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Abstract We face the problem of designing a 5G net-

work composed of Virtual Network Function (VNF)-

based entities, called Reusable Functional Blocks (RFBs).

RFBs provides a high level of flexibility and scalabi-
lity, which are recognized as core functions for the de-

ployment of the forthcoming 5G technology. Moreover,
the RFBs can be run on different HardWare (HW)
and SoftWare (SW) execution environments located in
5G nodes, in line with the current trend of network

softwarization. After overviewing the considered RFB-

based 5G network architecture, we formulate the prob-
lem of minimizing the total costs of a 5G network com-

posed of RFBs and physical 5G nodes. Since the pre-
sented problem is NP-Hard, we derive two algorithms,
called SFDA and 5G-PCDA, to tackle it. We then con-

sider a set of scenarios located in the city of San Fran-
cisco, where the positions of the users and the set of
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candidate sites to host 5G nodes have been derived from

the WeFi app. Our results clearly show the trade-offs

that emerge between: i) the total costs incurred by the

installation of the 5G equipment, ii) the percentage of

users that are served, iii) the minimum downlink traffic

provided to the users.

Keywords 5G Networks · 5G Desgn · CAPEX

Reduction · 5G Performance Evaluation · Network
Softwarization

1 Introduction

According to the 5G Public Private Partnership (PPP),

the forthcoming 5G technology is going to be a plat-
form able to trigger new business models [1], involving
the entry into the market of verticals, such as industries,

manufacturing, and entertainment. In this scenario, the
5G network will be able to provide, among the other
features, an extremely high bandwidth to users, with
the deployment of the e-MBB (enhanced Mobile Broad-

Band) use case [1]. To achieve this goal, the network will
extensively exploit the cloud concept, coupled with the
need of slicing the physical resources into virtualized

ones.
In this scenario, the softwarization paradigm is emerg-

ing as a promising candidate to realize future networks

[2]. According to this trend, both the networking and

computing functions are virtualized, and are thus de-

coupled from the underlying HW. More in detail, 5G

will intensively exploit the deployment of virtual func-

tions to realize both the core and the mobile network
[3]. Thanks to the possibility of running virtual func-
tions on shared HW, it becomes possible to deploy a

flexible and scalable mobile network [4], able to guar-
antee extreme performance to users while reducing both
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the design and the maintenance costs. In this scenario,
the Superfluidity (SF) project, funded by the European
Commission through the Horizon 2020 Call, aims at
providing superfluidity in the Internet, by instantiating

services on-the-fly, run them at different network levels

(i.e., core, aggregation, edge) and move them transpar-
ently to different 5G nodes. The core of the project is

the definition of a cloud-based 5G converged solution,
in which softwarized Virtual Network Function (VNF)-
based components, called Reusable Functional Blocks

(RFBs), are deployed [5]. More in detail, the RFBs im-
plement all the required functionalities in the network,
ranging from low-level ones (such as the Remote Ra-
dio Head - RRH) to high level tasks, thus matching the

required level of flexibility and scalability of future 5G
networks.

In this context, several questions are arising, such

as: Is it possible to derive a model to minimize the in-
stallation costs of an RFB-based 5G architecture, while
still guaranteeing the 5G service to users? How to de-
sign a set of smart algorithms to solve the considered

problem? How to derive meaningful scenarios to test
the proposed solutions? The answer to these questions
is the goal of this paper. More in detail, our original

contributions can be summarized as follows:

– we optimally formulate the problem of minimizing

the installation costs of an RFB-based 5G network
composed of different types of RFBs. Our formula-
tion is able to produce as output the set of installed

5G nodes, the RFBs running on them, and the as-
signment of users to the RRH RFBs;

– we provide two efficient heuristics, called SuperFluid
Design Algorithm (SFDA) and 5G Performance Clus-

tered Design Algorithm (5G-PCDA), to solve the
problem. While SFDA is tailored to the reduction of
the installation costs, 5G-PCDA tends to efficiently

maximize the number of served users;
– we consider a set of scenarios based on realistic mea-

surements derived from the WeFi app [6];
– we run SFDA and 5G-PCDA on the considered sce-

narios, and we deeply analyze the trade-offs that

emerge.

To the best of our knowledge, none of the previous

works has conducted a similar analysis. The closest pa-

per to our work is [7], in which the authors have tar-

geted the efficient management of the RFBs in a 5G
network, with the goal of maximizing the traffic per
user or the number of used nodes. However, the work in

[7] is tailored to the management phase, i.e. the design
of the network is not considered at all, and in particular
the costs that are incurred by the network owner from
the installation of 5G nodes and RFBs are neglected.

Moreover, in [7] the authors do not ensure a minimum

traffic to users. Hence, a user may receive a very low

amount of downlink traffic. To overcome these issues,
in this work we explicitly tackle the design phase of
the network, in order to decide where to install the 5G
nodes and where to place the RFBs. Moreover, we im-

pose that users request a given amount of traffic, which
has to be satisfied by the 5G network. As a result, the
problem faced in this work is complementary to [7].

In particular, the elements installed during the design
phase, which are selected by this work, can be used as
input for the management one.

Actually, this work is an extended version of [8],
where we preliminary investigate the design problem in

an RFB-based 5G network. Differently from [8], in this
work we go four steps further by:

– showing that the considered problem is NP-Hard,
and therefore very challenging to be solved apart

from simple cases;
– designing the brand-new 5G-PCDA heuristic, which

is able to efficiently solve the problem even for large
instances;

– considering a new set of scenarios derived from rea-
listic measurements from the city of San Francisco;

– running both SFDA and 5G-PCDA on the new sce-

narios, and deeply analyzing the trade-offs that emerge.

Our results clearly show that the costs for design-

ing the RFB-based 5G network can be taken into ac-
count, while guaranteeing an adequate QoS perceived

by users. Even though the results presented in this pa-
per are promising, we point out that this work is a
first step towards a more comprehensive approach, in

which finer RFBs (smaller than the ones considered in
this work) are used. In addition, another interesting re-
search activity will be to take into account the users
mobility, as well as considering the uncertainty of the

users traffic. We leave the evaluation of these aspects
as future work.

The rest of the paper is organized as follows. Sec. 2
overviews the related works. The RFB-based 5G archi-
tecture is described in Sec. 3. The optimal formulation

is detailed in Sec. 4. Sec. 5 includes the description of

the SFDA and 5G-PCDA algorithms. Sec. 6 details the
scenarios and the parameter settings. The performance

of the algorithms is evaluated in Sec. 7. Finally, conclu-
sions are drawn in Sec. 8.

2 Related Work

We briefly review the literature related to this work.
More in depth, the basic concepts concerning the de-

composition of the 5G services into a set of Virtual
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Network Functions (VNFs) are discussed in [3]. In ad-
dition, in [9], the author focus on the concept of network
function decomposition in conjunction with its relation
to network slicing. Both [3] and [9] discuss the architec-

tural aspects of the decomposition but do not provide

an allocation model.

Several works have considered the problem of opti-
mal placement of VNFs. In [10] the authors consider as
VNF the Serving Gateway (SGW) and PDN Gateway

(PGW) functions of the mobile core network. The pro-
posed VNF placement model aims at minimizing the
transport network load overhead against several para-
meters such as data-plane delay, number of potential

datacenters and SDN control overhead. In [11], the con-
sidered VNFs are firewalls, load balancers, VPN nodes.
An Integer Linear Programming (ILP) model is pro-

posed for the VNF placement and chaining problem.
The set of PoPs on which it is possible to place the
VNFs is given. In order to cope with large infrastruc-

tures, a heuristic procedure is proposed for efficiently

guiding the ILP solver towards feasible, near-optimal
solutions. In [12], the authors focus on a single central-
ized data center infrastructure and consider as a cost

the utilization of the data center infrastructure. Two
heuristic strategies for initial VNF deployment are com-
pared. Finally, the authors of [13] study the influence

of NFV on CAPital EXpenditure (CAPEX) of cloud

based networks and compare it with traditional imple-
mentation without NFV in different scenarios. However,

no general optimization models are provided. In addi-
tion, none of these papers targets the radio access part
of the network, which is instead taken into account by
our work.

