
Proc. of the International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME)
7-8 October 2021, Mauritius

978-1-6654-1262-9/21/$31.00 ©2021 IEEE

EveryWAN - An Open Source SD-WAN solution

Carmine Scarpitta
Univ. of Rome Tor Vergata/ EveryLeap

Rome, Italy
carmine.scarpitta@uniroma2.it

Pier Luigi Ventre
Open Networking Foundation

Menlo Park, CA, US
pier@opennetworking.org

Francesco Lombardo
Univ. of Rome Tor Vergata/EveryLeap/CNIT

Rome, Italy
francesco.lombardo@uniroma2.it

Stefano Salsano
Univ. of Rome Tor Vergata/ EveryLeap/CNIT

Rome, Italy
stefano.salsano@uniroma2.it

Nicola Blefari-Melazzi
Univ. of Rome Tor Vergata/ EveryLeap/CNIT

Rome, Italy
blefari@uniroma2.it

Abstract— Software Defined Wide Area Network (SD-WAN)

was originally proposed as an alternative solution to redesign the

architecture of the WAN. Like its technology precursor Software

Defined Networking, SD-WAN was aiming at simplifying the

management and operation of the networks (with a particular

focus on WAN scenarios) by decoupling the networking hardware

from its control programs and using software and open APIs to

abstract the infrastructure and manage the connectivity and the

services. The SD-WAN architecture leverages SDN principles to

securely build interconnections between users and the applications

hosted in the clouds or in remote branches, by leveraging any

combination of transport services

With this paper we shed some light on the SD-WAN scenario

and describe an open-source implementation which can be taken

as reference. We call this architecture EveryWAN. It has been

designed with SDN and NFV principles in mind, and leverages

Cloud best practices to deliver to the WAN customers and the

MSP the same benefits and the agility of the Cloud service

providers. Moreover, we strongly believe in the openness of the

SDN/NFV paradigms which can ease the development of new

services and can foster the innovation in the SD-WAN

deployments.

Keywords— SDN Software Defined Networking, WAN Wide

Area Networks, SD-WAN Software Defined WAN

I. INTRODUCTION

Software Defined Wide Area Network (SD-WAN) was
originally proposed as an alternative solution to redesign the
architecture of the WAN ([1]–[4]). Like its technology precursor
Software Defined Networking [5], SD-WAN was aiming at
simplifying the management and operation of the networks
(with a particular focus on WAN scenarios) by decoupling the
networking hardware from its control programs and using
software and open APIs to abstract the infrastructure and
manage the connectivity and the services. While this
"softwarization" step and disaggregation of the WAN devices
was possible for the operators owning and managing the entire
infrastructure - nowadays, with the rise of the Cloud era, all the
incumbent vendors tend to agree towards a new broader concept.
An SD-WAN is an architecture that leverages SDN principles to
securely build interconnections between users and the
applications hosted in the clouds or in remote branches, by

leveraging any combination of transport services, including low-
cost and commercially available broadband access (MPLS,
LTE/5G and broadband internet services) [6] [7].

Fig. 1. WAN reference scenario

Figure 1 shows an example of a traditional WAN scenario
where a customer/tenant, owning several branches, needs
connectivity to interconnect the remote sites to the main office.
Within the latter, there are the servers that host applications
accessed by users dislocated in the remote branches. Each office
can be interconnected using different service providers which
typically create dedicated MPLS circuits to fulfill this
requirement. MPLS is used to offer VPNs and layer 2
connectivity services and help ensure a stable connectivity.
Borrowing the terminology used in the traditional WANs, the
providers networks include a set of Provider Edge routers which
are interconnected through a multi-terabit Core Network where
MPLS is used to improve the forwarding of the IP traffic and to
avoid the explosion of the routing tables. Instead, the Customer
Edge (CE in Figure 1) routers represent the IP based customer
devices connected to the provider. Typically, the CEs are
managed by the tenants and represent the line of demarcation
with the WAN provider network. Another interesting trend is the
Managed Service Provider (MSP) use case where the entire
infrastructure can be managed by a third party relieving the
tenants from a heavy configuration/management effort.

