
Performance Monitoring with H2:
Hybrid Kernel/eBPF data plane for SRv6 based Hybrid

SDN

Andrea Mayera,b, Pierpaolo Loretia,∗, Lorenzo Braccialea, Paolo Lungaronib, Stefano
Salsanoa,b, Clarence Filsfilsc

Revision R2 - October 2020 - Accepted in Elsevier Computer
Networks, Special Issue on Challenges and Solutions for hybrid SDN

Distributed under the CC-BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)

aDepartment of Electronic Engineering, University of Rome “Tor Vergata”, Rome, Italy
bCNIT, Rome, Italy

cCISCO Systems, Brussels, Belgium

Abstract

Segment Routing with IPv6 (SRv6) is a leading Hybrid SDN (HSDN) architecture,

as it fully exploits standard IP routing and forwarding both in the control plane and in

the data plane. In this paper we design and evaluate an efficient Linux software router

in an HSDN/SRv6 architecture based on a programmable data plane architecture called

HIKE, which stands for HybrId Kernel/eBPF forwarding. HIKE architecture integrates

the conventional Linux kernel packet forwarding with custom designed eBPF/XDP (ex-

tended Berkeley Packet Filter/eXtreme Data Path) bypass to speed up performance of

SRv6 software routers. Thus, in addition to the hybrid SDN based forwarding, we fos-

ter an additional hybrid approach inside a forwarding engine, taking the best from both

worlds. Therefore, considering the two different conceptual levels of hybridization, we

call our overall solution Hybrid squared or H2.

We have applied the H2 solution to Performance Monitoring (PM) in Hybrid SDNs,

and we show how our HIKE data plane architecture supports SRv6 networking and

∗Corresponding author
Email addresses: andrea.mayer@uniroma2.it (Andrea Mayer),

pierpaolo.@uniroma2.it (Pierpaolo Loreti ), lorenzo.bracciale@uniroma2.it (Lorenzo
Bracciale), paolo.lungaroni@cnit.it (Paolo Lungaroni), stefano.salsano@uniroma2.it
(Stefano Salsano), cfilsfil@cisco.com (Clarence Filsfils)

Preprint submitted to Computer Network November 24, 2020



Performance Monitoring (in particular Loss Monitoring) allowing a significant increase

in performance: implementation results show a remarkable throughput improvement of

five times with respect to a conventional Linux based solution.

Keywords: Linux Networking, eBPF, XDP, SRv6, Performance Monitoring, Loss

Monitoring

1. Introduction

Segment Routing (SR) [1, 2] is one of the prominent options for bringing Software

Defined Networking (SDN) into Service Providers’ Networks, going beyond its appli-

cation into Data Center Networks. According to a vendor’s statement, SR is the “de-

facto SDN Architecture” [3]. SR architecture has been implemented with the MPLS

data plane (SR-MPLS) [4] and with the IPv6 data plane (SRv6) [5]. In this work, we

will consider SRv6, the most recent of the two solutions. SRv6 is attracting a lot of

interest from industry and academia and there are several on-field deployments [6].

SRv6 coupled with SDN is actually a Hybrid SDN (HSDN) solution, because it

fully exploits standard IP routing and forwarding both in the control plane and in the

data plane. The key idea of Segment Routing is that a network program can be added

in the packet headers at the edge of an SR domain. In SR architecture, the network

program corresponds to an SR policy, i.e. a list of Segments represented by their iden-

tifiers (SID - Segment ID). In SRv6, the SIDs are IPv6 addresses. An SR Policy is

represented by a Segment List, which is a list of IPv6 addresses. For most of the use

cases, the SDN controller can interact only with the nodes at the network edge (Edge

Routers), by instructing them to inject the proper Segment Lists into packet headers.

This approach results in a highly scalable HSDN architecture, that will be referred to as

HSDN/SRv6: the network core is mostly operating with traditional IP routing protocols

and there is no need for the network core nodes to interact with the SDN controller to

configure single services. The amount of state information that needs to be maintained

in the core is dramatically reduced with respect to a traditional Openflow based SDN,

in which the SDN controller needs to install flows also in the core nodes.

It is worth noting that the so called SD-WAN solutions [7] share the same philoso-

2



phy as HSDN/SRv6. Also, in SD-WANs the controller interacts only with the network

edge and controls the network services from the edge. The key difference and advan-

tage of HSDN/SRv6 architecture vs. legacy SD-WANs is that using SRv6 it is also

possible to interact with core networks and influence the processing of packets in the

core network. In other words, legacy SD-WANs are pure overlay networking solutions,

while SRv6 offers the possibility to influence both overlay and underlay networking.

A typical example is using HSDN/SRv6 architecture to implement VPN services with

Service Level Agreements (SLAs) [8].

In this paper we consider a Linux software router in an HSDN/SRv6 architec-

ture exploiting the extended Berkeley Packet Filter (eBPF) [9] and eXpress Data Path

(XDP)[10]. We propose a data plane architecture called HIKE, which stands for Hy-

brId Kernel/eBPF forwarding. The HIKE architecture highlights the need for integrat-

ing the packet forwarding and processing based on a “normal” Linux kernel with the

ones based on custom designed eBPF programs. Thus, in addition to the hybrid ap-

proach between SDN based forwarding vs. legacy IP based forwarding, we envisage

an additional “hybrid” approach “inside” a forwarding engine, i.e. based on a flexible

and modular combination of the Linux kernel and a eBPF/XDP bypass. Therefore,

considering the two different conceptual levels of hybridization, we shall call our over-

all solution Hybrid squared or H2. HSDN networks are designed to reduce the amount

of state information in the network nodes and the amount of interactions between nodes

and the controller, compared to a pure SDN network; a challenge of the H2 architec-

ture is to further limit the amount of state information of a hybrid IP/SDN network and

the interactions with the SDN controller in order to improve scalability and to be able

to offer complex services such as SFC,Tunneling/VPN, Monitoring, etc. Moreover we

aim at devising an architecture that takes advantage of the efficiency of eBPF but at the

same time is modular and flexible. eBPF processing is very fast for simple operations

comprising few memory accesses, but when eBPF is used for more complex operations

and in a modular way (i.e. being able supporting multiple different services in parallel),

the solution is no longer so straightforward. As an important field of application for the

H2 solution, we focus on Performance Monitoring (PM) in Hybrid SDNs. We consider

the need to implement accurate and real-time per-flow monitoring of QoS parameters

3



(delay, jitter, loss). The implementation of accurate per-flow monitoring may severely

impact the performance of the data plane and thus call for an efficient implementation.

We show how our HIKE data plane architecture supports Performance Monitoring (in

particular Loss Monitoring) with a very limited impact on performance.