Focusing instead on the functionalities provided by
the network, in [14] the authors propose a cloud-based

wireless network architecture, which is composed of a
mobile cloud, a Cloud Radio Access Network (CRAN),
a mobile network and a data center. In addition, in [15]

the authors details a holistic architecture where Net-
work Function Virtualization (NFV), Software Defined
Radio (SDR) and Software Defined Networking (SDN)
are exploited for the deployment of 4G/5G networks.

Moreover, the challenges and the requirement for the
adoption of dense 5G deployments and centralized pro-
cessing are discussed in [16], highlighting the important

role of cloud technologies and flexible functionality as-
signment. Although these works are prominent, they
are mainly tailored to an architectural level, without
considering the modelling of the problem or the defini-

tion of algorithms.

Physical Antennas

DHW

CHW

RRH RFB

BBU RFB
low level functions

BBU RFB
high level functions

MEC RFBCoverage
Area

Fig. 1 Scheme of an RFB-based 5G node serving an area.

3 RFB-based 5G Architecture

We report here a brief overview of the RFB-based 5G

architecture, which is detailed in [5]. More in depth, the

main building blocks of the architecture are represented

by the Reusable Functional Blocks (RFBs), which are

SoftWare (SW) functions realizing specific tasks. The

RFBs are executed on the HardWare (HW) installed

on the 5G nodes. One of the main advantage of such
solution is the fact that the RFBs can be allocated and
deallocated on the 5G nodes, in order e.g. to satisfy the

traffic spikes from users and/or to take into account
the user mobility. In general, the RFB is a generaliza-
tion of the Virtual Network Function (VNF) entity [17],

which is able to run on different HW and SW execu-

tion environments. Eventually, the RFBs can be also
decomposed in other RFBs, thus realizing less complex
and/or recursive functions. We leave this last aspect as

future work, while here we mainly focus on the design
of a 5G architecture composed of standard RFBs.

Focusing on the tasks realized on the RFBs, we con-

sider the following ones: i) Remote Radio Head (RRH)

RFB, ii) Base Band Unit (BBU) RFB, and iii) Mo-

bile Edge Computing (MEC) RFB. More in detail, the
RRH RFB is in charge of providing the physical signal

to the users, by exploiting the Multi User Multiple In-
put Multiple Output (MU-MIMO) technology [18,19].
On the other hand, the base band signal is managed by

the BBU RFB, which acts as a middle layer between
the physical level and the upper ones. Eventually, the
computing functionalities, which, e.g., include the pro-
visioning of a High Definition (HD) video service to

users, are realized by the MEC RFB. From a logical
point of view, the RFBs are organized in chains. In this
work, we consider a logical chain in which each RRH

RFB is connected to a BBU RFB, which is in turn
linked to a MEC RFB.

The RFBs are then run on the HW provided by the

5G nodes. More in detail, each 5G node is able to host

the RRH RFB and the low level functions of the BBU
RFB on a Dedicated HardWare (DHW), while the high
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level functions of the BBU RFB and the MEC RFB are
run on the Commodity HardWare (CHW). The RRH
RFB is then connected to a set of physical antennas,
which cover an area including the users. Fig. 1 reports

a scheme of a 5G node with one RRH RFB, one BBU

RFB and one MEC RFB. In general, each 5G node
can pool also BBU RFBs and MEC RFBs from other

nodes, e.g., by adopting a Cloud Radio Access Network
(C-RAN) paradigm [20]. As a result, the RFB chain is
not constrained to be located on the same 5G node, but

it can be realized across several nodes.
Focusing on the resources consumed by the RFB on

the HW, the RRH RFB and the BBU RFB consume an
amount of bandwidth on the DHW of the node. In addi-

tion, we assume that the BBU RFB and the MEC RFB
consume CPU and RAM resources on the CHW part
of the node. The requirements in terms of consumed

resources by the RFBs are then used in this work to
properly dimension the 5G nodes.

Finally, we consider a further classification of each
RFB task, which is based on the type. More in detail,

Type 1 (T1) RFBs are used to serve large set of users.
For example, a T1-RRH RFB can act as a macro cell,
covering a vast portion of territory. On the other hand,

T2 RFBs are instead used to serve small set of users. In
this case, a T2-RRH RFB realizes a small cell. Clearly,
the different RFB types are characterized by different

requirements (in terms of bandwidth, CPU, and RAM)

on the CHW and the DHW equipment. Given this tax-
onomy, we then detail in the following section how to
minimize the total installation costs of an RFB-based

network.

4 Optimal Formulation

Let us denote with U and N the set of users and the
set of 5G nodes, respectively. We then introduce the

binary variable xun ∈ {0, 1}, which takes value 1 if user
u ∈ U is served by an RRH RFB placed at node n,
0 otherwise. Each user is served by at most one node,

which is expressed as:
∑

n∈N

xun ≤ 1 u ∈ U (1)

Moreover, we introduce one single constraint to model
that a minimum number of users has to be served:
∑

u∈U

∑

n∈N

xun ≥ ⌈δ · |U |⌉ (2)

In this constraint, δ ∈ (0, 1] represents the minimum

fraction of users that has to be covered by the 5G ser-
vice, whereas ⌈·⌉ and | · | denote the ceiling of a number

and the cardinality of a set, respectively.

In the following, we consider the installation con-

straints for the RRH RFBs. More in depth, we intro-
duce the set R of RRH RFBs types, and the binary

variable yRRH
nr , which takes value 1 if the RRH RFB of

type r ∈ R is installed at 5G node n ∈ N , 0 otherwise.

Clearly, at most one type of RRH RFB can be installed
in each node, so we have:

∑

r∈R

yRRH
nr ≤ 1 n ∈ N (3)

In addition, we impose the fact that, if the node is

serving a user, an RRH RFB has to be installed on it:

xun ≤
∑

r∈R(u)

yRRH
nr u ∈ U, n ∈ N (4)

where R(u) denotes the subset of RRH RFB types that

are compatible with a user u ∈ U .

The number of users served by each RRH RFB is

then bounded by the maximum number of users that
can be supported by the RRH RFB, which we denote

as Umax
r . We express this condition with the following

constraint:

∑

u∈U

xun ≤
∑

r∈R

Umax
r yRRH

nr n ∈ N (5)

In addition, we introduce the input parameters aRRH
r

to denote the number of available RRH RFBs of type

r ∈ R. The total number of installed RRH RFBs must
be less or equal than the available ones:

∑

n∈N

yRRH
nr ≤ aRRH

r r ∈ R (6)

We then consider the constraints relative to the BBU
RFBs and MEC RFBs placement. In particular, we in-

troduce the set B and the setM to store the BBU RFBs

types and the MEC RFBs ones, respectively. We then

denote with vBBU
n1n2b

a binary variable taking the value of
1 if a BBU of type b ∈ B placed at node n1 ∈ N serves

the RFB chain originating from the RRH RFB placed

at node n2 ∈ N , 0 otherwise. Moreover, aBBU
b is an

input parameter, which stores the number of available

BBU RFBs of type b ∈ B. The number of installed BBU
RFBs is then bounded by aBBU

b through the following

constraint:

∑

n1∈N

∑

n2∈N

vBBU
n1n2b

≤ aBBU
b b ∈ B (7)

In a similar way, we limit the maximum number of
used MEC RFBs through the following constraint:

∑

n1∈N

∑

n2∈N

vMEC
n1n2m

≤ aMEC
m m ∈ M (8)
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where vMEC
n1n2m

is a binary variable taking the value 1 if a
MEC RFBs of type m ∈ M is installed at node n1 ∈ N

to serve the RFB chain originating from the RRH RFB

placed at node n2 ∈ N , 0 otherwise, and aMEC
m is an

input parameter storing the number of available MEC

RFBs of type m ∈ M .