Fig. 2. SD-WAN reference scenario

With the advent of the clouds, enterprises outsource their
applications and use Software-as-a-Service (SaaS) and
Infrastructure-as-a-service (IaaS) from multiple cloud providers.
In Figure 2, we represent the SD-WAN reference scenario,
highlighting the connectivity needs of the SD-WAN
customers. It is clear from the figure above that the hub-and-
spoke communication model of traditional WANs (shown in
Figure 1) was not designed with these concepts in mind and
cannot meet the needs of today's digital businesses; because of
this the user experience is poor or the costs are not sustainable.
Moreover, the enterprises are interested to leverage multiple
connection types across their WAN to improve application
performance and reliability, and the end-user experience.
Enterprises need to segment their applications and extend
VLAN concepts to the cloud infrastructures creating
independent slices with specific QoS and security requirements.
Last but not least, customers require a simple interface (that is
easy to configure and manage) and automation and orchestration
features. From these requirements came the new idea behind
SD-WAN which has been adopted by most of the vendors in the
market.

With this paper we want to shed some light on the SD-WAN
scenario and describe an open source implementation which can
be taken as reference. We call this architecture EveryWAN. It
has been designed with SDN and NFV principles in mind, and
leverages Cloud best practices to deliver to the WAN customers
and the MSP the same benefits and the agility of the Cloud
service providers. Moreover, we strongly believe in the
openness of the SDN/NFV paradigms which can ease the
development of new services and can foster the innovation in the
SD-WAN deployments.

OFELIA [4] in EU, GENI [3] and Internet2 [8] [9] in US
were the first SDN solutions based on SDN capable switches
inter-connected with a centralized controller and deployed in
geographically distributed networks. OSHI [1] [2] proposed a
hybrid device as a replacement to the WAN routers where IP
routing and SDN coexist. Similarly, SRv6-SDN [10] provides
an implementation of an IP/SDN architecture for IPv6 Segment
Routing enabled WANs. Both solutions envisage a SouthBound
protocol between the devices and the controller. OSHI

integrated OpenFlow. Instead, SRv6-SDN implemented a new
protocol that leveraged gRPC as a transport mechanism. All
these solutions aimed at providing an alternative implementation
of the geographical networks adopting SDN principles within
the infrastructure, but they cannot be considered SD-WAN
solutions as meant nowadays.

The Google B4 WAN [11], [12] has likely been the first
application of the SD-WAN approach to a large-scale WAN
scenario. In the B4 solution the traditional distributed routing
protocols coexist with a SDN/OpenFlow approach. In particular,
the B4 WAN sites are interconnected with traditional routing
and the SDN-based centralized Traffic Engineering solution is
used to steer traffic flows across the sites. These flows are
implemented as an overlay on top of basic routing. The Google
B4 solution is proprietary and it is highly tailored to the needs
of the Google scenario. As such, it does not represent a typical
ISP WAN network. Several proprietary solutions ([13] and [7]
to give some examples) already implement the SD-WAN
architecture.

At the time of writing, FlexiWAN [14] is the only solution
providing an open-source alternative to EveryWAN. FlexiWAN
envisages a more classic approach to SD-WAN with the control
functionalities still running at the edge in the virtual routers.
Compared with this work, we considered also the possibility of
controlling the devices in a classical SDN fashion which led us
to adopt an approach that is similar to OSHI and SRv6-SDN in
some extents, where traditional IP protocols coexist seamlessly
with a SDN SouthBound (SB) in the devices. On top the
controller can leverage the SB protocol to manage and control
the nodes. In this way, we can combine the fault-tolerance based
on the regular IP routing together with the openness and the
abstraction of a SDN control plane which can ease the
development of new services and foster innovation. Moreover,
thanks to this approach, the EveryWAN architecture is very
flexible and can be tailored to different needs.

The source code of all the components of the EveryWAN
architecture and the different tools that have been developed are
published at [15]. The contributions of this paper are multifold:

 High level design of our open source SD-WAN
architecture, called EveryWAN;

 Design and implementation of a virtual CE device made of
open source components and built with SDN principles in
mind;

 Design and implementation of a SD-WAN controller to
control and program the edge devices;

 Compelling SD-WAN services like overlay networks and
network slicing;

 Design and implementation of an orchestration layer
through which customers or MSP can implement and
manage the deployed SD-WANs;

 Design and implementation of an open reference
environment to deploy and test EveryWAN and related
network services.