The main contributions of this work are:

• to present of our vision of SRv6 as a key component of an Hybrid solution based

on IP routing and SDN control;

• to devise an Hybrid solution based on eBPF/XDP and traditional kernel forward-

ing in the forwarding plane on a Linux router;

• to integrate the two hybrid solutions in a flexible architecture;

• to implement and evaluate the proposed solution considering the performance

monitoring scenario.

The paper is organized as follow: we first introduce the hybrid SDN model based on

the SRv6 technology (HSDN/SRv6) from an system architecture viewpoint using the

networks Performance Monitoring as a reference case. Then in section 3, we introduce

the Linux data plane for HSDN/SRv6, describing both the Kernel based forwarding

and the eBPF/XDP platform. In section 4, we present HIKE, our proposed hybrid data

plane architecture. An open source proof-of-concept of HIKE has been developed,

the upper bounds of its performance have been measured, as described in section 5.

Section 6 analyses the related work. Finally, we draw some conclusions in section 7.

2. SRv6 as HSDN Solution

In this section we are going to briefly introduced SRv6 technology detailing how it

is used in an HSDN architecture.

2.1. HSDN Network Scenario

Let us consider the reference network depicted in Figure 1. Node A and Node B

represent respectively the ingress and the egress node to an SRv6 domain. At the edge

4



Figure 1: Reference SRv6 network scenario

of the network the packets are encapsulated in SRv6 traffic streams, i.e. the ingress

node adds an outer IPv6 header to the packets that can include a Segment Routing

Header (SRH). In SRv6 terminology, an SR policy is applied to the incoming packets.

The SR policy corresponds to a SID List that is included in the new added SRH of

the outer IPv6 packet header. In this example, the first two SIDs (IPv6 addresses) in-

cluded in the list represent the two SRv6 waypoints (C and D) that the packet must pass

through the network. The packet forwarding between the waypoints is operated using

the standard IP protocol. Therefore, the intermediate nodes between two waypoints

may even be plain IPv6 routers that do not support SRv6. When the packet arrives to

the egress edge node, the inner IP packet is decapsulated, i.e. the outer IPv6 header

and SRH are removed.

2.2. SRv6 Networking programming and HSDN

An important concept of SRv6 is network programming. The SRv6 vision defines

packet processing in network nodes as the execution of a program, whose instructions

are represented by the SIDs inserted by the ingress node in the Segment List in the

SRH. Thus SIDs can be used not only as standard IP destination addresses (i.e. as

topological instructions) but also as commands to execute functions in the different

5



SRv6 nodes of the network (i.e. as service instructions, that can range from simple op-

erations on packet headers to arbitrarily complex behaviors. In [11] a set of instruction

types or behaviors are defined, for example to specify a path through the network for

each traffic flow/packet (e.g. ’End’ or ’End.X’) or to create VPNs (e.g. ’End.DX2’ or

’End.DX2V’), etc.

Network programming allows an additional level of flexibility for the HSDN net-

work. Indeed in SRv6 networks it is not necessary to control all the nodes, but often

it is enough to control the node that operates the encapsulation to activate functions

along the path of the packet. Thus if it is necessary to measure performances of a flow

or even of a single packet, the controller can interact with the ingress node inserting in

the SID list all operations to carry out in the different nodes along the network path.

Network programming technology allows for greater scalability of the HSDN by

reducing the state information stored in the network. It also allows a high degree of

granularity in the application of the functions that is difficult to achieve with standard

controllers.

2.3. SRv6 Southbound Interface

To date, no standard Southbound Interface (SBI) has been defined for SRv6 HSDN

networks. Few proposals for the SBI are available in the literature and the most com-

plete is presented in [12]. In [12], the authors discuss the actual needs of SRv6 nodes

and also compare them with SDN enabled routers that support the traditional Open-

flow interface. Focusing on Performance Monitoring, in [13] the authors present a

HSDN/SRv6 architecture in which the SDN controller is able to manage per-flow Loss

Monitoring of the SRv6 infrastructure. Our work is based on the Performance Moni-

toring architecture described in [13].

2.4. Performance Monitoring in HSDN/SRv6 networks

Performance Monitoring (PM) standardization activities for SRv6 are still ongoing,

and at the moment the solution that seems to have reached a higher degree of maturity

is one based on the TWAMP light protocol [14]. This technique can be an effective

6



solution to enable the monitoring of some performance metrics such as loss and one-

way or two-way delays following the so called fate sharing paradigm, according to

which probe and data packets share the same network “fate”. Data collection takes

place with test UDP packets transmitted on the same measured path. The test UDP

packets collect the one way or two way PM data and make them available to the node

which requested the measurement. Moreover, the TWAMP based PM supports the

Alternate-Marking Method for accurate loss monitoring that can be applied to both

IPv6 and SRv6 flows as specified in [15] and presented by [16].

3. Linux SRv6 Networking and the eBPF/XDP fast path

In this section, we first introduce the envisage application scenarios of Linux HS-

DN/SRv6 enabled routers and then we presents some details of SRv6 networking im-

plementation approaches focusing on the eXpress Data Path (XDP).

3.1. Linux HSDN/SRv6 Applications

Taking into account the reference scenario described in section 2.1, there are several

deployments in which HSDN/SRv6 enabled routers can be implemented using Linux,

especially at the network edge. The most prominent example is an SRv6 powered

Data Center infrastructure. In such infrastructure, a typical scenario is to have software

based (Linux) routers running in the servers of the data center, playing the role of SRv6

Edge Routers, while the internal nodes are hardware based switches/routers. Likewise,

with NFV (Network Function Virtualization) it is very common to have Linux based

virtual appliances. A third important use case for Linux based implementations is rep-

resented by the so called “white box” networking devices. These devices are based on

off-the-shelf computing and networking hardware, powered by an open source operat-

ing system (typically Linux based).

Let us consider the first example described above, i.e. a data center server also

playing the role of a HSDN/SRv6 Edge Router. It is feasible and efficient to imple-

ment networking operations such as encapsulation, decapsulation, and performance

measurements in such servers rather than in conventional routers. In fact, server run-

7



ning Linux can support all the traffic handling operations needed by HSDN/SRv6 net-

works, either natively at kernel level, or using additional frameworks like for example

Vector Packet Processing [17] (VPP). It is even possible to enhance the Linux based

processing by exploiting hardware accelerated networking cards, e.g. using the Data

Plane Development Kit (DPDK) libraries.

3.2. Implementation aspects of Linux SRv6 Networking

In order to support the needed HSDN/SRv6 functionality in a Linux router, it is

possible to use several different approaches. We list some of these approaches here-

after:

• SRv6 default implementation in Linux kernel networking, based on the “Lightweight

Tunnels” (LWT).

• SRv6 implementation in the Vector Packet Processing (VPP) framework that is

capable to exploit DPDK hardware acceleration.