We then introduce the compatibility constraints be-

tween the RFBs. In particular, a BBU RFB can be

part of the chain serving the RRH RFB placed in node

n2 ∈ N only if it is compatible with that RRH RFB. We

express this condition through the following constraint:

yRRH
n2r

≤
∑

n1∈N

∑

b∈B(r)

vBBU
n1n2b

n2 ∈ N, r ∈ R (9)

where B(r) denotes the subset of BBU RFBs compati-

ble with an RRH RFB of type r ∈ R. In a similar way,

we introduce the compatibility constraint for the MEC

RFBs:

yRRH
n2r

≤
∑

n1∈N

∑

m∈M(r)

vMEC
n1n2m

n2 ∈ N, r ∈ R (10)

where M(r) is the subset of MEC RFBs that are com-

patible with an RRH RFB of type r ∈ R.

In the following, we consider the constraints govern-

ing the traffic from users. We then introduce the con-

tinuous variable tu ≥ 0 to store the amount of downlink

traffic served to user u ∈ U . In addition, we introduce
the input parameter CAPrun, which denotes the radio

link capacity when user u is served by an RRH RFB of

type r placed at node n. The amount of downlink traffic
is then limited by the maximum radio link capacity:

tu xun ≤
∑

r∈R

CAPrun yRRH
nr u ∈ U, n ∈ N (11)

The previous constraints are non-linear, since they
contain the product of variables tu and xun. Such prod-

uct can be linearized in a standard way (see e.g., [21])

by introducing one continuous variable φun = tu xun

and the four linear inequalities:

φun ≥ 0 (12a)

φun ≤ CAPmax
u xun (12b)

φun ≤ tu (12c)

φun ≥ tu − (1− xun) CAP
max
u (12d)

where we have introduced the coefficient CAPmax
u =

maxr∈R,n∈N{CAPrun}, for each u ∈ U . This substitu-
tion is correct since:

– if xun = 0, then (12a) and (12b) implies φun = 0;

additionally, (12c) becomes 0 ≤ tu and (12d) be-

comes 0 ≥ tu − CAPmax
u , which are both satisfied

recalling that 0 ≤ tu ≤ CAPmax
u for each u;

– if xun = 1, (12c) and (12d) jointly give φun = tu
and (12a) and (12b) provide the (correct) bounds
0 ≤ φun ≤ CAPmax

u .

The linear version of constraint (11) is then:

φun ≤
∑

r∈R

CAPrun yRRH
nr u ∈ U, n ∈ N (13)

Moreover, the total capacity provided to the con-
nected users has to be lower than the maximum total

capacity managed by an RRH RFB of type r, which we
denote as CAPRRH

r . We express this condition with the
following constraint:

∑

u∈U

CAPrunxun yRRH
nr ≤ CAPRRH

r n ∈ N, r ∈ R

(14)

Similarly to constraint (11), we linearize the product

xun yRRH
nr by introducing a new continuous variable

θunr = xun yRRH
nr accompanied by the four constraints:

θunr ≥ 0 (15a)

θunr ≤ xun (15b)

θunr ≤ yRRH
nr (15c)

θunr ≥ xun + yRRH
nr − 1 (15d)

The linear version of constraint (14) is then:

∑

u∈U

CAPrunθunr ≤ CAPRRH
r n ∈ N, r ∈ R (16)

We then introduce the input parameter CAPMEC
m ,

which is used to denote the maximum capacity that

can be managed by a MEC RFB of type m. The total
traffic from users connected to the RRH RFB placed at
node n1 has to be lower than the maximum capacity

managed by the MEC RFB in the chain:

∑

u∈U

∑

n1∈N

tuxun1
vMEC
n1n2m

≤ CAPMEC
m

∑

n1∈N

vMEC
n1n2m

,

(17)

n2 ∈ N,m ∈ M

Also in this case, we face a non-linear constraint con-

taining the product of (three) variables. To linearize it,
similarly to what we have done for (11), we first use
the linearization variables introduced in (13), impos-
ing φun1

= tuxun1
; then we face the resulting prod-

uct of variables φun1
vMEC
n1n2m

, which can be linearized
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by introducing a new continuous variable ϕun1n2m =
φun1

vMEC
n1n2m

and the following four constraints:

ϕun1n2m ≥ 0 (18a)

ϕun1n2m ≤ CAPmax
u vMEC

n1n2m
(18b)

ϕun1n2m ≤ φun1
(18c)

ϕun1n2m ≥ φun1
− (1− vMEC

n1n2m
) CAPmax

u (18d)

The linear version of constraint (17) is then:

∑

u∈U

∑

n1∈N

ϕun1n2m ≤ CAPMEC
m

∑

n1∈N

vMEC
n1n2m

, (19)

n2 ∈ N,m ∈ M

Moreover, as input to the problem, we introduce a
set CONFr that includes all the pairs of nodes that

conflict for an RRH RFB type r ∈ R: if a pair (n1, n2)

belongs to CONFr, then at most one RRH RFB of type

r can be installed either in n1 or in n2. Formally, this
is expressed by the constraint:

yRRH
n1r

+ yRRH
n2r

≤ 1 r ∈ R, (n1, n2) ∈ CONFr (20)

In addition, we impose the fact that the MEC RFBs
and the BBU RFBs can be installed only in nodes al-
ready storing RRH RFBs:

vMEC
n1n2m

≤ yRRH
n1r

r ∈ R,n1, n2 ∈ N,m ∈ M (21)

vBBU
n1n2b

≤ yRRH
n1r

r ∈ R,n1, n2 ∈ N, b ∈ M (22)

In the following, we impose that the traffic assigned
to users has to be higher than a minimum value, de-

noted with tMIN :

tu ≥ tMINxun u ∈ U, n ∈ N (23)

Finally, we consider the CAPEX costs. Let us de-
note with cSITE

r the cost for installing a site able to
host an RRH RFB of type r. In addition, we denote

with cCH and cDH the costs for installing the CHW
and the DHW at the node, respectively. Moreover, let

us denote with cBBU
b and cMEC

m the costs for installing
one BBU RFB of type b and one MEC RFB of type m,

respectively.

The Optimal 5G Design (OPT-5GD) is then de-

fined as:

min
∑

n∈N

∑

r∈R

(

cSITE
r + cCH + cDH

)

yRRH
rn +

+
∑

n1∈N

∑

n2∈N

(

∑

b∈B

cBBU
b vBBU

n1n2b
+

∑

m∈M

cMEC
m vMEC

n1n2m

)

(24)

Users to RRH RFBs assignment: Eq. (1), (2)
RRH RFBs installation constraints: Eq. (3), (4)

Maximum number of users per RRH RFB Eq. (5)
Maximum number of available RFBs Eq. (6), (7), (8)
RFB chain compatibility constraints Eq. (9), (10)

Maximum RRH RFB capacity Eq. (13), (16)

Maximum MEC RFB capacity Eq. (19)
RRH RFBs conflict constraint Eq. (20)
MEC/BBU RFBs placement constraints Eq. (21), (22)
Minimum Traffic Constraints Eq. (23)

Linearization Constraints
Eq. (12a− 12d), (15a− 15d), (18a− 18d)

(25)

Under variables: xun ∈ {0, 1}, tu ≥ 0, yRRH
nr ∈

{0, 1}, vBBU
n1n2b

∈ {0, 1}, vMEC
n1n2m

∈ {0, 1}, φun1
≥ 0,

θunr ≥ 0, ϕun1n2m ≥ 0.

