
A. Abdelsalam et al.

Pushing Network Programmability to the limits with SRv6
uSIDs and P4

Ahmed Abdelsalam1, Angelo Tulumello2, Marco Bonola3,4, Stefano Salsano2, Clarence Filsfils1
1Cisco Systems, 2University of Rome Tor Vergata, Italy, 3CNIT, Italy, 4Axbryd S.r.l., Italy.

Author’s peer reviewed version of https://doi.org/10.1145/3426744.3431331
ABSTRACT
P4 is a domain-specific programming language for expressing how
packets are processed by network devices. P4 is used to program
P4-enabled devices with a custom forwarding pipeline. SRv6 is
a network architecture that encodes a list of instructions in the
IPv6 packet header to define a network-wide packet processing
program. Each instruction defines a node to process the packet and
the behavior to be applied to that packet by that node. Recently,
the SRv6 architecture has been extended to support a set of new
instructions, known as uSID instructions, that provide a better
scalability and MTU efficiency. In this demo paper, we provide a
P4 forwarding pipeline that supports the SRv6 uSID instructions.
Our implementation leverages the P4 BMV2 behavioral model and
extends the ONOS controller to support the new SRv6 behaviors.
Finally, we show two scenarios where we use our implementation
to provide a fully programmable network fabric.

CCS CONCEPTS
• Networks→ Routing protocols; Programmable networks.

KEYWORDS
Software Defined Networking, Segment Routing, Programmable
Networks, Routing Protocols

1 INTRODUCTION
The Segment Routing (SR) architecture is based on presence of a list
of instructions, known as segments, in the packet headers. These
instructions influence the forwarding and processing of packets
along their path. In SRv6 (Segment Routing over IPv6 data plane)
the Segment IDs (SIDs) are represented with IPv6 addresses, which
are 16 bytes long. When an SRv6 service requires a long list of
instructions/SIDs, the overhead introduced by the long headers
could be significant.

The Micro SID (uSID in short) solution is meant to drastically
reduce the length of the SID list in SRv6. In particular, in this
solution a network program can be represented with a set of micro
instructions encoded in the 16 bytes of a plain SRv6 SID. Such
micro instructions are called Micro SIDs (or uSIDs). In the most
typical configuration, uSIDs are represented with 2 bytes, while the
SRv6 SID in which they are carried belongs to a /32 address space,
named Locator Block. A segment list composed of 6 instructions
can be inserted in just one 16 bytes SRv6 SID, resulting in large
saving of packet overhead. The basic idea behind Micro SID is
that when a uSID enabled node receives a packet with its uSID
ID immediately after the Locator Block in the IPv6 Destination
Address, it consumes it: it pops its uSID from the segment and shifts
left by 16 bits the remaining part of the list. More details on the SRv6

network programming model and the uSID solution are described
in [1][2][3].

In the following, we show the implementation of uSID in P4
and present our demo with two use cases involving P4 software
switches (BMV2) and the ONOS controller.

2 P4 IMPLEMENTATION
We implemented the uSID solution in P4 starting from an exist-
ing SRv6 implementation [4] and enhanced its functionalities by
implementing the following four behaviors:

• uN is responsible for shifting by 16 bits the uSID list to
extract the next end router uSID

• uA, similar to uN, shifts by 32 bits the uSID list and cross
connects the packet to a neighbor router, skipping the normal
IPv6 routing

• End is the legacy SRv6 End action, responsible for the ad-
vancement of the pointer in the SRv6 segment list

• uDX is responsible for the decapsulation of the packet

These behaviors are the actions of a Longest Prefix Match (LPM)
table, named my_sid_table, that matches on the destination IPv6
address of the packet. All the logic to support both uSID and legacy
SRv6 resides in this table.

Another table, named srv6_encap_table is responsible for the
encoding of the Micro SID policy into the packets entering the
Micro SID domain. If the number of uSIDs is less or equal to 6, the
packet will undergo a simple IPv6-in-IPv6 encapsulation (the uSID
policy will be encoded in the outer IPv6 destination address). If
the number of uSIDs is more than 6, the packet will undergo the
same encapsulation, but with a Segment Routing Header (SRH)
containing the remaining list of uSIDs in the SRH segment list.

The ONOS controller is programmed to configure the four behav-
iors mentioned above, taking the configuration from a JSON file con-
taining the assigned micro instructions for each router. Moreover,
an ONOS command has been implemented to configure arbitrary
Micro SID policies in the ingress routers. The different encapsula-
tion depending on the number of uSIDs is handled by the controller
logic. Also the uA behavior can be configured with a special ONOS
command.

We were able to implement the SRv6 uSID behaviors used for
this demo by simply leveraging the P416 primitive actions.

3 DEMO
The topology in Figure 1 represents a service provider SRv6-enabled
network. Blue links represent low latency links and red double-
lined links represent high-bandwidth links. Site A and Site B of a
customer are connected through the SRv6 network. The topology



Pushing Network Programmability to the limits with SRv6 uSIDs and P4

is emulated with Mininet and all the nodes in the testbed, including
the ONOS controller, run in docker containers.