• eBPF/XDP framework.

VPP is a kernel bypass solution which is intended to process packets in userspace.

By giving full control of the NIC to an user-space program, the kernel overhead is re-

duced and it is relevant enough when working at speeds of 10Gbps or higher. However,

userspace networking (such as VPP) comes with several disadvantages. The most sig-

nificant one (considering this work) is that the kernel-space is completely skipped. As a

consequence, all the networking functionalities provided by the kernel are skipped too.

VPP networking programs operate like sandboxes, which limit their ability to interact

and be integrated with other parts of the OS. Therefore, it is very difficult to design

real hybridization between VPP like solutions and the Linux kernel networking stack.

Thus, we focus on the first (Linux kernel) and on the third (eBPF/XDP) approaches and

we propose an hybrid approach among these two. We point out that the eBPF/XDP is

actually integrated in the Linux kernel, but for simplicity we will use “normal kernel”

to refer to the approach that does not use eBPF/XDP. eBPF/XDP is extremely good

8



for performance reasons, but we can identify some critical shortcomings in its utiliza-

tion. eBPF/XDP can be used to execute specific tasks, by having the eBPF Virtual

Machine process the packets. At the time of writing, it is rather difficult to combine

multiple operations to be executed with eBPF/XDP in a modular way. It is also difficult

to use information that it is dynamically updated by the control plane inside an eBPF

program.

Figure 2: High level overview of the data plane/control plane architecture

3.3. The extended Berkeley Packet Filter (eBPF)

Proposed in the early ‘90s, the Berkeley Packet Filter (BPF) [9] is designed as

a solution for performing packet filtering directly in the kernel. BPF comes with its

own set of RISC-based instructions used for writing packet filter applications, and it

provides a simple Virtual Machine (VM), which allows BPF filter programs to be ex-

ecuted in the data path of the networking stack. Starting from the release 3.18 of the

Linux kernel, the Extended BPF (eBPF) [18] represents an enhancement over BPF,

which adds more resources such as new registers and enhanced load/store instructions.

It improves both processing and memory models. eBPF programs can be written us-

ing assembly instructions later converted in bytecode or in restricted C, and compiled

using the LLVM Clang compiler. The bytecode can be loaded into the system through

9



the bpf() syscall that forces the program to pass a set of sanity/safety-checks in order

to verify whether the program can be harmful for the system. Only safe eBPF pro-

grams can be loaded into the system, the ones considered unsafe are rejected. To be

considered safe, a program must meet a number of constraints such as limited number

of instructions, limited use of backward jumps, limited use of the stack and etc. These

limitations [19] can impact on the ability to create powerful network programs.

eBPF programs are designed to be stateless so that every run is independent from

the others. The eBPF infrastructure provides specific data structures, called maps, that

can be accessed by the eBPF programs and by the userspace when they need to share

some information.

eBPF programs are triggered by some internal and/or external events which span

from the execution of a specific syscall up to the incoming of a network packet. There-

fore, eBPF programs are hooked to different type of events and each one comes with

a specific execution context. Depending on the context, there are programs that can

legitimately perform socket filtering operations while other can perform only traffic

classification at the TC layer and so on.

3.4. the eXpress Data Path

The eXpress Data Path (XDP) proposed in [10] is an eBPF based high performance

packet processing component merged in the Linux kernel since version 4.8. It preserves

security thanks to a limited execution environment in the form of a virtual machine

running eBPF code.

In the regular Linux kernel packet processing, the allocation of the so called socket

buffer (sk buff) that stores the packet data represents a performance hit. Therefore,

XDP introduces an early hook in the RX path of the kernel, placed in the NIC driver,

before any memory allocation takes place. This XDP operating mode is the so called

“Native XDP” and creates an eBPF based high performance data path named eXpress

Data Path (XDP). Every incoming packet is intercepted before entering the Linux net-

working stack and, importantly, before it allocates its data structures, foremost the

sk buff. This accounts for most performance benefits as widely demonstrated in

literature (e.g., [20] [21]).

10



If the NIC driver does not support the “Native XDP” mode, the XDP program is

loaded into the kernel as part of the normal network path (Generic XDP). However, the

Generic XDP mode cannot achieve the same performance of Native XDP.

4. The HIKE Data Plane : HybrId Kernel/EBPF

The goal of HIKE data plane is to combine the conventional Linux networking

kernel stack and eBPF/XDP in a flexible and modular way, taking the best from both

worlds. An eBPF program allows to process packets to a very high data rate but it

comes with some limitations that can prevent the parsing of nested packet headers, the

arbitrary processing of packet payloads, the impossibility to use locks to handle concur-

rency and to avoid races, etc. Conversely, the “normal” Linux networking kernel stack

is slower but it offers full control on the way in which packets have to be processed.

4.1. Overview

Figure 2 shows an architectural overview of the different components of the pro-

posed architecture. Each node is a Linux device where the packet processing function-

ality is logically divided between a kernel path and fast path. The fast path includes

the eBPF programs, capable of offering an efficient and high-performance packet pro-

cessing by exploiting the XDP hook. The kernel path uses conventional routing and

forwarding capabilities implemented by the Linux networking stack whose routing ta-

bles can be configured by hand or by using any routing daemon. Southbound APIs

connect a Local Manager module with the SDN controller. The Local Manager is

responsible for implementing the custom logic, configuring programs and behaviours

both in the fast path and in the kernel path. Through the controller, the network admin-

istrator can thus dynamically enforce the decision on what kind of packets are going to

be processed on a target set of nodes in the fast or kernel path. Figure 2 also highlights

the difference between the proposed solution (H2) and i) a legacy plain IP node (either

Linux based or proprietary router) which is made up only by the conventional ker-

nel routing/forwarding mechanism and the related routing daemons; and ii) an hybrid

HSDN/SRv6 solution that does not leverage on eBPF/XDP.

11



Figure 3: HIKE eBPF/XDP Architecture

4.2. Full programmable node

In the Linux networking, conventional systems such as Netfilter/Xtables/IPtables

offer a relatively high degree of modularity, allowing different filtering and processing

jobs to be easily combined on the same packet.

In general, eBPF networking does not support such flexibility out-of-the-box. In-

deed, eBPF includes several limitations imposed for performance and safety reasons:

there is a maximum length of instructions allowed in a program (4096), the set of

the kernel functions we can call inside an eBPF program (eBPF helper functions) are

severely limited, and most importantly, eBPF is a non-Turing complete language (e.g.,

it is not possible to perform unbounded loops). All these limitations make it difficult to

develop complex network functions as eBPF programs.