Proposition 1 The OPT-5GD problem is NP-Hard.

Proof In order to prove the statement, we show that
a subproblem of OPT-5GD obtained by keeping only

the decision variables vMEC
n1n2m

∈ {0, 1} ∀n1, n2 ∈ N,m ∈
M and fixing all the remaining decision variables xun

∀u ∈ U,n ∈ N , yRRH
nr ∀n ∈ N,r ∈ R, vBBU

n1n2b
∀n1, n2 ∈

N,b ∈ B, tu ∀u ∈ U to a feasible combination of val-

ues x̄un, ȳ
RRH
nr , v̄BBU

n1n2b
, t̄u leads to an NP-Hard problem.

Moreover, in this subproblem we also consider the spe-
cial case where only one type of RRH, BBU and MEC

RFBs are available (i.e., |R| = |B| = |M | = 1) and we
can thus drop the indices r, b,m in all constraints and

parameters. Under this setting, it is easy to check that

the subproblem that we face thus reduces to:

min
∑

n1∈N

∑

n2∈N

cMECvMEC
n1n2

(26)

∑

n1∈N

∑

n2∈N

vMEC
n1n2

≤ aMEC (27)

ȳRRH
n2r

≤
∑

n1∈N

vMEC
n1n2

n2 ∈ N (28)

∑

u∈U

∑

n1∈N

t̄ux̄un1
vMEC
n1n2

≤ CAPMEC
∑

n1∈N

vMEC
n1n2

n2 ∈ N (29)

vMEC
n1n2

∈ {0, 1} n1, n2 ∈ N (30)

We remark that in this subproblem the variables

and constraints introduced to replace the product of de-

cision variables are not needed. This problem is actually

a generalization of the well-known multiple knapsack

problem that additionally includes multiple knapsack
constraints (29) and cardinality constraints imposing
upper (27) and lower bounds (28) on the activation



Algorithms for the Design of 5G networks with VNF-based Reusable Functional Blocks 7

Algorithm 1 Pseudocode of the SuperFluid Design
Algorithm (SFDA)

1: Input: N , U , aRRH
r , aBBU

b
, aMEC

m , CAPrun, tMIN , δ,
order type

2: Output: yRRH
nr , vBBU

n1n2b
, vMEC

n1n2b
, xun

3: tot cost best conf=Inf;
4: all conf=comp conf(N ,aRRH

r ,r = 1);
5: for curr conf in all conf do
6: tot RRH RFB=0;
7: u cand served= comp cand served u(curr conf, or-

der type, U , tMIN );
8: n sorted=sort RRH RFB(u cand served, curr conf,

r = 1);
9: curr u to serve=U ;
10: for n in n sorted do
11: u assoc=associate u(n, curr u to serve, tMIN ,

r = 1);
12: curr u to serve=remove served u(U , u assoc);
13: end for
14: n sorted=sort RRH RFB(curr u to serve, N , r = 2)
15: for n in n sorted do
16: if check tot u served(u assoc,δ)==false) then
17: if (check conf(curr conf,n, r = 2)==true)&&

(tot RRH RFB< aRRH
r=2

) then
18: tot RRH RFB=tot RRH RFB+1;
19: curr conf=add RRH RFB(curr conf, n,

r = 2);
20: u assoc=associate u(n, curr u to serve,

tMIN , r = 2);
21: curr u to serve=remove served u(U ,

u assoc);
22: end if
23: end if
24: end for
25: curr conf=add BBU MEC RFB(curr conf, u assoc,

aBBU

b
, aMEC

m , tMIN );
26: tot cost=comp tot cost(curr conf);
27: if (tot cost<tot cost best conf)&&

(check tot u served(u assoc,δ)==true) then
28: tot cost best conf=tot cost;
29: [yRRH

nr , vBBU

n1n2b
, vMEC

n1n2b
, xun]=

save conf(curr conf, u assoc, tMIN );
30: end if
31: end for

of decision variables representing putting items in the
knapsacks. Such generalization is NP-Hard (see e.g.,

[22,23]) and thus also the complete problemOPT-5GD
that we face is NP-Hard. ⊓⊔

Since the aforementioned formulation may be chal-

lenging to be solved in a realistic scenario, we propose
in the next section two efficient algorithms to solve it.

5 Description of the Algorithms

We initially describe the SuperFluid Design Algorithm

(SFDA), then we detail the 5G Performance Clustered

Design Algorithm (5G-PCDA), and finally we discuss

the computational complexity of the two heuristics.

5.1 SuperFluid Design Algorithm

We design the SFDA algorithm by adopting a divide et

impera approach, in which first the T1-RRH RFBs are
placed and then the T2-RRH RFBs are installed. Then,
once the RRH RFBs are placed, the algorithm performs
the assignment of the MEC RFBs and the BBU RFBs.

The goal of SFDA is to reduce as much as possible

the CAPEX costs, while ensuring an adequate Quality
of Service (QoS) to users. The main intuitions behind

this approach are the following ones: i) the T1-RRH

RFBs are actually acting as macro cells; their number
is lower compared to T2-RRH RFBs, which are instead

used as small cells, ii) the main goal of the T1-RRH
RFBs is to provide coverage over the territory, and to
guarantee the service to the largest number of users,
iii) T2-RRH RFBs are used to provide capacity to a

subset of users, i.e., the ones falling in their coverage

area, which is clearly lower than the coverage area of
T2-RRH RFBs, iv) once the RRH RFBs are placed,

the installation of the BBU RFBs and MEC RFBs is
performed considering the same subset of nodes hosting
the RRH RFBs.

Alg. 1 reports the pseudo-code of the proposed so-
lution. The algorithm requires as input the set of can-
didate nodes N , the set of users U , the numbers of

available RFBs aRRH
r , aBBU

b , aMEC
m (for each type),

the downlink capacity CAPrun, the threshold δ and

the traffic per user tMIN . In addition, a sorting rule,

denoted as order type in Alg. 1, is required for the or-

dering of the T1-RRH RFBs. More in detail, we con-
sider the following ordering criteria: i) descending num-

ber of users that can be served by each T1-RRH RFB,

or ii) descending number of users that can be served
by each T1-RRH RFB but cannot be served by any

T2-RRH RFBs. The rationale behind these criteria is
the following: the first one aims to cover as much users
as possible, while the second is restricted to serve users
that can not be served by any T2-RRH RFBs, due, e.g.,

to large distance and/or the presence of obstacles be-

tween the user and the cell. In other words, such users
would be not served at all by any RRH RFB, unless a

proper configuration of T1-RRH RFBs is installed. The
actual choice between the two criteria is left as input
parameter to SFDA.

Initially, the total cost for the best configuration is
initialized to a very large value (line 3). Moreover, the
algorithm computes all the possible configurations for

placing the T1-RRH RFBs over the considered scenario
(line 4). More in detail, the actual number of nodes that
can host the T1-RRH RFBs is normally pretty lim-

ited, due to multiple reasons: i) the number of available
T1-RRH RFBs is limited, ii) T1-RRH RFBs should be
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placed not so close to each other (to limit the impact
of interference), iii) users living in the scenario are not
willing that the operator installs a large number of T1-
RRH RFBs over them. Then, for each possible configu-

ration of T1-RRH RFBs (line 5) the algorithm initially

computes the users that can be served by the current
configuration in terms of installed T1-RRH RFBs (line

7). In the following, the T1-RRH RFBs are ordered (line
8), based on one of the aforementioned sorting criteria.
The current set of users to serve is then initialized to

the total number of users (line 9). Finally, for each T1-
RRH RFB, the users are associated to the current cell
(line 10), and the current set of users that need to be
served is updated (lines 11-12).