The paper is structured as follows: Section 2 presents the
high level architecture of EveryWAN. We will describe

EveryWAN architecture using a bottom up approach. The
design and the implementation of the vCE, called EveryEdge, is
described in Section 3. EveryEdgeOS is the SDN controller that
programs the edge devices, Section 4 describes the controller
architecture and the southbound APIs. In Section 5, we describe
the orchestrator layer, the devops and the management tools.
Section 6 explains the testbed. We draw conclusions and
highlight the next steps in the final Section of the paper.

II. EVERYWAN ARCHITECTURE

EveryWAN has been designed with SDN and NFV
principles in mind. CE devices are replaced by Universal
Customer Premise Equipment (uCPE) boxes, that integrate
computing, storage and networking on COTS hardware, giving
the possibility of realizing new services as virtual functions to
any site and optimizing the provisioning of the existing ones
through orchestration. In general, any server providing
computing, storage and network interfaces can be used as
replacement of a CE equipment. This approach would also
overtake the monolithic hardware trend of the legacy CE that
has been a barrier for innovation for several years.

Fig. 3. EveryWAN architecture

Figure 3 shows the building blocks of the EveryWAN
Architecture. Virtual CEs (vCE), the so called EveryEdge
routers, are deployed as virtual network functions (VNF) and are
controlled by the EveryEdgeOS. The SDN controller deals with
many aspects of the device life cycle which includes not only
the management and the programming but also the initial device
registration, authentication and configuration leveraging a Zero
Touch Provisioning (ZTP) approach. An overarching
orchestrator sits on top of this SDN architecture, which
orchestrates and automates the deployment of the virtual routers
and of the SD-WAN services to any edge site on a network. The
orchestrator offers also a GUI through which the tenants can
design the network topology, configure services, manage the
SD-WAN interconnections, the virtual devices and the users.
The Network Operating System (NOS) and the orchestrator can
run in a self-managed IAAS or in a public Cloud. Instead, the
tenants will deploy the EveryEdge nodes in all the sites where
SD-WAN interconnections need to be established.

We report in Figure 4 a more complex architecture where the
EveryWAN control is extended to the border and the EveryEdge
devices are also in charge of managing the LAN where the users
are. This approach of extending the control to the LANs is
typically known in literature as SD-LAN. In this particular use
case, we envisage the possibility of deploying the edge devices
and the SDN controllers locally in the same IAAS infrastructure

available on any SD-WAN site. There are inherent scalability
benefits from having a layered architecture since each NOS
controls a subset of devices. However, each deployment
scenario can be customized based on the user needs.

Fig. 4. Extended EveryWAN architecture

In our first design, EveryWAN does not include any IAAS
management functionality and we assume that the EveryWAN
users will deploy the vCE images in their self-managed uCPEs
distributed across the WAN sites. The container/VM images are
shipped with a minimal configuration which allows the virtual
routers to reach the controller, download the configuration and
complete the provisioning process.

As regards the services, the first shift is how the private
interconnections are realized. PE based VPNs are now replaced
by CE based VPNs, overlay technologies are used in place of
legacy VPNs based on MPLS to realize end-to-end connectivity
and build "virtual links" on top of the WAN pipes - which can
be made secure using technologies like IPSEC [16]. With
reference to Figure 3 and Figure 4, we call Slice the edge
segments where the applications and users are. They are
terminated in the LAN ports of the vCE. The overlays are
established between virtual endpoints in the vCE and are
logically terminated in the WAN interfaces of the vCEs. Finally,
we define End to End Slices (E2E Slice) the composition of
Slices and Overlays/Tunnels.