One way to improve the flexibility of eBPF is to develop basic functionalities and

then combine them flexibly. However, the number of functions that can be concate-

nated is limited (i.e. we can chain up to 32 programs) and in addition this solution

requires manual handling of program and high technical skills. For this reason so far

eBPF programs have been often used mainly as fast but standalone/monolithic packet

processors.

HIKE proposes a way to enhance eBPF/XDP, to support modularity and foster

12



efficient function chaining, to create processing and filtering pipelines easily at high

speed, and to dynamically append and remove processing functions to a node. The

core of such architecture is in an efficient lookup (described in detail in section 4.3)

that, starting from some features of the packet, calls a given eBPF program that in turn

may call other eBPF programs through cascading tail calls.

In the considered Performance Monitoring scenario, we used IPv6 destination ad-

dresses and networks of IPv6 packets to perform such a match. However, in general

this is applicable to an arbitrary set of matching rules and packet fields.

4.3. HIKE eBPF/XDP architecture

Figure 3 shows the eBPF/XDP architecture for HIKE. As we can see, packets enters

from the RX port and are passed to the XDP hook. Once processed, packets exit

from HIKE either through the TX port or because they are passed to the kernel

networking stack. To better highlight which components are implemented in

the kernel space and which ones are implemented in XDP, we draw a dividing line in

figure 3: the components below the line stand in the kernel NIC driver space and benefit

of the fast eBFP/XDP processing.

The packets are handled by the xdp ipv6 gen prog eBPF program 1 that per-

forms an initial lookup (i.1) in the “ingress table” and, according to some packet fea-

tures (e.g. the IPv6 destination address network in our case), gets the eBPF program

chain which is composed of all the eBPF programs that must be used for processing

the incoming packet. Each eBPF program in the chain is represented by an ID (nu-

merical identifier) and the packet is processed by the eBPF programs accordingly to

the order as they appear in the chain. For instance, a chain “2,3,4” imposes that the

eBPF program “2” is executed on a packet before the “3” and the eBPF program “3”

before the “4”. Note that the execution priority of eBPF programs in a chain is based

only on the order (from left to right) of the IDs and not on their value. If there is no

associated eBPF program chain to a specific IPv6 destination address, the framework

1in further detail, packets are firstly scanned by a dedicated eBPF program which differentiates IPv4 from

IPv6 packets, passing only the latter to the xdp ipv6 gen prog dispatcher program.

13



can provide a default eBPF program chain (if defined) or the packet is passed directly

to the “normal” Linux networking stack.

When an eBPF program has to be executed, the HIKE needs to find out its descrip-

tor. To cope with that, the framework specifies a dedicated “program table” (i.2) which

contains the binding between every program ID and the relative file descriptor (FD).

The FD is necessary for passing the control flow from the caller eBPF program to the

callee eBPF program through a tail call. Therefore, the xdp ipv6 gen prog could

be seen as a “trampoline” which parse the IPv6 packet, retrieves the eBPF program

chain and transfers the control flow to the first to eBPF program in the chain.

An HIKE eBPF program can decide, according to its own internal logic, to pass

the control to the kernel networking stack (i.3.a) or to tail call (i.3.b) the next eBPF

program specified in the chain. The HIKE provides an helper function with the purpose

of advancing the chain and executing (through a tail call) the next eBPF program.

However, this program chaining is limited by the maximum possible depth of the tail

calls allowed in eBPF, which is currently set to 32.

HIKE programs are stateless but they can store and retrieve information in ded-

icated eBPF maps (as depicted in Figure 3). They could also rely on some already

defined context variables which can be conveniently used to speed up implementation

and processing. These variables (e.g., the offset at which the IPv6 header starts) allow

clock cycles to be saved, for instance by avoiding parsing the packet twice. Passing

such context is far from trivial in the eBPF world, since every program is a function

with the same pre-defined prototype and cannot be modified. As a workaround we use

a dedicated eBPF map as a per-cpu scratch area. The map is shared by all the different

eBPF programs called in the chain.

In the HIKE framework, thanks to the use of chains we can reuse and combine

eBPF programs depending on the type of traffic that has to be processed. HIKE pro-

vides a number of prefabricated eBPF programs such as routing, SRv6 encap and mon-

itoring.

The routing in HIKE is available in 3 different flavors and each of them is a dedi-

cated eBPF/XDP program. The first routing program makes no use of the routing tables

and helper functions of the Linux kernel. The performance of this routing program is

14



remarkable because all the processing is carried out in the fast path without having to

use the traditional Linux networking stack. The second routing program is based on

a hybrid eBPF/XDP + kernel approach because it leverages the kernel routing tables

using some helper functions. The third routing program is a totally kernel based ap-

proach where the packet is delivered to the Linux kernel networking stack which takes

care of the routing and the forwarding.

Let us consider for example the ingress node of a SRv6 network (Node A in figure

1) . It receives packets that come from outside the SRv6 domain and must encapsu-

late, route and eventually monitor them. When a packet arrives, this is intercepted by

the XDP hook, in which the eBPF program xdp ipv6 gen prog is loaded. This

reads the IPv6 destination address and, accessing the ingress table, defines the se-

quence of programs to run (eBPF program chain). If, for example, the destination

address matches the fd00 :: 1/128 entry this will be handled by programs 2,3 and 4

(encap, mon, routing). The program xdp ipv6 gen prog using a HIKE helper func-

tion starts the tail calls sequence by running the ”encap” program that encapsulates the

IPv6 packet into another IPv6 packet with the Segment Routing Header (SRH). After

the encap, the program that performs the monitoring tasks is invoked (e.g. counting

and marking the packet) and finally the program that operates the routing determines

the next hop and the associated output interface.

4.4. HIKE eBPF/TC egress hook

When the HIKE fast path cannot process a packet, the entire processing is on the

behalf of the Linux networking stack. The Linux kernel can perform a plethora of dif-

ferent packet processing operations leveraging the power of Netfilter/Xtables/IPtables

or custom kernel modules and TC. Custom operation can be executed by Kernel mod-

ules that have unconditional access to most of the internals of the system. However

if there is a bug in the module, this can compromise the overall system security and

stability. Thus the Linux kernel introduces the TC egress hook where eBPF programs

can be attached. Aside with a slight performance advantage (far less than XDP), there

are other benefits from developing the processing on eBPF such as the security and

the avoidance of setting up a new dedicated kernel module. In this way it is possi-

15



Figure 4: HIKE eBPF/TC Architecture

ble to perform some additional processing on the packets that are generated locally

or forwarded to another hop. Therefore, in the HIKE architecture we introduced an-

other programmable framework for processing packets leveraging the TC egress hook

for attaching eBPF program. The HIKE TC framework reported in 4 is very similar

to the eBPF/XDP framework discussed so far. Indeed, packets coming from the TC

egress hook are processed by the tc ipv6 gen prog which retrieves (e.1) the eBPF

program chains associated with the destination address of the IPv6 packet. If there is

no eBPF chain, a default one (if present) could be used for finalizing the processing.