In the following step, the T2-RRH RFBs are sorted,
based on the number of users that can be served by each
of them (line 14). For each T2-RRH RFB (line 15), if

there are still users to be served (line 16), a check on
the current configuration is performed (line 17). In par-
ticular, the current T2-RRH RFB can be installed on
node n only if: i) n is not in conflict with the current

configuration (e.g., the current node n is not already in
use by a T1-RRH RFB, and/or a minimum distance be-
tween the RRH RFBs of the same type is ensured), and

ii) the number of used T2-RRH RFBs is lower than the
available one. If both conditions hold, the total num-
ber of used T2-RRH RFBs is incremented (line 18), the

current configuration is updated (line 19), and both the

users that are associated and the ones that need to be
served are updated (lines 20-21).

Once the RRH RFBs are placed, the MEC RFBs

and the BBU RFBs are installed (line 25). The rule to
install these RFBs is straightforward: the same type of
MEC RFB and BBU RFB is installed on each node

hosting a given type of RRH RFB. In other words, the

entire RFB chain for an RRH RFB is located on the
same node hosting the RRH RFB. Moreover, the total
cost of the current configuration is computed (line 26),

and the best cost, as well as the best configuration,
are eventually updated (lines 27-30). At the end of the
procedure, SFDA produces as ouput the set of installed

RFBs, as well as the assignment of each user to each
RRH RFB.

5.2 5G Performance Clustered Design

Algorithm

We then detail the 5G Performance Clustered Design

Algorithm (5G-PCDA). The goal of 5G-PCDA is to in-
crease as much as possible the number of served users,
by targeting also the reduction in the algorithm com-
plexity. Alg 2 reports the pseudo-code of 5G-PCDA.

Clearly, the same input (except from δ) and the same

Algorithm 2 Pseudocode of the 5G Performance
Clustered Design Algorithm (5G-PCDA)

1: Input: N , U , aRRH
r , aBBU

b
, aMEC

m , CAPrun, tMIN ,
order type

2: Output: yRRH
nr , vBBU

n1n2b
, vMEC

n1n2b
, xun

3: u cand served= comp cand served u(curr conf, or-
der type, U , tMIN );

4: RRH sorted=sort RRH RFB(u cand served, curr conf,
r = 1);

5: n users prec conf=0
6: users to serve=U ;
7: for i=1; i ≤ aRRH

1
; i++ do

8: if check conf(curr conf, RRH sorted[i], r =
1)==true) then

9: curr conf=install RRH(RRH sorted[i], r = 1);
10: [u assoc users to serve]=associate u(curr conf,

users to serve, tMIN , r = 1);
11: if size(u assoc) == n users prec conf then
12: curr conf=uninstall RRH(RRH sorted[i]);
13: else
14: n users prec conf=size(u assoc);
15: end if
16: end if
17: end for
18: RRH density=comp dens RRH(users to serve,

curr conf);
19: RRH sorted=sort RRH RFB(RRH density,

curr conf, r = 2);
20: for i=1; i ≤ aRRH

2
; i++ do

21: if check conf(curr conf, RRH sorted[i], r =
2)==true) then

22: curr conf=install RRH(RRH sorted[i], r = 2);
23: u assoc users to serve]=associate u(curr conf,

users to serve, tMIN , r = 2);
24: if size(u assoc) == n users prec conf then
25: curr conf=uninstall RRH(RRH sorted[i]);
26: else
27: n users prec conf=size(u assoc);
28: end if
29: end if
30: end for
31: curr conf=add BBU MEC RFB(curr conf, u assoc,

aBBU

b
, aMEC

m , tMIN );
32: [yRRH

nr , vBBU

n1n2b
, vMEC

n1n2b
, xun]= save conf(curr conf,

u assoc, tMIN );

output of SFDA are required. Initially, 5G-PCDA com-
putes the number of users that can be potentially served

by placing the T1-RRH RFB in each candidate site (line
3). The descending number of users that can be served
by each T1-RRH RFB is taken as ordering rule. Then,

the RRH RFBs which can be potentially installed are

sorted (line 4). In the following, the algorithm itera-
tively installs each T1-RRH RFBs (line 7-17). More in
detail, the current T1-RRH RFB is installed only if it is

compatible with the current configuration (lines 8-9). In
the following, the association of the users with the cur-
rent set of installed RRH RFBs is computed (line 10).

If the number of associated users of the current config-
uration is the same as the number of associated users in
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Fig. 2 San Francisco dataset: positions of the sites and the
users from the WeFi app.

the previous iteration, the algorithm greedily decides to

not install the current RRH RFB (line 11-12). Other-

wise, the current RRH RFB is kept, and the number of

users served by the current configuration is stored (line

14). In the second part of the algorithm (lines 18-30),

the T2-RRH RFBs are installed in order to serve the
remaining users. Firstly, a grid of regular square
size is applied to the territory under considera-

tion. For each cell in the grid, the cell density is

computed as the number of users falling inside

the current cell. In the following, we associate to

each candidate T2-RRH RFB the density value

of the cell that includes the position of the cur-
rent RFB. Both the two steps are performed in
the comp dens RRH function of line 18. Given the

values of RRH density, our goal is then to select
the candidate T2-RRH RFBs potentially able to
serve the highest number of users. To do that,
we sort the T2-RRH RFBs by decreasing RFB

density (line 19). The algorithm then try to it-
eratively install the T2-RRH RFBs (line 20-30).
For each candidate T2-RRH RFB, a check about

the compatibility with the current configuration is per-
formed (line 21). If the current RRH RFB is compat-
ible with the current configuration, the association of

the users to the RRH RFB is performed (line 23). If

there is not an improvement in the number of associ-
ated users, the current RRH RFB is uninstalled (lines
24-25), otherwise it is kept, and the current number of

served users is updated (line 27). Finally, in the last
steps of the algorithm, the BBU and MEC RFB are
installed (line 31), and the resulting configuration is

saved (line 32), considering the same functions used by
SFDA.
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Fig. 3 Candidate sites and user positions for the two consi-
dered scenarios.

5.3 Computational Complexity

We then evaluate the computational complexity of the
proposed algorithms. Focusing on SFDA, the computa-
tion of all the possible configurations in line 4 of Alg. 1

results in O(|N |!). Focusing then on the computation
of the number of users that can be served by each T1-

RRH RFB (line 7), its complexity is in the order of

O(|N | × |U |)). The sorting of the T1-RRH RFBs (line

8) has a complexity of O(|N |×log(|N |). The association
of the users to the installed RRH RFBs (lines 10-13) has

a complexity of O(|N | × |U |). The sorting of the T2-

RRH RFBs has a complexity of O(|N |× log(|N |). Simi-
larly to the T1-case, also the association of users to the

T2-RRH RFBs has a complexity of O(|N |×|U |). More-

over, the association of the MEC/BBU RFBs requires

O(|N | × |U |). Finally, the saving of the best configu-
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ration results in a complexity of O(|N |2 × |B|+ |N | ×
|U | + |N | × |R|). Overall, the complexity of SFDA is
in the order of O(|N |! × (|N | × log(|N |) + |N | × |U | +

|N |2 × |B|+ |N | × |R|)).

Focusing on 5G-PCDA, the computation of the num-

ber of users that can be potentially served (line 3 of
Alg. 2) and the sorting of the candidate sites (line 4)

have a complexity ofO(|N |×|U |)) andO(|N |×log(|N |),
respectively. The check of the current configuration (line
8) and the installation of the current RFB (line 9) have

a complexity of O(|N |). Then, the association of users
to the current configuration (line 10) has a complexity

of O(|N |× |U |). Clearly, the deallocation of the current
RFB has a complexity of O(|N |) (line 12). The entire

cycle over the T1-RRH RFBs (lines 7-17) has a com-

plexity of O(|N |2×|U |). In addition, the installation of
the T2-RRH RFBs (lines 18-30) requires an array of

cells to perform the grid density computation.
Let us denote with |G| the required number of

cells in the grid. Clearly, the association of each
user to a cell has a complexity of O(|U | × |G|). In

the following, the computation of the T2-RRH
RFB density is done in O(|N |×|G|). The remain-
ing steps have then the same complexity as the

T1-RRH RFB installation. Finally, the complex-
ity of the last two steps (lines 31-32) are O(|N | × |U |)

and O(|N |2 × |B|+ |N | × |U |+ |N | × |R|), respectively.