Existing overlay mechanisms provide the ability of building
different logical instances of a multipoint network over the same
WAN. This means that different applications can run on
different slices and obtain the needed isolation requirements. An
overlay approach has also the inherent advantage of abstracting
the transport layer and being less dependent on the service
providers and their networks. Thanks to this approach manyfold
broadband technologies can be leveraged together with MPLS
(or as a backup): overlays are not tied to a specific WAN and
can use different connections, also in parallel to implement load
balancing policies and guarantee better performance. WAN
connections can be selected also on a schedule basis, in this case
the edge nodes will classify the packets and send them
accordingly to the scheduling decisions made by the SD-WAN
tenant.

III. EVERYWAN SERVICES

We designed and implemented a basic service called
EveryWAN Overlay Network (EON) as the basic building block
of the EveryWAN architecture. EON can be used to support
VPN use cases (e.g. interconnect different branch offices of a
company through the ISP WAN) as well as to transport traffic

of specific applications. EON can be seen as an implementation
of a decentralized free Internet, where the connections are
established at the edge and the data is managed by the same
users. The overlay is realized between end-points in vCEs
belonging to the same tenant. The end-points are logical ports:
Virtual Tunnel Endpoint (VTEP) on a physical port. At the time
of writing, the connection is established only in a full-mesh
fashion. In our current implementation, the overlays can be
realized by means of different technologies which include
VXLAN [17] and IPv6 Segment Routing (SRv6) [18].

These tunnelling mechanisms allow us to build an even more
powerful construct over the EON service that is typically called
in the industry as Network Slicing. Network slicing provides the
means of building several instances of virtual networks over the
same WAN connection. A typical usage of this functionality is
the service oriented SD-WAN where tenants can redirect the
traffic of a specific application over a defined Slice. In this way,
different applications can run in isolation and still share the same
connectivity. We represent in Figure 5 and in Figure 6 the
different types of slicing that are supported by EON at the time
of writing: Switched End-to-end Slice and Routed End-to-end
Slice.

Fig. 5. Layer 2 Slices

The proposed Layer 2 Slice (represented in Figure 5)
guarantees the IP endpoints to be directly interconnected as if
they were in the same Ethernet LAN and sending each other
arbitrary packets including Layer 2 protocols like ARP and
NDP. This use case can be leveraged each time there is a need
to preserve the original content of the user packets. Instead, the
Routed slice, shown in Figure 6, is a simplified implementation
of a L3VPN where the users attached to the remote sites belong
to different broadcast domains and each site's endpoint acts as
gateway for these broadcast domains. It is not meant to allow the
served end-points to send packets with arbitrary Ethertype since
only Layer 3 traffic will be transported across the remote sites.
Moreover, in this scenario it is possible to set up several
broadcast domains behind the slice endpoints using a multi-
subnet configuration (Figure 6).

Fig. 6. Routed Slices

EveryEdge nodes can leverage multiple WAN connections
to forward the traffic of the EON local slices. Overlays are not
tied to a specific WAN: vCE can select which WAN interface to

use for the forwarding of the traffic belonging to a particular
slice based on a customer defined policy. An important
mechanism for implementing this slice scheduling is the ingress
classification performed by the vCE. In our first
implementation, it can be either based on the physical input port
or on a virtual input port - we use the so called VRF lite approach
[19] where each interface is individually mapped to a Slice.

IV. EVERYEDGE NODE ARCHITECTURE

We have built our Open Source virtual CE, the so called
EveryEdge router, combining a Programmable IP Forwarding
Engine (P-IPFE), an IP routing daemon (IPRE) and a
Southbound API (SB API). The EveryEdge architecture
foresees the coexistence of a local control logic based on
distributed IP routing and of a classic SDN design in which the
node implements a Southbound API towards a SDN controller.
Regarding the P-IPFE, it is programmable in the sense that the
SDN controller leveraging a Southbound protocol can instruct
the nodes and program the forwarding entries in its Forwarding
Information Base. Similar solutions have been already proposed
in literature, i.e. [2] and [10]; others have been rolled out in
production recently [20]. While these solutions, often referred to
as hybrid IP/SDN, have been applied in datacenter fabric or in
WAN scenarios as replacement of the WAN routers, the novelty
of our approach lies in proposing and utilizing such hybrid
approach for the commoditization of the CE routers.