The Locator Block FCBB:BB00::/32 is assigned for uSID alloca-
tion. The uSIDs that can be allocated within such block are divided
in two sets: (1) the Global Information Base (GIB) is the set of IDs for
global uSID allocation and (2) the Local Information Base (LIB) for
local uSID allocation. An uSID from the first set typically identifies
a shortest-path to a node in the SR domain that is unique and glob-
ally routable. On the contrary, an uSID from the LIB can be reused
and has local significance, e.g. it may identify a cross-connect to a
direct neighbor over a specific interface.

For the uN behavior, each router is allocated with a 16-bit ID
from the GIB, e.g. 𝑅01 will be allocated 0x0001. This results in
two entries in the my_sid_table, one with prefix length /48 for
uN action and the other with prefix length /64 for End action. For
example, 𝑅1 will be configured with FCBB:BB00:0001:: /48 and
/64. Since the table has an LPM match, the /64 entry is matched
with higher priority when a 0x0000 End of Container instruction is
immediately after the uSID ID. This means that the uSID list in that
specific segment has been “consumed”. Thus, the End behavior will
be applied to the packet instead of uN, copying the next segment
in the SRH list to the destination address.

Some routers are configured to apply the uA behavior, which
is assigned with an ID from the LIB preceded by the ID of the uN
behavior of the hosting node. For example, 𝑅09 will allocate 0xFA94
for uA behavior that will cross-connect the packets to node 𝑅04.

The SRv6 uDX behavior is assigned an ID from the LIB (0xfd00
in this Demo) and can be reused across all nodes as it has local
significance. However, it has to be preceded by the uSID ID of the
hosting node.

3.1 Use case 1: Low latency network slice.
The first use case is creating a low latency network slice for the
traffic between Site A and Site B. To achieve such a low latency
network slice, traffic has to go through only blue links which repre-
sent low latency links. The candidate path for the low latency slice
is 𝑅01, 𝑅04, 𝑅05, 𝑅08, 𝑅07, 𝑅06, 𝑅03, 𝑅02. This path will be enforced
by 𝑅01 for traffic classified as low latency with an uSID policy. The
policy will push a SID list that represents that path, but it is not
needed to encode all the nodes of the path.

In fact, the set of nodes needed in this case are 𝑅08 (uN), 𝑅07
(uN) and 𝑅02 (uN and uDX) resulting into a single uSID container:
FCBB:BB00:8:7:2:FD00::. In this case all uSID IDs of the SRv6
policy fits in one uSID container which will be carried in the desti-
nation address of the outer IPv6 header of the SRv6 packet.

3.2 Use case 2: High bandwidth network slice.
The second use case is creating a high bandwidth network slice for
the traffic between Site A and Site B. Thus, traffic has to go through
only red double-lined links which represent high bandwidth links.
The candidate path for the high bandwidth slice is 𝑅01, 𝑅09, 𝑅04,
𝑅10, 𝑅05, 𝑅11, 𝑅12, 𝑅13, 𝑅14 and 𝑅02. This path will be enforced by
𝑅01 for traffic classified as high bandwidth with an uSID policy.
Again, the set of nodes needed are less than the actual path: 𝑅09
(uN and uA),𝑅10 (uN and uA), 𝑅11 (uN), 𝑅12 (uN), 𝑅14 (uN) and 𝑅02
(uN and uDX). The resulting policy will fit in two uSID containers:

Site A

Site B

SRv6 enabled network

R06

R09 R11R10

R04 R05R01

R14

R03

R13 R12

R02 R07

R08

Figure 1: DEMO topology

FCBB:BB00:9:FA94:A:FAA5:B:C and FCBB:BB00:E:2:FD00::.
The first will be encoded in the outer destination address while the
second in the SRH list of the SRv6 packet.

The source code, instructions on how to reproduce the DEMO
and a video showing the two use cases can be found in our reposi-
tory [5].

4 CONCLUSIONS
In this work, we demonstrated that our Micro SID implementation
adds minimal processing and resource utilization with respect to a
legacy SRv6 P4 implementation. Moreover, theMicro SID solution is
built upon SRv6 and it is fully compatible with it, making it possible
to run in mixed scenarios where only some routers support Micro
SID.

ACKNOWLEDGMENT
This work has received funding from the Cisco University Research
Program Fund and the EU H2020 5G-EVE project.

REFERENCES
[1] C. Filsfils, P. Camarillo (eds.) et al., Network Programming extension: SRv6 uSID

instruction. IETF, Internet-Drafts, May 2020, url: https://tools.ietf.org/html/draft-
filsfils-spring-net-pgm-extension-srv6-usid.

[2] Clarence Filsfils, SRv6 micro-instructions, url: https://blog.apnic.net/2020/05/15/
srv6-micro-instructions.

[3] C. Filsfils et al, SRv6 Network Programming, IETF, Internet-Drafts, October 2020,
url: https://tools.ietf.org/html/draft-ietf-spring-srv6-network-programming-24

[4] C. Cascone et al., Next-Gen SDN Tutorial, Open Networking Foundation,
url=https://github.com/opennetworkinglab/ngsdn-tutorial

[5] Micro SID DEMO repository, url: https://github.com/netgroup/europ4_2020


	Abstract
	1 Introduction
	2 P4 Implementation
	3 DEMO
	3.1 Use case 1: Low latency network slice.
	3.2 Use case 2: High bandwidth network slice.

	4 Conclusions
	References