Overall, the complexity of 5G-PCDA is O(|N |2× |U |+

|N | log(|N |)+|N |2×|B|+|N |×|R|+|U |×|G|+|N |×|G|).

6 Scenarios and Parameters Settings

The data we use is based on real-world dataset coming
from the WeFi app [6], processed as described in [24].

The WeFi dataset was collected in October 2015 in a
11× 11 km2 area corresponding to the city and county
of San Francisco. The dataset is a collection of over nine

million records, each of them containing:

– day, hour (a coarse-grained timestamp);
– anonymized user identifier and GPS position;

– Mobile Network Operator (MNO), cell ID, cell tech-
nology (e.g., 3G/4G);

– Wi-Fi network (SSID) and access point (BSSID) the
user is connected to (if any);

– active app and amount of downloaded/uploaded data.

If the position of the user or the networks he/she is
connected change within a one-hour period, multiple

records are generated. Similarly, one record is genera-
ted for each app that is active during the same period.
Overall, the dataset contains information about 7,182
unique users and 78,948 cell IDs. Unlike similar datasets

that are provided by mobile operators, the WeFi one is

crowd-sourced, i.e., contributed directly by users of the

WeFi app. Its crowd-sourced nature allows it to include
information about multiple network technologies (e.g.,
cellular and Wi-Fi) as well as multiple mobile opera-

tors. Due to licensing issues, the WeFi dataset cannot

directly be employed in research. As described in [24],
it is instead leveraged to train a set of distributions
which are in turn used to obtain a new trace, distinct

from the WeFi one but exhibiting the same space- and
time-related features, e.g., data demand patterns and
infrastructure deployment. To give more insights, Fig. 2

reports the positions of the sites and the users over the

territory.

Over the whole dataset, we select two representative
scenarios, namely: i) a portion of 1000 × 1000 [m2] of

the city center and henceforth named “SAN Small”, ii)

a portion of 3600 × 3700 [m2] including the downtown

area and henceforth named “SAN Big”. In addition,
the provided positions of the candidate sites are used
for placing T1-RRH RFBs. On the other hand, we con-

sider as candidate sites to install the T2-RRH RFBs
the points at the interesections of a square grid, with a
distance of 100 [m] between any two consecutive points.

Fig. 3 reports the positions of the candidate sites and

the users over the considered scenarios.

Given the two scenarios, we set the input parame-
ters, which are summarized in Tab. 1. Unless otherwise

specified, we adopt a similar setting of input parame-
ters as in [7]. More in detail, the T1-RRH RFB is able

to serve more users compared to the T2-RRH RFB.
In addition, we consider a relatively lower number of
available T1 RFBs compared to T2 RFBs. Both num-

bers are set equal to the cardinality of the number of
candidate sites in each scenario. Focusing then on the
downlink capacity model, we adopt the same model of

Marzetta [18]. We refer the reader to [7] for a detailed

description of the parameters adopted for this model.
Moreover, the compatibility matrix of possible config-
urations CONFr is set in accordance to the following

rules: i) each pair of T1-RRH RFBs nodes has always
to guarantee a minimum distance of 400 [m] between
them, ii) the minimum distance for placing T2-RRH

RFBs is set equal to 50 [m]. In this way, we limit the

negative effect of placing two T1-RRH RFBs too close
to each other, while we allow the T2-RRH RFBs to

be installed potentially in each site. Focusing then on
the costs, we assume that the site installation costs are
higher for the nodes hosting T1-RRH RFBs compared
to the ones running T2-RRH RFBs. Focusing on the

CHW and DHW costs, we assume two distinct fixed

terms, that have to be paid if the node is installed (in-
dependently from the RFB type), plus two additional

terms that depends on the number and on the type of
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Table 1 Input Parameters

Parameter Value

|U | 431 (SAN Small) - 1960 (SAN Big)

|N | 212 (SAN Small) - 1832 (SAN Big)

UMAX
r

T1-RRH RFB: 126 T2-RRH RFB: 42

aRRH
r

T1-RRH RFB: 91 (SAN Small) - 426 (SAN
Big)

T2-RRH RFB: 121 (SAN Small) - 1406
(SAN Big)

aBBU

b

T1-RRH RFB: 91 (SAN Small) - 426 (SAN
Big)

T2-RRH RFB: 121 (SAN Small) - 1406
(SAN Big)

aMEC
m

T1-RRH RFB: 91 (SAN Small) - 426 (SAN
Big)

T2-RRH RFB: 121 (SAN Small) - 1406
(SAN Big)

CAPrun
Model from Marzetta [18] with input parameters from [7].

CAPRRH
r

T1-RRH RFB: 30 [Gbps] T2-RRH RFB: 10 [Gbps]

CAPRRH
m

30 [Gbps] (T1-MEC RFB, T2-MEC RFB)

CONFr

Compatibility matrix ensuring 400 [m] of minimum distance among T1-RRH RFBs and
50 [m] of minimum distance among T2-RRH RFBs.

tMIN 1-50 [Mbps]

cSITE
r

T1-RRH RFB: 120 [ke] T2-RRH RFB: 40 [ke]

cCH 4711 [e]

cDW 9240 [e]

cBBU

b
T1-BBU RFB: 1307 [e] T2-BBU RFB: 440 [e]

cMEC
m

T1-BBU RFB: 1307 [e] T2-BBU RFB: 440 [e]

BBU RFBs and MEC RFBs installed on the node. The

rationale behind this setting is the following one: ac-

tually, both BBU RFB and MEC RFB consume a large
amount of Random Access Memory (RAM) [25], which
has to be properly dimensioned. Note that, in [25] we

consider only two costs related to memory installation
when a T1-RFB or a T2-RFB is installed. Here, instead,
we consider a more general case, in which the costs de-

pends on the number and types of installed RFBs.

7 Performance Evaluation

We evaluate the SFDA and 5G-PCDA algorithms over

the considered scenarios. Unless otherwise speci-
fied, we assume a grid of size 800×800 [m2] for the

5G-PCDA algorithm. In addition, in order to
introduce a term of comparison, we also code a
classical first-fit algorithm [26], referred as First

Fit Design Algorithm (FFDA). The main goal
of FFDA is to greedily iterate over the set of
users and the set of candidate T1- and T2-RRH
RFBs. For each user and each candidate RRH

RFB, a check on the current RFB is performed.
In particular, if the current RFB can serve the
user and it is already installed, then the user is

associated to the current RRH RFB. Otherwise,
if the current RFB can serve the user but it is
not installed, a check on the compatibility with

the already installed RRH RFB is performed. If
it is possible to install the current RRH RFB,

then the user is associated to it. Finally, the
BBU and MEC RFBs are placed according to

the same rule of SFDA and 5G-PCDA. Clearly,
we expect that a large number of resources is
installed by FFDA, due to the fact that this so-

lution does not optimize the costs and the traffic
requests from users. Finally, all the algorithms

have been coded in Matlab, and they have been run on a

laptop equipped with 2 cores Intel Core i7 at 2.8 [GHz]
and 8 [GB] of RAM.

