 2018. [Online]. Available: https://tools.ietf.org/html/draft-filsfils-
spring-srv6-network-programming-05

[7] “What is VPP ?” https://wiki.fd.io/view/VPP.
[8] C. Filsfils et al., “SRv6 interoperability report,” IETF, Internet-Draft,

September 2018. [Online]. Available: https://tools.ietf.org/html/draft-
filsfils-spring-srv6-interop-01

[9] F. Duchêne et al., “SRv6Pipes: enabling in-network bytestream func-
tions,” in IFIP Networking 2018, 2018.

[10] A. Abdelsalam et al., “SERA: SEgment Routing Aware Firewall for
Service Function Chaining scenarios,” in IFIP Networking 2018. IEEE,
May 2018.

[11] A. Abdelsalam et al., “Implementation of Virtual Network Function
chaining through Segment Routing in a Linux-based NFV infrastruc-
ture,” in 2017 IEEE Conference on Network Softwarization (NetSoft),
July 2017, pp. 1–5.

[12] P. Ventre et al., “SDN Architecture and Southbound APIs for IPv6
Segment Routing Enabled Wide Area Networks,” arXiv preprint
arXiv:1810.06008, 2018.

[13] D. Lebrun, “Reaping the benefits of IPv6 Segment Routing,” 2017.
[Online]. Available: https://inl.info.ucl.ac.be/system/files/phdthesis-
lebrun.pdf

[14] D. Lebrun and O. Bonaventure, “Implementing IPv6 Segment Routing in
the Linux Kernel,” in Proceedings of the Applied Networking Research
Workshop. ACM, 2017, pp. 35–41.

[15] M. Konstantynowicz et al., “Benchmarking and Analysis of
Software Data Planes,” Dec 2017. [Online]. Available: https://fd.io/wp-
content/uploads/sites/34/2018/01/performance_analysis_sw_data_planes
_dec21_2017.pdf

[16] S. Bradner and J. McQuaid, “Benchmarking Methodology for
Network Interconnect Devices,” Internet Requests for Comments,
RFC Editor, RFC 2544, March 1999. [Online]. Available:
https://tools.ietf.org/html/rfc2544

[17] S. Bradner, “Benchmarking Terminology for Network Interconnection
Devices,” Internet Requests for Comments, RFC Editor, RFC 1242,
July 1991. [Online]. Available: https://tools.ietf.org/html/rfc1242

[18] “CSIT REPORT - The Fast Data I/O Project (FD.io) Continuous
System Integration and Testing (CSIT) project report for CSIT
master system testing of VPP-18.04 release.” [Online]. Available:
https://docs.fd.io/csit/master/report/_static/archive/csit_master.pdf

[19] “TRex realistic traffic generator.” [Online]. Available: https://trex-
tgn.cisco.com/

[20] “SRPerf - Performance Evaluation Framework for Segment Routing.”
[Online]. Available: https://github.com/SRouting/SRPerf

[21] “SRv6 - Linux kernel implementation.” [Online]. Available:
https://segment-routing.org/index.php/Main/HomePage

[22] “Linux Foundation Wiki - iproute2.” [Online]. Available:
https://wiki.linuxfoundation.org/networking/iproute2

[23] “Linux netfilter hacking.” [Online]. Available:
https://www.netfilter.org/documentation/HOWTO/netfilter-hacking-
HOWTO-3.html

[24] “A thorough introduction to eBPF.” [Online]. Available:
https://lwn.net/Articles/740157/

[25] F. Clad et al., “Service Programming with Seg-
ment Routing,” IETF, Internet-Draft, July 2018. [On-
line]. Available: https://tools.ietf.org/html/draft-xuclad-spring-sr-service-
programming-00

[26] “srext - a Linux kernel module implementing SRv6 Network Program-
ming model.” [Online]. Available: https://github.com/netgroup/SRv6-
net-prog/

[27] “Trex stateless python api.” [Online]. Available: https://trex-
tgn.cisco.com/trex/doc/cp_stl_docs/index.html

[28] O. Ben-Kiki et al., “Yaml ain’t markup language,”
http://www.yaml.org/spec/1.2/spec.html, 2009.

[29] A. Hothan et al., “NFVBench Documentation - Release 1.5.1,”
June 2018. [Online]. Available: https://media.readthedocs.org/pdf/opnfv-
nfvbench/stable/opnfv-nfvbench.pdf

[30] “CloudLab home page.” [Online]. Available: https://www.cloudlab.us/
[31] “ethtool - Linux man page.” [Online]. Available:

https://linux.die.net/man/8/ethtool