Fig. 7. EveryEdge node architecture

Figure 7 shows the high level architecture of the EveryEdge
node and its main components. Each P-IPFE is connected to a
number of local interfaces and a number of virtual ports. These
two groups participate both in a specific Slice. The traffic is
forwarded from the local interfaces to the virtual ports and vice
versa according to L2/L3 rules. The local ports face always the
edge network where the users requiring connectivity are
attached to and transport the traffic of a specific service. The
virtual interfaces are Virtual Tunnel Endpoint (VTEP); they are
responsible for encapsulating the Ethernet frames coming from
the users and decapsulating the user frames from the packets
coming from the WAN interfaces. Tunnels are established
between VTEPs on different vCE to realize an E2E Slice. The

virtual ports are closely related to the WAN interfaces that are
available in the bare metal servers; they can be of different types
and can give access to different types of connections which can
span from low-cost and commercially available broadband
access (LTE/5G and broadband internet services) to a MPLS
core. There is always a two-way relation between a virtual port
and a WAN interface. The choice of using a given WAN is
always defined by the EveryWAN customer. Additionally, if
several virtual ports are available in a given P-IPFE, a logical
group can be instantiated by the SDN controller and advanced
forwarding behaviors can be leveraged by the traffic.

All the ports, except for the WAN interfaces, can be
organized as Logical Groups; each one implementing a different
type of forwarding. We defined in our architecture the following
behaviors: i) Hashed; ii) Weighted Hashed; iii) Failover; iv)
Broadcast; v) Intelligent. Interfaces belonging to a logical group
are seen as a single forwarding entity exhibiting a specific
behavior. For example, a Hashed group implements an Equal
Cost Multi Path forwarding that leverages the interfaces
participating in the group. A Weighted Hashed allows to prefer
some interfaces with respect to others assigning different
weights to the virtual ports. Failover groups can be used to
implement fast recovery mechanisms. Many to many
communications are implemented using Broadcast groups.
Finally, Intelligent groups are used together with an active
monitoring mechanism to select each time the best interface
according to some objectives specified by the tenant. The group
type is strictly dependent on the type of service that has to be
supported - for example a Broadcast group is used to implement
a L2 Slice. In our first implementation, EveryWAN does not
include the support for Logical Groups. We plan to add this
functionality in the future.

We have realized EveryEdge node leveraging commodity
hardware and open source software. We did not reinvent the
wheel but when needed we built from scratch the missing
functionalities. The IP forwarding engine is implemented using
the Linux networking. We have used a general purpose
distribution of the Linux OS, the only requirement is to have a
recent kernel version (at least 4.14) in order to have native
support for VXLAN operations in the kernel space. We have
leveraged the approach designed in [10] to make it
programmable.

We have also used several virtualization technologies
offered by the Linux kernel to build up our slicing mechanisms
and multi tenancy. In particular, the VRFs are used to construct
several instances of P-IPFE logically decoupled. Virtual
interfaces and VTEPs drivers are involved to instantiate virtual
Ethernet interfaces that encapsulate/decapsulate traffic using a
specific tunneling technology. A Routing Engine and the
EveryEdge controller sit on top of the P-IPFE instances and
implement proper isolation mechanisms to make sure that the P-
IPFEs are separated “jails”. In this way, we are able to guarantee
that the routing information of a P-IPFE instance cannot be
mixed up with the Routing Information Base (RIB) of another
P-IPFE. Nor the forwarding of P-IPFE X can interfere with the
forwarding decision taken in P-IPFE Y, for example by
overriding the rules.

The EveryEdge node with its virtualization mechanisms
guarantees the IP applications running on top of the Slices to be
directly interconnected as if they were using their own routers.
Moreover, from an architectural standpoint this arrangement
closely resembles a chassis based router having the dataplane
cards and the routing engine in the same rack. The P-IPFEs are
essentially the line-cards and the backplane of the chassis router,
while the IPRE together with the EveryEdgeOS represent the
redundant route processors.