Otherwise, the packet is forwarded directly to the tx port (e.3.a).

Due to the way in which eBPF handles programs in the different hooks, XDP

programs used in the HIKE eBPF/XDP framework cannot be leveraged in the HIKE

eBPF/TC one and vice versa. This implies that, for instance, the Encap eBPF/XDP

program and the Encap eBPF/TC program are two distinct programs but they share

some internal libraries and helper functions made available by the HIKE framework

for avoiding code duplication as much as possible.

16



4.5. Monitoring System Implementation

To assess the performance of the HIKE architecture on a real scenario we imple-

mented the loss monitoring framework presented in [22]. These were originally based

on Linux kernel modules for carrying out all the necessary operations for parsing pack-

ets, updating flow counters and coloring.

We redesigned the programs so that they can be used stand-alone in the HIKE

framework or chained together with other eBPF programs leveraging the flexibility of

the program chains. The eBPF programs can be used for monitoring ingress and/or

egress flows in a node that matches some given SR policies, also taking into account

color marking.

All the hashtable data structures provided by the eBPF infrastructure support fixed

length keys. Thus, to maximize the lookup performance and minimize memory waste,

we created N maps/hashtables and in each map we store all the flows with the same SID

list length. The value of N can be decided at compile time, and in our implementation

the default max SID list length is equal to N = 16 SIDs. Therefore, we have come up

with a total of 16 maps/hashtables.

The HIKE implementation we used for performance evaluation is available at [23].

An implementation of the full performance monitoring demonstrator is available as

part of the ROSE ecosystem [24].

5. HIKE Performance Results

In this section we presents the performance of an HIKE implementation. The pur-

pose of the performed experiments is to assess the impact of HIKE solutions in fast-

path. In fact, the requirements of modularity and flexibility (such as the possibility to

add programs on the fly or to reconfigure programs for a stream, etc.) require addi-

tional calls to programs and memory accesses with respect to the case of a static and

optimized program. The devised test-bed aims to evaluate the impact of these opera-

tions which are built on top con conventional router operations.

17



Table 1: SUT Hardware characteristics

Type Characteristics

CPU 2x Intel E5-2630v3 (8 Core 16 Thread) at 2.40 GHz

RAM 128 GB of ECC RAM

Disks
2x 1.2 TB HDD SAS 6Gbps 10K rpm

1x 480 GB SSD SAS 6Gbps

NICs
Intel X520 10Gb SFP+ Dual Port

Intel I350 1Gb Dual Port

Figure 5: Testbed architecture

5.1. Processing load evaluation

We set up a testbed according to RFC 2544 [25], which provides the guidelines

for benchmarking networking devices. Figure 5 depicts the used testbed architecture

that comprises two nodes denoted as Traffic Generator and Receiver (TGR) and System

Under Test (SUT) respectively. In our experiments, the packets are generated by the

TGR on the Sender port, enter the SUT from the IN port, exit the SUT from the OUT

port and then they are received back by the TGR on the Receiver port. Thus, the TGR

can evaluate all different kinds of statistics on the transmitted traffic including packet

loss, delay, etc. The testbed is deployed on the CloudLab facilities [26], a flexible

infrastructure dedicated to scientific research on the future of Cloud Computing. Both

the TGR and the SUT are bare metal servers whose hardware characteristics are shown

in the table 1.

The SUT node runs a vanilla version of Linux kernel 5.6 and is configured as a

18



specific node on this the SRv6 network. In the TGR node we exploit TRex [27] that

is an open source traffic generator powered by DPDK [28]. We used SRPerf [29], a

performance evaluation framework for software implementations, which automatically

controls the TRex generator in order to evaluate the maximum throughput that can be

processed by the SUT. The maximum throughput is defined as the maximum packet

rate measured in Packet Per Seconds (PPS) for which the packet drop ratio is smaller

then or equal to 0.5%. This is also referred to as Partial Drop Rate (PDR) at a 0.5%

drop ratio (in short PDR@0.5%). Further details on PDR and insights about nodes

configurations for the correct execution of the experiments can be found in [29].

5.2. HIKE tail call performance

We first configured the SUT with HIKE architecture analysing the performance

and varying the number of the programs called with the tail calls. We loaded a static

program chain: each program reads from the table the next program to call, and then

executes it. The last program in the chain executes the packet forwarding by executing

a redirect operation (i.e. without really executing the routing operation). In this way

it is possible to evaluate the maximum throughput that the machine can support, at the

net of the other operations that need be added to manage packets which necessarily

imply a decrease in the maximum sustainable throughput by the node. In figure 6

we report the average maximum throughput vs the number of functions in the HIKE

eBPF program chain. We executed 32 runs for each configuration, and we reported the

standard deviation in the figure. The maximum throughput that the SUT can handle

when a simple redirect is executed attains about 10.6 MPPS. When we add a tail of 8

programs to handle the packet, the maximum average throughput drops to 9.7 MPPS.

5.3. SRv6 Performance Monitoring

We then assess the HIKE performance in terms of throughput of some SRv6 Per-

formance Monitoring configurations. To this aim, we implemented optimized eBPF

programs to execute i) the encapsulation operation (ENC); ii) the packet counting and

marking operations (MON); and iii) the routing/forwarding task (FW). We configured

the SUT node to perform a combination of such functionality, and specifically: i) only

19



Figure 6: eBPF chain performance

the forwarding/routing task (1 tail call); ii) the monitoring and forwarding/routing tasks

(2 tail calls); iii) the encapsulation and forwarding/routing tasks (2 tail call); iv) the en-

capsulation, monitoring and forwarding/routing tasks (3 tail call). In figure 7 we report

the average SUT throughput for the four combinations of tail calls, varying the number

of monitored flows. The figure also shows the throughput of the “Kernel Path” solution

that executes the encapsulation and routing in the kernel stack. Moreover, we provided

an upper bound implementing a pass through program, i.e. a program that forwards the

packet to the output interface without modifying it.

As can be noted the measured throughput is independent from the number of mon-

itored flows in all cases since all the solutions implement the hash-based matching

described in [22]. The “Kernel Path” reaches a throughput of about 1 MPPS, and the

“Upper bound” reaches about 5.1 MPPS. The configuration with only the forward-

ing/routing achieves the highest throughput which is around 5.0 MPPS, the configu-

ration with monitoring and forwarding/routing 3.5 MPPS, the configuration with en-

capsulation and forwarding/routing 3.1 MPPS and the configuration with all the three

20



Figure 7: HIKE fast path vs kernel forwarding performance

operations combined 2.5 MPPS. The difference between the different solutions lies in

the number of accesses to the eBPF maps (tables) they perform.