7.1 Results from SAN Small Scenario

We initially evaluate the impact of varying the min-
imum amount of traffic tMIN between 1 [Mbps] and

50 [Mbps]. Moreover, we set the δ threshold equal to
85% for SFDA. Fig. 4(a) reports the total costs vs. the
variation of tMIN . As expected, the costs are increas-

ing when tMIN is increased, due to the fact that more

RFBs and 5G-nodes have to be installed in order to ful-
fill the traffic requirements. However, we can see that
the costs experience an increase of less than two times

when tMIN passes from 1 [Mbps] to 50 [Mbps]. The rel-
atively small increase of the total costs compared to the
sharp increase of traffic is due to following reasons: i) an

amount of resources has to be installed in any case, in
order to provide coverage to users (i.e., independently
from their amount of requested traffic), ii) when the
resources are installed, it is possible to exploit their ca-

pacity in order to provide the requested service to users.
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Fig. 4 Performance of the SFDA, 5G-PCDA and FFDA algorithms vs. the minimum traffic per user tMIN

over the SAN Small scenario.
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In addition, we can note that 5G-PCDA requires an

higher amount of additional costs compared to SFDA.
This is an expected result, being the main goal of 5G-
PCDA the maximization of the number of served users.

Moreover, we can note that the performance of

5G-PCDA is similar to FFDA. This is also an

expected result, since, in this scenario, a large
number of resources is installed by 5G-PCDA.

In the following, we consider the impact of compu-

tation times, as reported in Fig. 4(b). Interestingly, all
the algorithms experience a relatively low computation
time, i.e., at most 2 [s]. This is due to the fact that the

scenario is relatively small, and therefore the compu-
tation of all the possible set of candidate sites to host
T1-RRH RFB done by SFDA is pretty feasible. More-

over, also the other steps of both the algorithms can be
performed in few seconds.
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Fig. 6 User to RRH RFB association performed
by 5G-PCDA in the SAN Small scenario with
tMIN=25 [Mbps].

We then consider the maximum amount of traffic

that can be served to each user. In particular, given the
output of both SFDA, 5G-PCDA and FFDA in

terms of assignment of users to the 5G nodes xun and

type of RRH RFB installed yRRH
nr , we set tu = CAPrun

for each user u, each node n and each type r hold-

ing xun = 1 and yRRH
nr = 1. In this way, we compute

the maximum amount of traffic that can be served to
the users. Fig. 4(c) reports the obtained results. Inter-



Algorithms for the Design of 5G networks with VNF-based Reusable Functional Blocks 13

Table 2 Cost Breakdown for SFDA, 5G-PCDA and FFDA vs. the minimum traffic per user tMIN over the
SAN Small scenario.

Cost Algorithm
Min. Traffic per User tMIN

1 [Mbps] 5 [Mbps] 10 [Mbps] 25 [Mbps] 50 [Mbps]

BBU
SFDA 21922 [e] 27642 [e] 27215 [e] 30722 [e] 30308 [e]

5G-PCDA 34255 [e] 42175 [e] 44375 [e] 49215 [e] 52735 [e]
FFDA 38215 [e] 42628 [e] 43508 [e] 50535 [e] 55802 [e]

MEC
SFDA 21922 [e] 27642 [e] 27215 [e] 30722 [e] 30308 [e]

5G-PCDA 34255 [e] 42175 [e] 44375 [e] 49215 [e] 52735 [e]
FFDA 38215 [e] 42628 [e] 43508 [e] 50535 [e] 55802 [e]

CHW
SFDA 179018 [e] 240261 [e] 244972 [e] 273238 [e] 287371 [e]

5G-PCDA 320348 [e] 405146 [e] 428701 [e] 480522 [e] 518210 [e]
FFDA 362747 [e] 419279 [e] 428701 [e] 494655 [e] 541765 [e]

DHW
SFDA 351123 [e] 471240 [e] 480480 [e] 535920 [e] 563640 [e]

5G-PCDA 628320 [e] 794640 [e] 840840 [e] 942480 [e] 1016400 [e]
FFDA 711480 [e] 822360 [e] 840840 [e] 970200 [e] 1062600 [e]

SITE
SFDA 2000000 [e] 2520000 [e] 2480000 [e] 2800000 [e] 2760000 [e]

5G-PCDA 3120000 [e] 3840000 [e] 4040000 [e] 4480000 [e] 4800000 [e]
FFDA 3480000 [e] 3880000 [e] 3960000 [e] 4600000 [e] 5080000 [e]

estingly, all the solutions are able to provide a large
throughput to users, i.e. more than 40 [Mbps], even

when tMIN = 1 [Mbps]. This is due to the fact that the
capacity of the installed RFBs is able to ensure large

requests of traffic from users. However, we point out

that the actual amount of traffic served to each user

(i.e., which may ba larger than tMIN ) is done during

the management phase, in order to accomplish to possi-

ble traffic variations. We leave the investigation of this

last aspect as future work. In any case, however, we can
note that the maximum amount of traffic increases with
increasing values of tMIN , due to the fact that more re-

sources, in terms of installed sites and RFBs, need to
be deployed.

Fig. 4(d) reports then the percentage of served users

for SFDA, 5G-PCDA and FFDA vs. the variation
of tMIN . As expected, both 5G-PCDA and FFDA

are always able to ensure an higher percentage of served

users compared to SFDA. For example, 5G-PCDA is

able to achieve 100% of served users for tMIN = {1, 5, 10}
[Mbps], and a percentage higher than 90% for the other

values of tMIN . However, we point out that covering an
higher percentage of users results in an increase of the
monetary costs, as shown in Fig. 4(a).

In the next part, we consider the number of in-
stalled RRH RFBs vs. the variation of tMIN , as re-
ported in Fig. 5 for all the algorithms.1 Three con-

siderations hold in this case: i) the number of T1-RRH
RFBs is pretty constant for both SFDA, 5G-PCDA

and FFDA, and ii) the number of T2-RRH RFBs
tends to increase with tMIN , iii) all the algorithms

require a similar number of installed T1-RRH RFBs,
but different number of installed T2-RRH RFBs. Fo-
cusing on i), the number of deployed T1-RRH RFBs is

constant due to the fact that these RFBs are used as
“macro cells”, in order to cover large portions of terri-

1 The same analysis was performed on the BBU and MEC
RFBs, yielding to the same conclusions (not reported here
due to lack of space).

tory. Moreover, we recall that there is also a minimum
distance of 400 [m] that needs to be ensured between

nodes hosting T1-RRH RFBs. Focusing on ii), T2-RRH
RFBs are used to provide capacity to users, i.e., mainly
acting as “small cells”. Eventually, focusing on iii) it

is clear that, since 5G-PCDA targets the maximization
of the number of served users, it requires also an higher
number of installed T2-RRH RFBs compared to SFDA.
Finally, FFDA also tends to install a large num-

ber of T2-RRH RFB, due to the fact that it is
un-aware of costs and/or traffic from users.

In the following part, we focus on the locations of
the installed sites, as well as on the association of users

to the installed RRH RFBs. To this aim, Fig. 6 re-

ports the installed sites hosting T1-RRH RFBs or T2-

RRH-RFBs, the users, and their association to the RRH
RFBs. The results from 5G-PCDA with tMIN = 25
[Mbps] are reported in the figure. Two considerations

hold in this case. First, the number of users served by
each T1-RRH RFB is relatively low. Actually, we re-
call that this type of RFB is used to deploy a “macro

cell”, whose main goal is to provide coverage of the ter-
ritory rather than providing extremely high data rates
to users. Second, most of users are instead served by
the T2-RRH RFBs, which tend to be densely deployed

over the territory.