We foresee the coexistence between the control logic based
on distributed routing control protocols and the SDN approach:
BGP programs the VRFs using its internal logic and allows the
vCE at the edge of the overlay to exchange the basic reachability
information, in this way the IP forwarding can be always used
as default choice by the services running in the network slices.
We have integrated BGP implementation of Free Range Routing
project [21] in our node as IPRE. The decisions taken by the
routing protocol may be overridden by the SDN controller which
programs the nodes leveraging the Southbound API (SB API)
exposed by the EveryEdge node itself. Controller and devices
talk to each other using a protocol based on gRPC technology
[22] .

Another important component of this architecture is the
EveryEdgeManager. It takes care of the initial configuration of
the node: it implements a ZTP (Zero Touch Provisioning)
approach which includes also the download of the bootstrap
configuration of the routing daemon; it authenticates the device
with the controller and implements NAT traversal protocols
with the help of additional control plane components. It supports
in-band and out-of-band connectivity and it can establish
insecure or secure channels with the control plane. This wide
range of choices avoid the need of setting up a separate out-of-
band network and the same WAN interfaces can be used to reach
the EveryEdgeController.

Moreover, the EveryEdgeManager acts as a mediator
interacting on the south with the P-IPFE instances and on the
north with the SDN controller: it translates the messages
received over the Southbound API into actions to be sent to the
kernel components. The communication library used to enable
the communication with Linux kernel is based on the open
source project pyroute2 [23], a pure python netlink library that
has been properly extended to support our needs. Last but not
least, a number of management/operational protocols are used
for the daily check routines, to keep alive the sessions with the
controller and avoid the expiration of the NAT bindings.

The virtual slices are implemented through end-to-end
tunnels established between VTEPs and then mapping local
interfaces and VTEPs into a specific slice; we do not expect to
change how IP networks operate in these days. Therefore, we
decided to use VXLAN and IPv6 Segment Routing (SRv6)
encapsulation as a coexistence mechanism. This allows us to
interoperate naturally with existing IPv4/IPv6. The only caveat
is that SRv6 requires a WAN network at least supporting IPv6
transport.

As for the ingress classification, we support, at the time of
writing, a VRF lite approach where each interface is individually
mapped to a slice and enslaved to the VRFs serving that slice.
Additionally, if local trunk ports are available in the edge nodes,

VLAN interfaces can be used in place of the physical local
interfaces. As regards the operations at the egress, the edge
router will extract the traffic from the tunnel and will forward it
to the appropriate VRF. Finally, it will be delivered to the users
according to L2/L3 rules defined for the slice.

The creation of the tunnels and the E2E slices is always
initiated by the EveryEdgeController which receives the
configuration on its NorthBound API. It allocates the slice
specific information like the segment IDs (each tunneling
mechanism has its own concept) and then translates the
configuration in a set of commands to be performed on the
participating vCEs. The entire end-to-end process is
orchestrated by the EveryEdgeController.

V. EVERYEDGEOS AND EVERYWAN ORCHESTRATOR

Fig. 8. SD-WAN controller architecture

We have realized from scratch a prototype of a SD-WAN
controller, called EveryEdgeOS. EveryEdgeOS is responsible
for the registration of the tenants, the registration and
authentication of the EveryEdge devices and the provisioning of
the services requested by the tenants. The key components of
EveryEdgeOS are shown in Figure 8. At the highest level there
is the EveryEdgeOS Agent, which acts as a mediator interacting
on the south with the controller modules and on the north with
the EveryWAN orchestrator. The EveryEdgeOS Agent
translates the commands received from the orchestrator into
actions to be sent to the EveryEdgeOS modules. In our current
design, the controller has five modules: i) the Topology
Manager (TM), which is responsible for building and
maintaining an updated view of the network topology; ii) the
Device Manager (DM), which deals with many aspects of the
EveryEdge device life cycle, such as the device registration and
authentication; iii) the Overlay Manager (OM), which computes
paths and tunnels needed to implement the requested overlay by
using the topology graph provided by the TM and the devices
information provided by the DM; iv) Tenant Manager (TeM),
which is responsible for the tenants registration and
configuration; v) Statistics Collector (SC), which collects and
reports statistics on the overlay networks and the devices. In the
proposed architecture, all the controller modules are designed to
be stateless. All the information including statistics, overlays,

tenants, devices and the network graph is persisted on a data
store, which can be either external or internal to the controller.
Storing data externally to the controller has advantages from the
resiliency point of view, as the controller failures do not affect
data. In our current implementation, we store data on an external
MongoDB database [24].