By comparing the maximum throughput achieved with the forwarding/routing pro-

grams, we notice a degradation from a baseline of ∼ 10 MPPS attained by the basic

HIKE architecture reported in Figure 6, to ∼ 5 MPPS. This is accountable to the exe-

cution of the networking operations on the packets. However, as expected, the perfor-

mance, compared to networking operated in the kernel, is about 5 times higher.

In our implementation there is a fixed cost of processing the packet plus a variable

cost that depends on the packet length and on the length of the SID list. To assess

the impact of this variable part, we measured the maximum throughput varying the

number of SID in the list and considering two configurations: the ingress node that

executes the encapsulation, monitoring and forwarding/routing tasks and the waypoint

node that executes the monitoring and forwarding/routing tasks. We report the results

in figure 8. As we can see, both node configurations experience a slight degradation.

The ingress node achieves about 2.4 MPPS with one SID and about 2.1 with 4 SIDs.

21



Figure 8: HIKE fast path performance with respect to the number of SID in the List

The waypoint node can handle about 3.5 MPPS with one SID and about 2.9 with 4

SIDs. As we can see by such analysis, we experiment i) a similar amount of degradation

in the ingress and the waypoint configurations; and ii) a level of degradation that scales

proportionally with the number of the SIDs, as a result of the (linearly increasing)

amount of instructions needed to copy each SID in the packet.

6. Related Work

In this section we first review performance monitoring solutions proposed for HSDN

networks. Then we present the related works on systems that uses eBPF for HSDN net-

works.

6.1. Performance Monitoring in HSDN networks

Performance monitoring of traffic flows in HSDN networks using traditional tech-

niques poses several problems as highlighted in [30], because it is complicated to in-

tegrate information from traditional nodes with the information collected in the soft-

22



warized network. For example, in [31] the authors show how the delay in the acqui-

sition of information from the traditional network causes a problem of convergence of

the overall information seen by the controller, which can have a severe impact on traffic

engendering decisions. In order to reduce this problem, techniques such as compres-

sive sensing can allow the identification the main links of the network and can focus

their monitoring on them, thus reducing estimation problems.

Solutions that are coming to prominence foresee the direct inclusion of monitor-

ing and reporting functionality in the data plane. Some special packages are then used

to manage and collect the measured data. These include techniques such as Inband

Network Telemetry (INT) [32] and In situ OAM (IOAM) [33], but also more com-

plex solutions such as Alternate Marking [16], which consists of coloring (marking)

the packets of a flow with at least two different colors that alternate over time. This

technique allows in-flight packets to be handles, thus rendering it difficult to obtain an

accurate evaluation of the number of lost packets, as discussed in RFC 8321 [34]. To

support the interoperability of different PM solutions, IETF has standardized some pro-

tocols for the packet loss and delay measurements and for collecting the measured data.

Among them, RFC 4656 “The One-Way Active Measurement Protocol (OWAMP)”

[35] provides capabilities for the measurement of one-way performance metrics in IP

networks such as one-way packet delay, one-way packet loss and RFC 5357 “Two-

Way Active Measurement Protocol (TWAMP)” [36] introduces the capabilities for the

measurements of two-way (i.e. round-trip) metrics.

6.2. eBPF based solutions

In [20] authors propose eVNF, an hybrid virtual network functions with Linux ex-

press data path. In their architecture they use XDP for simple but critical tasks coarse

packet filtering, leaving to the “slow path” (e.g., in user-space) the space for complex

operations. They also tested their system building a firewall, a deep packet inspection

module and a load balance. They did not consider the application of their system to

performance monitoring. In [37], authors use the proposed node architecture to imple-

ment a firewall, a deep packet inspector and a load balancer, proving the flexibility of

hybrid eBPF/kernel networking.

23



Also Abdelsalam et al. [38] deal with Linux firewall but using SRv6 and propose

a SEgment Routing Aware (SERA) firewall which extends the iptables, allowing op-

erations also on SR encapsulated packets. Differently from this approach they do not

leverage on the XDP for performance improvement.

In [39] an interesting implementation is presented that uses eBPF to operate the

PM in the Linux system. The authors show how the tables shared between eBPF and

the kernel can be used to store information that is then read outside of eBPF. In our

implementation we use a similar technique to control eBPF programs. However, the

collection of measured data, in our case, is done using the TWAMP protocol.

In [40] it is shown how eBPF can be used to implement SRv6 instructions that

are activated through lightweight tunnels in the “normal” Linux Kernel. eBPF in that

case only provides the flexibility to insert the code directly into the kernel space, but

the approach misses the node management architecture and the pure fast path eBPF.

In [41] the same authors show how eBPF and SRv6 can be used to implement specific

SDN features such as failure detection and fast reroute. This is a further demonstra-

tion of how network programming SRv6 can be successfully used to improve network

flexibility.

7. Conclusions

In this work we considered a Linux software router in an Hybrid SDN/SRv6 ar-

chitecture exploiting the eBPF (extended Berkeley Packet Filter). We propose a data

plane architecture called HIKE (HybrId Kernel/EBPF forwarding) which integrates the

packet forwarding and processing based on “normal ” Linux kernel with the ones based

on the eBPF platform, taking the best of both worlds.

The architecture provides an organisation of eBPF programs in the SDN context,

overcoming the many technical limitations given by using the XDP fast path. We im-

plemented the architecture in a proof-of-concept, and use SRv6 traffic monitoring as a

test case. Numerical results show the performance improvement in terms of through-

put with respect to using the Linux kernel networking stack. On commodity hardware

we obtained 5.1 MPPS, which is around 5 times faster than the conventional solution.

24



The proposed architecture fosters a modular approach for combining different eBPF

programs in to perform complex and customizable SDN packet processing.

Acknowledgments

This work has received funding from the Cisco University Research Program and

from the EU H2020 5G-EVE project.

References

[1] C. Filsfils, et al., The Segment Routing Architecture, Global Communications

Conference (GLOBECOM), 2015 IEEE (2015) 1–6.

[2] S. Previdi et al., Segment Routing Architecture, IETF RFC 8402 (Jul. 2018).

URL https://tools.ietf.org/html/rfc8402/

[3] SR is the de-facto SDN Network Architecture.

URL https://www.segment-routing.net/conferences/

2016-sr-defacto-sdn-network-architecture/

[4] A. Bashandy et al., Segment Routing with the MPLS data plane, RFC 8660 (Dec.

2019). doi:10.17487/RFC8660.

URL https://tools.ietf.org/html/rfc8660

[5] C. Filsfils, D. Dukes (eds.) et al., IPv6 Segment Routing Header (SRH), RFC

8754 (Mar. 2020). doi:10.17487/RFC8754.