Up to this point, a natural question is then: What

is the impact of the single cost components on the total
CAPEX? To answer this question, Tab. 2 reports the
cost breakdown for SFDA, 5G-PCDA and FFDA
vs. the variation of tMIN . We recall that the total CAPEX

is split in the following components: i) BBU RFB cost,
ii) MEC RFB cost, iii) CHW cost, iv) DHW cost, v) site
cost. Not surprisingly, the site costs heavily impact the

total CAPEX, due to the fact that installing each new
site has a large cost for the operator. In addition, the
other costs are instead clearly lower. However, all the

costs tend to increase with increasing values of tMIN ,
due to the fact that more resources need to be installed.
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Fig. 7 Performance of the 5G-PCDA and FFDA algorithms vs. the minimum traffic per user tMIN over the
SAN Big scenario.

Finally, the comparison between the the algorithms re-

veals that SFDA is always less expensive compared to
5G-PCDA and FFDA.

7.2 Results from SAN Big Scenario

In the last part of our work, we run the SFDA, 5G-
PCDA and FFDA algorithms over the SAN Big sce-
nario. Since this scenario is much more complex com-

pared to the SAN Small case, the SFDA algorithm,
which requires the computation of all the possible con-
figurations in terms of installed T1-RRH RFBs, results
to be computationally infeasible (we stopped its execu-

tion after several hours, without obtaining any feasible
solution). On the other hand, both 5G-PCDA and
FFDA are able to retrieve a solution in less than one

minute even in this case. Therefore, we run both 5G-
PCDA and FFDA by varying the minimum traf-

fic per user tMIN between 1 [Mbps] and 50 [Mbps].

Fig. 7 reports the obtained results, in terms of:

i) total costs (Fig. 7(a)), ii) computation time

(Fig. 7(b)), iii) maximum achievable traffic per

user (Fig. 7(c)), iv) percentage of served users

(Fig. 7(d)). Interestingly, 5G-PCDA is able to
notably reduce the costs compared to FFDA in
this case, with a saving in the order of several

million euros. This is due to the fact that, con-
trary to FFDA, 5G-PCDA is able to efficiently
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Fig. 8 Number of installed RRH RFBs by 5G-PCDA
and FFDA vs. the minimum traffic per user tMIN

(San Big scenario).

to limit the total amount of resources that are

installed, while ensuring high performance lev-
els. This is achieved with a slight increase in the
computation time compared to FFDA (but still
in the order of seconds), which is coupled with a

potential higher maximum traffic per user, and

a percentage of served users always comparable
to FFDA. Overall, the benefits of 5G-PCDA are

evident compared to FFDA.

To give more insights, Fig. 8 reports the vari-
ation of the number of T1- and T2-RRH RFBs

for 5G-PCDA and FFDA. Three considerations
hold in this case: i) the number of T2-RRH RFBs
is increasing with tMIN (as expected), ii) the

number of installed T1-RRH RFBs is clearly
lower compared to the T2-RRH RFBs, iii) FFDA
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Table 3 5G-PCDA results vs. the minimum traffic per user tMIN over the SAN Big scenario.

Metric
Min. Traffic per User tMIN

1 [Mbps] 5 [Mbps] 10 [Mbps] 25 [Mbps] 50 [Mbps]
BBU 190362 [e] 218082 [e] 238762 [e] 270882 [e] 324187 [e]
MEC 190362 [e] 218082 [e] 238762 [e] 270882 [e] 324187 [e]
CHW 1611162 [e] 1907955 [e] 2129372 [e] 2473275 [e] 3090416 [e]
DWH 3160080 [e] 3742200 [e] 4176480 [e] 4851000 [e] 6061440 [e]

Cost

Site 17360000 [e] 19880000 [e] 21760000 [e] 24680000 [e] 29520000 [e]

installs a consistent higher number of T2-RRH

RFBs compared to 5G-PCDA.
Finally, Tab. 3 reports the breakdown of the

costs for the 5G-PCDA algorithm. Interestingly,

we can note that the site cost dominates over

the other ones, and that the costs are increasing

with tMIN . By comparing these results against

the ones of the SAN small scenario (see Tab. 2),

we can note an almost 10-fold increase in the

different costs components. This is due to the

fact that both the dimension of the territory
and the number of users in the SAN Big sce-
nario are clearly larger compared to the SAN
Small scenario. However, we stress the fact that

5G-PCDA is able to efficiently manage both the

increased complexity in the scenario as well as
the provisioning of an adequate service level to

users.

8 Conclusions and Future Work

We have faced the problem of designing a 5G network
architecture based on RFBs, with the goal of limiting

the total costs while serving the users. We have ini-
tially formulated theOPT-5GD problem, which is able
to select which 5G nodes and which RFBs have to be
installed in the network, in order to serve the users

with the amount of required traffic. After showing that

OPT-5GD is NP-Hard, we have proposed the SFDA
and 5G-PCDA algorithms to tackle the problem. We

have then considered two realistic scenarios located in
the city of San Francisco, where the positions of the
users and the set of candidate sites to host T1-RRH

RFBs are derived from the WeFi app. Our results, show
that: i) the total costs are increasing with the minimum
amount of served traffic to users tMIN , ii) SFDA tends
to limit the total costs, while 5G-PCDA is able to ef-

ficiently compute a solution which tends to serve the
largest percentage of users, iii) the maximum achiev-
able traffic per user is already in the order of dozens of

Mbps even for tMIN = 1 [Mbps] and iv) the site costs
tend to dominate over the other ones.

As future work, we plan to introduce direct acyclic

graphs to model more complex interactions among the
RFBs, e.g., one BBU RFB serving multiple RRH RFBs.

In addition, we will consider a finer granularity of the

RFBs, which can realize simpler functions, and can
be run in light execution environments, in line with
the current trend of network softwarization. Finally, we

plan to investigate the impact of the users mobility, and
the uncertainty of user traffic.
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“Cloud technologies for flexible 5G radio access net-
works,” IEEE Communications Magazine, vol. 52, no. 5,
pp. 68–76, 2014.

17. ETSI GS NFV 002: Network Functions Virtualisation
(NFV); Architectural Framework, V 1.2. 1. ETSI, De-
cember, 2014.

18. T. L. Marzetta, “Noncooperative cellular wireless with
unlimited numbers of base station antennas,” IEEE
Transactions on Wireless Communications, vol. 9,
no. 11, pp. 3590–3600, 2010.

19. J. Hoydis, S. Ten Brink, and M. Debbah, “Massive MIMO
in the UL/DL of cellular networks: How many antennas
do we need?,” IEEE Journal on selected Areas in Com-
munications, vol. 31, no. 2, pp. 160–171, 2013.

20. J. Wu, Z. Zhang, Y. Hong, and Y. Wen, “Cloud radio
access network (c-ran): a primer,” IEEE Network, vol. 29,
no. 1, pp. 35–41, 2015.

21. F. D’Andreagiovanni and G. Caire, “An unconventional
clustering problem: user service profile optimization,” in
Information Theory (ISIT), 2016 IEEE International
Symposium on, pp. 855–859, IEEE, 2016.

22. H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack prob-
lems. Springer, 2004.

23. S. Martello and P. Toth, Knapsack problems: algorithms
and computer implementations. John Wiley & Sons Ltd.,
1990.

24. F. Malandrino, C.-F. Chiasserini, and S. Kirkpatrick,
“Cellular network traces towards 5g: Usage, analysis and
generation,” IEEE Transactions on Mobile Computing,
vol. 17, no. 3, pp. 529–542, 2018.

25. L. Chiaraviglio, N. Blefari-Melazzi, C. F. Chiasserini,
B. Iatco, F. Malandrino, and S. Salsano, “An economic
analysis of 5G Superfluid networks,” in High Perfor-
mance Switching and Routing (HPSR), 2017 IEEE 18th
International Conference on, pp. 1–7, IEEE, 2017.

26. E. G. Coffman Jr, J. Csirik, G. Galambos, S. Martello,
and D. Vigo, “Bin packing approximation algorithms:
survey and classification,” Handbook of combinatorial op-
timization, pp. 455–531, 2013.

View publication statsView publication stats