At the lowest level, the EveryEdgeOS interacts with the
EveryEdge devices to program and control them. The
communication between the EveryEdgeOS and the EveryEdge
devices is handled via an interface called Southbound API. We
decided to extend the Southbound API proposed in [10] to
support the functionalities needed to control an EveryEdge
device, such as the setup of VXLAN tunnels and the
configuration of the routing tables. In [10], the authors have
compared four different implementations: gRPC, REST,
NETCONF, SSH/CLI. In this work we have adopted the gRPC
solution for the API implementation.

On top of the SD-WAN controller there is an orchestrator
called EveryBOSS, which is shown in Figure 9.

Fig. 9. SD-WAN orchestrator and EveryGUI

The orchestrator offers a GUI called EveryGUI through
which the tenants can design the network topology, configure
the services, manage the SD-WAN interconnections, the virtual
devices and the users. The communication between the
EveryBOSS and the EveryGUI is handled via a REST interface.
The commands received from the GUI are sent to the SD-WAN
controller through the Northbound interface exposed by the SD-
WAN controller. Moreover, the EveryBOSS interacts with a
Keystone instance to support user registration and authentication
functionalities.

VI. EVERYWAN VALIDATION AND PERFORMANCE EVALUATION

PLATFORM (EVPE PLATFORM)

We have built an open reference environment on top of the
Mininet [25] emulator to deploy and test EveryWAN and related
network services. We call this environment EveryWan
Validation and Performance Evaluation platform (EVPE). The
EVPE includes pre-designed example topologies which support
the emulation of different WAN scenarios, including the
different broadband technologies and NATed environments.

With EVPE it is possible to measure various performance
indicators inside a topology. In the dataplane it can compare the
throughput and the CPU/memory usage between VXLAN and
SRv6. It is also possible to measure different control plane
aspects, such as the time needed to configure various services or
the scalability.

Figure 10 shows the example of a SD-WAN scenario
emulated in the EVPE.

Fig. 10. Emulated topology

REFERENCES

[1] S. Salsano, P. L. Ventre, L. Prete, G. Siracusano, M. Gerola, and E.

Salvadori, “OSHI - Open Source Hybrid IP/SDN Networking (and its
Emulation on Mininet and on Distributed SDN Testbeds),” 2014 Third
European Workshop on Software Defined Networks. 2014 [Online].
Available: http://dx.doi.org/10.1109/ewsdn.2014.38

[2] S. Salsano et al., “Hybrid IP/SDN Networking: Open Implementation and
Experiment Management Tools,” IEEE Transactions on Network and
Service Management, vol. 13, no. 1. pp. 138–153, 2016 [Online].
Available: http://dx.doi.org/10.1109/tnsm.2015.2507622

[3] “GENI.” [Online]. Available: http://www.geni.net. [Accessed: 30-Apr-
2021]

[4] M. Suñé et al., “Design and implementation of the OFELIA FP7 facility:
The European OpenFlow testbed,” Computer Networks, vol. 61. pp. 132–
150, 2014 [Online]. Available:
http://dx.doi.org/10.1016/j.bjp.2013.10.015

[5] T. Sloane, “Software-Defined Networking: The New Norm for Networks
- Open Networking Foundation,” 02-May-2013. [Online]. Available:
https://opennetworking.org/sdn-resources/whitepapers/software-defined-
networking-the-new-norm-for-networks/. [Accessed: 30-Apr-2021]

[6] Benefits of SD-WAN - Cisco SD-WAN. 2020 [Online]. Available:
https://www.cisco.com/c/en/us/solutions/enterprise-networks/sd-
wan/what-is-sd-wan.html. [Accessed: 05-May-2021]

[7] R. Nguyen, “SD-WAN Explained,” 12-Dec-2018. [Online]. Available:
https://www.silver-peak.com/sd-wan/sd-wan-explained. [Accessed: 30-
Apr-2021]