URL https://tools.ietf.org/html/rfc8754

[6] S. Matsushima et al., SRv6 Implementation and Deployment Status, Internet-

Draft draft-matsushima-spring-srv6-deployment-status, Internet Engineering

Task Force, work in Progress (Apr. 2020).

URL https://tools.ietf.org/html/

draft-matsushima-spring-srv6-deployment-status

[7] SD-WAN.

URL https://en.wikipedia.org/wiki/SD-WAN

25

https://tools.ietf.org/html/rfc8402/
https://tools.ietf.org/html/rfc8402/
https://www.segment-routing.net/conferences/2016-sr-defacto-sdn-network-architecture/
https://www.segment-routing.net/conferences/2016-sr-defacto-sdn-network-architecture/
https://www.segment-routing.net/conferences/2016-sr-defacto-sdn-network-architecture/
https://tools.ietf.org/html/rfc8660
http://dx.doi.org/10.17487/RFC8660
https://tools.ietf.org/html/rfc8660
https://tools.ietf.org/html/rfc8754
http://dx.doi.org/10.17487/RFC8754
https://tools.ietf.org/html/rfc8754
https://tools.ietf.org/html/draft-matsushima-spring-srv6-deployment-status
https://tools.ietf.org/html/draft-matsushima-spring-srv6-deployment-status
https://tools.ietf.org/html/draft-matsushima-spring-srv6-deployment-status
https://en.wikipedia.org/wiki/SD-WAN
https://en.wikipedia.org/wiki/SD-WAN


[8] D. Dukes et al., SR for SDWAN - VPN with Underlay SLA, Internet-Draft

draft-dukes-spring-sr-for-sdwan, Internet Engineering Task Force, work in

Progress (Jun. 2019).

URL https://tools.ietf.org/html/

draft-dukes-spring-sr-for-sdwan

[9] S. McCanne, V. Jacobson, The BSD Packet Filter: A New Architecture for User-

level Packet Capture, in: USENIX winter, Vol. 46, 1993, pp. 259–270.

[10] T. Høiland-Jørgensen, J. D. Brouer, D. Borkmann, J. Fastabend, T. Herbert,

D. Ahern, D. Miller, The express data path: Fast programmable packet processing

in the operating system kernel, in: Proceedings of the 14th International Confer-

ence on Emerging Networking EXperiments and Technologies, 2018, pp. 54–66.

[11] C. Filsfils, P. Camarillo, J. Leddy, D. Voyer, S. Matsushima, Z. Li, SRv6 Network

Programming, Internet-Draft draft-ietf-spring-srv6-network-programming-16,

Internet Engineering Task Force, work in Progress (Jun. 2020).

URL https://datatracker.ietf.org/doc/html/

draft-ietf-spring-srv6-network-programming

[12] P. L. Ventre, M. M. Tajiki, S. Salsano, C. Filsfils, SDN Architecture and South-

bound APIs for IPv6 Segment Routing Enabled Wide Area Networks, IEEE

Transactions on Network and Service Management 15 (4) (2018) 1378–1392.

[13] P. Loreti et al., SRv6-PM: Performance Monitoring of SRv6 Networks with a

Cloud-Native Architecture, Submitted paper available on Arxiv (2020).

URL https://arxiv.org/pdf/2007.08633

[14] R. Gandhi, C. Filsfils, D. Voyer, M. Chen, B. Janssens, Performance Mea-

surement Using TWAMP Light for Segment Routing Networks, Internet-Draft

draft-gandhi-spring-twamp-srpm-08, Internet Engineering Task Force, work in

Progress (Mar. 2020).

URL https://datatracker.ietf.org/doc/html/

draft-gandhi-spring-twamp-srpm-08

26

https://tools.ietf.org/html/draft-dukes-spring-sr-for-sdwan
https://tools.ietf.org/html/draft-dukes-spring-sr-for-sdwan
https://tools.ietf.org/html/draft-dukes-spring-sr-for-sdwan
https://datatracker.ietf.org/doc/html/draft-ietf-spring-srv6-network-programming
https://datatracker.ietf.org/doc/html/draft-ietf-spring-srv6-network-programming
https://datatracker.ietf.org/doc/html/draft-ietf-spring-srv6-network-programming
https://datatracker.ietf.org/doc/html/draft-ietf-spring-srv6-network-programming
https://arxiv.org/pdf/2007.08633
https://arxiv.org/pdf/2007.08633
https://arxiv.org/pdf/2007.08633
https://datatracker.ietf.org/doc/html/draft-gandhi-spring-twamp-srpm-08
https://datatracker.ietf.org/doc/html/draft-gandhi-spring-twamp-srpm-08
https://datatracker.ietf.org/doc/html/draft-gandhi-spring-twamp-srpm-08
https://datatracker.ietf.org/doc/html/draft-gandhi-spring-twamp-srpm-08


[15] G. Fioccola, T. Zhou, M. Cociglio, F. Qin, IPv6 Application of the Alternate

Marking Method, Internet-Draft draft-fz-6man-ipv6-alt-mark-09, Internet Engi-

neering Task Force, work in Progress (May 2020).

URL https://datatracker.ietf.org/doc/html/

draft-fz-6man-ipv6-alt-mark-09

[16] T. Mizrahi, G. Navon, G. Fioccola, M. Cociglio, M. Chen, G. Mirsky, Am-pm:

Efficient network telemetry using alternate marking, IEEE Network 33 (4) (2019)

155–161.

[17] What is VPP ?, https://wiki.fd.io/view/VPP.

[18] Linux Socket Filtering aka Berkeley Packet Filter (BPF).

URL https://www.kernel.org/doc/Documentation/

networking/filter.txt

[19] S. M. et al., Creating Complex Network Services with eBPF:Experience and

Lessons Learned, in: IEEE International Conference on High Performance

Switching and Routing (HPSR2018), IEEE, 2018, pp. 1–8.

[20] N. Van Tu, J. Yoo, J. W. Hong, evnf - hybrid virtual network functions with linux

express data path, in: 2019 20th Asia-Pacific Network Operations and Manage-

ment Symposium (APNOMS), 2019, pp. 1–6.

[21] D. Scholz, D. Raumer, P. Emmerich, A. Kurtz, K. Lesiak, G. Carle, Performance

implications of packet filtering with linux ebpf, in: 2018 30th International Tele-

traffic Congress (ITC 30), Vol. 01, 2018, pp. 209–217.

[22] P. Loreti, A. Mayer, P. Lungaroni, S. Salsano, R. Gandhi, C. Filsfils, Implemen-

tation of accurate per-flow packet loss monitoring in segment routing over ipv6

networks, in: 2020 IEEE 21st International Conference on High Performance

Switching and Routing (HPSR), IEEE, 2020, pp. 1–8.

[23] Hybrid Kernel/eBPF data plane for SRv6 based Hybrid SDN, available online at

https://github.com/netgroup/hike.

27

https://datatracker.ietf.org/doc/html/draft-fz-6man-ipv6-alt-mark-09
https://datatracker.ietf.org/doc/html/draft-fz-6man-ipv6-alt-mark-09
https://datatracker.ietf.org/doc/html/draft-fz-6man-ipv6-alt-mark-09
https://datatracker.ietf.org/doc/html/draft-fz-6man-ipv6-alt-mark-09
https://wiki.fd.io/view/VPP
https://www.kernel.org/doc/Documentation/networking/filter.txt
https://www.kernel.org/doc/Documentation/networking/filter.txt
https://www.kernel.org/doc/Documentation/networking/filter.txt
https://github.com/netgroup/hike


[24] The ROSE ecosystem.

URL https://netgroup.github.io/rose/

[25] S. Bradner and J. McQuaid, Benchmarking Methodology for Network Intercon-

nect Devices, RFC 2544, RFC Editor (March 1999).

URL https://tools.ietf.org/html/rfc2544

[26] Robert Ricci, Eric Eide, and the CloudLab Team, Introducing CloudLab: Sci-

entific infrastructure for advancing cloud architectures and applications, ; login::

the magazine of USENIX & SAGE 39 (6) (2014) 36–38.

[27] TRex realistic traffic generator.

URL https://trex-tgn.cisco.com/

[28] Data Plane Development Kit (DPDK).

URL https://www.dpdk.org/

[29] A. Abdelsalam, et al., Performance of IPv6 Segment Routing in Linux Kernel,

in: 1st Workshop on Segment Routing and Service Function Chaining (SR+SFC

2018) at CNSM 2018, Rome, Italy, 2018, pp. 414–419.

[30] A. A. Abushagur, T. S. Chin, R. Kaspin, N. Omar, A. T. Samsudin, Hybrid

software-defined network monitoring, in: International Conference on Internet

and Distributed Computing Systems, Springer, 2019, pp. 234–247.

[31] T. Y. Cheng, X. Jia, Compressive traffic monitoring in hybrid sdn, IEEE Journal

on Selected Areas in Communications 36 (12) (2018) 2731–2743.

[32] J. Hyun, N. Van Tu, J. W.-K. Hong, Towards knowledge-defined networking using

in-band network telemetry, in: NOMS 2018-2018 IEEE/IFIP Network Operations

and Management Symposium, IEEE, 2018, pp. 1–7.

[33] F. Brockners, S. Bhandari, T. Mizrahi, Data Fields for In-situ OAM, Internet-

Draft draft-ietf-ippm-ioam-data-10, Internet Engineering Task Force, work in

Progress (Jul. 2020).

28

https://netgroup.github.io/rose/
https://netgroup.github.io/rose/
https://tools.ietf.org/html/rfc2544
https://tools.ietf.org/html/rfc2544
https://tools.ietf.org/html/rfc2544
https://trex-tgn.cisco.com/
https://trex-tgn.cisco.com/
https://www.dpdk.org/
https://www.dpdk.org/
https://datatracker.ietf.org/doc/html/draft-ietf-ippm-ioam-data-10


URL https://datatracker.ietf.org/doc/html/

draft-ietf-ippm-ioam-data-10

[34] G. Fioccola, Ed., Alternate-Marking Method for Passive and Hybrid Performance

Monitoring , IETF RFC 8321 (Jan. 2018).

URL https://tools.ietf.org/html/rfc8321

[35] S. Shalunov, B. Teitelbaum, et. al, A One-way Active Measurement Protocol

(OWAMP), IETF RFC 4656 (Sep. 2006).

URL https://tools.ietf.org/html/rfc4656

[36] K. Hedayat, R. Krzanowski, et al., A Two-Way Active Measurement Protocol

(TWAMP), IETF RFC 5357 (Sep. 2006).

URL https://tools.ietf.org/html/rfc5357

[37] N. Van Tu, J.-H. Yoo, J. W.-K. Hong, Building hybrid virtual network functions

with express data path, in: 2019 15th International Conference on Network and

Service Management (CNSM), IEEE, 2019, pp. 1–9.

[38] A. Abdelsalam, et al., SERA: SEgment Routing Aware Firewall for Service Func-

tion Chaining scenarios, in: IFIP Networking 2018, IEEE, 2018, pp. 46–54.

[39] C. Cassagnes, L. Trestioreanu, C. Joly, R. State, The rise of ebpf for non-intrusive

performance monitoring, in: NOMS 2020-2020 IEEE/IFIP Network Operations

and Management Symposium, IEEE, 2020, pp. 1–7.

[40] M.Xhonneux, F.Duchene and O. Bonaventure , Leveraging ebpf for pro-

grammable network functions with ipv6 segment routing, in: Proceedings of the

14th International Conference on emerging Networking EXperiments and Tech-

nologies, ACM, 2018, pp. 67–72.

[41] M. Xhonneux and O. Bonaventure , Flexible failure detection and fast reroute

using ebpf and srv6, in: 2018 14th International Conference on Network and

Service Management (CNSM), IEEE, 2018, pp. 408–413.

29

https://datatracker.ietf.org/doc/html/draft-ietf-ippm-ioam-data-10
https://datatracker.ietf.org/doc/html/draft-ietf-ippm-ioam-data-10
https://tools.ietf.org/html/rfc8321
https://tools.ietf.org/html/rfc8321
https://tools.ietf.org/html/rfc8321
https://tools.ietf.org/html/rfc4656
https://tools.ietf.org/html/rfc4656
https://tools.ietf.org/html/rfc4656
https://tools.ietf.org/html/rfc5357
https://tools.ietf.org/html/rfc5357
https://tools.ietf.org/html/rfc5357

	Introduction
	SRv6 as HSDN Solution
	HSDN Network Scenario
	SRv6 Networking programming and HSDN
	SRv6 Southbound Interface
	Performance Monitoring in HSDN/SRv6 networks

	Linux SRv6 Networking and the eBPF/XDP fast path
	Linux HSDN/SRv6 Applications
	Implementation aspects of Linux SRv6 Networking
	The extended Berkeley Packet Filter (eBPF)
	 the eXpress Data Path

	The HIKE Data Plane : HybrId Kernel/EBPF
	Overview
	Full programmable node
	HIKE eBPF/XDP architecture
	HIKE eBPF/TC egress hook
	Monitoring System Implementation

	HIKE Performance Results
	Processing load evaluation
	HIKE tail call performance
	SRv6 Performance Monitoring

	Related Work
	Performance Monitoring in HSDN networks
	eBPF based solutions

	Conclusions