[8] “Home - Internet2,” 05-Dec-2019. [Online]. Available:
https://internet2.edu/. [Accessed: 30-Apr-2021]

[9] “Website.” [Online]. Available: https://www.internet2.edu/communities-
groups/advanced-networking- groups/software-defined-networking-
group/. [Accessed: 30-Apr-2021]

[10] P. L. Ventre, M. M. Tajiki, S. Salsano, and C. Filsfils, “SDN architecture
and southbound APIs for IPv6 segment routing enabled wide area
networks,” IEEE Trans. Netw. Serv. Manage., vol. 15, no. 4, pp. 1378–
1392, Dec. 2018.

[11] S. Jain et al., “B4,” in Proceedings of the ACM SIGCOMM 2013
conference on SIGCOMM, Hong Kong China, 2013, doi:
10.1145/2486001.2486019 [Online]. Available:
https://dl.acm.org/doi/10.1145/2486001.2486019

[12] C.-Y. Hong et al., “B4 and after,” Proceedings of the 2018 Conference of
the ACM Special Interest Group on Data Communication. 2018 [Online].
Available: http://dx.doi.org/10.1145/3230543.3230545

[13] Benefits of SD-WAN - Cisco SD-WAN. 2020 [Online]. Available:
https://www.cisco.com/c/en/us/solutions/enterprise-networks/sd-
wan/what-is-sd-wan.html. [Accessed: 30-Apr-2021]

[14] “SD-WAN & SASE - The World’s First Open Source,” 22-Jan-2021.
[Online]. Available: https://flexiwan.com/. [Accessed: 30-Apr-2021]

[15] “EveryWAN.” [Online]. Available: https://github.com/everywan-io.
[Accessed: 30-Apr-2021]

[16] K. Seo and S. Kent, “Security Architecture for the Internet Protocol,” Dec.
2005 [Online]. Available: https://tools.ietf.org/html/rfc4301. [Accessed:
30-Apr-2021]

[17] M. Mahalingam et al., “Virtual eXtensible Local Area Network
(VXLAN): A Framework for Overlaying Virtualized Layer 2 Networks
over Layer 3 Networks.” 2014 [Online]. Available:
http://dx.doi.org/10.17487/rfc7348

[18] S. Previdi, D. Voyer, S. Matsushima, C. Filsfils, J. Leddy, and D. Dukes,
“IPv6 Segment Routing Header (SRH),” Mar. 2020 [Online]. Available:
https://tools.ietf.org/html/rfc8754. [Accessed: 30-Apr-2021]

[19] “Intro to VRF lite.” [Online]. Available:
https://packetlife.net/blog/2009/apr/30/intro-vrf-lite/. [Accessed: 30-Apr-
2021]

[20] A. Andreyev, “Introducing data center fabric, the next-generation
Facebook data center network - Facebook Engineering,” 14-Nov-2014.
[Online]. Available: https://engineering.fb.com/2014/11/14/production-
engineering/introducing-data-center-fabric-the-next-generation-
facebook-data-center-network/. [Accessed: 06-May-2021]

[21] “FRRouting.” [Online]. Available: https://frrouting.org/. [Accessed: 30-
Apr-2021]

[22] “gRPC.” [Online]. Available: https://grpc.io/. [Accessed: 30-Apr-2021]

[23] “pyroute2.” [Online]. Available: https://pypi.org/project/pyroute2/.
[Accessed: 30-Apr-2021]

[24] “The most popular database for modern apps.” [Online]. Available:
https://www.mongodb.com. [Accessed: 06-May-2021]

[25] “Website.” [Online]. Available: https://mininet.org. [Accessed: 30-Apr-
2021]

[26] “Open vSwitch.” [Online]. Available: http://openvswitch.org. [Accessed:
30-Apr-2021]

[27] “Open Source Cloud Computing Infrastructure - OpenStack.” [Online].
Available: https://www.openstack.org/. [Accessed: 30-Apr-2021]

[28] “Production-Grade Container Orchestration.” [Online]. Available:
https://kubernetes.io/. [Accessed: 30-Apr-2021]

