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Abstract— Software Defined Wide Area Network (SD-WAN) 

was originally proposed as an alternative solution to redesign the 

architecture of the WAN. Like its technology precursor Software 

Defined Networking, SD-WAN was aiming at simplifying the 

management and operation of the networks (with a particular 

focus on WAN scenarios) by decoupling the networking hardware 

from its control programs and using software and open APIs to 

abstract the infrastructure and manage the connectivity and the 

services. The SD-WAN architecture leverages SDN principles to 

securely build interconnections between users and the applications 

hosted in the clouds or in remote branches, by leveraging any 

combination of transport services  

With this paper we shed some light on the SD-WAN scenario 

and describe an open-source implementation which can be taken 

as reference. We call this architecture EveryWAN. It has been 

designed with SDN and NFV principles in mind, and leverages 

Cloud best practices to deliver to the WAN customers and the 

MSP the same benefits and the agility of the Cloud service 

providers. Moreover, we strongly believe in the openness of the 

SDN/NFV paradigms which can ease the development of new 

services and can foster the innovation in the SD-WAN 

deployments.  

Keywords— SDN Software Defined Networking, WAN Wide 

Area Networks, SD-WAN Software Defined WAN 

I. INTRODUCTION 

Software Defined Wide Area Network (SD-WAN) was 
originally proposed as an alternative solution to redesign the 
architecture of the WAN ([1]–[4]). Like its technology precursor 
Software Defined Networking [5], SD-WAN was aiming at 
simplifying the management and operation of the networks 
(with a particular focus on WAN scenarios) by decoupling the 
networking hardware from its control programs and using 
software and open APIs to abstract the infrastructure and 
manage the connectivity and the services. While this 
"softwarization" step and disaggregation of the WAN devices 
was possible for the operators owning and managing the entire 
infrastructure - nowadays, with the rise of the Cloud era, all the 
incumbent vendors tend to agree towards a new broader concept. 
An SD-WAN is an architecture that leverages SDN principles to 
securely build interconnections between users and the 
applications hosted in the clouds or in remote branches, by 

leveraging any combination of transport services, including low-
cost and commercially available broadband access (MPLS, 
LTE/5G and broadband internet services) [6] [7].  

 

Fig. 1. WAN reference scenario 

Figure 1 shows an example of a traditional WAN scenario 
where a customer/tenant, owning several branches, needs 
connectivity to interconnect the remote sites to the main office. 
Within the latter, there are the servers that host applications 
accessed by users dislocated in the remote branches. Each office 
can be interconnected using different service providers which 
typically create dedicated MPLS circuits to fulfill this 
requirement. MPLS is used to offer VPNs and layer 2 
connectivity services and help ensure a stable connectivity. 
Borrowing the terminology used in the traditional WANs, the 
providers networks include a set of Provider Edge routers which 
are interconnected through a multi-terabit Core Network where 
MPLS is used to improve the forwarding of the IP traffic and to 
avoid the explosion of the routing tables. Instead, the Customer 
Edge (CE in Figure 1) routers represent the IP based customer 
devices connected to the provider. Typically, the CEs are 
managed by the tenants and represent the line of demarcation 
with the WAN provider network. Another interesting trend is the 
Managed Service Provider (MSP) use case where the entire 
infrastructure can be managed by a third party relieving the 
tenants from a heavy configuration/management effort. 



 

Fig. 2. SD-WAN reference scenario 

With the advent of the clouds, enterprises outsource their 
applications and use Software-as-a-Service (SaaS) and 
Infrastructure-as-a-service (IaaS) from multiple cloud providers. 
In Figure 2, we represent the SD-WAN reference scenario, 
highlighting the connectivity needs of the SD-WAN 
customers.  It is clear from the figure above that the hub-and-
spoke communication model of traditional WANs (shown in 
Figure 1) was not designed with these concepts in mind and 
cannot meet the needs of today's digital businesses; because of 
this the user experience is poor or the costs are not sustainable. 
Moreover, the enterprises are interested to leverage multiple 
connection types across their WAN to improve application 
performance and reliability, and the end-user experience. 
Enterprises need to segment their applications and extend 
VLAN concepts to the cloud infrastructures creating 
independent slices with specific QoS and security requirements. 
Last but not least, customers require a simple interface (that is 
easy to configure and manage) and automation and orchestration 
features. From these requirements came the new idea behind 
SD-WAN which has been adopted by most of the vendors in the 
market. 

With this paper we want to shed some light on the SD-WAN 
scenario and describe an open source implementation which can 
be taken as reference. We call this architecture EveryWAN. It 
has been designed with SDN and NFV principles in mind, and 
leverages Cloud best practices to deliver to the WAN customers 
and the MSP the same benefits and the agility of the Cloud 
service providers. Moreover, we strongly believe in the 
openness of the SDN/NFV paradigms which can ease the 
development of new services and can foster the innovation in the 
SD-WAN deployments.  

OFELIA [4] in EU, GENI [3] and Internet2 [8] [9] in US 
were the first SDN solutions based on SDN capable switches 
inter-connected with a centralized controller and deployed in 
geographically distributed networks. OSHI [1] [2] proposed a 
hybrid device as a replacement to the WAN routers where IP 
routing and SDN coexist. Similarly, SRv6-SDN [10] provides 
an implementation of an IP/SDN architecture for IPv6 Segment 
Routing enabled WANs. Both solutions envisage a SouthBound 
protocol between the devices and the controller. OSHI 

integrated OpenFlow. Instead, SRv6-SDN implemented a new 
protocol that leveraged gRPC as a transport mechanism. All 
these solutions aimed at providing an alternative implementation 
of the geographical networks adopting SDN principles within 
the infrastructure, but they cannot be considered SD-WAN 
solutions as meant nowadays.  

The Google B4 WAN [11], [12] has likely been the first 
application of the SD-WAN approach to a large-scale WAN 
scenario. In the B4 solution the traditional distributed routing 
protocols coexist with a SDN/OpenFlow approach. In particular, 
the B4 WAN sites are interconnected with traditional routing 
and the SDN-based centralized Traffic Engineering solution is 
used to steer traffic flows across the sites. These flows are 
implemented as an overlay on top of basic routing. The Google 
B4 solution is proprietary and it is highly tailored to the needs 
of the Google scenario. As such, it does not represent a typical 
ISP WAN network. Several proprietary solutions ([13] and [7] 
to give some examples) already implement the SD-WAN 
architecture. 

At the time of writing, FlexiWAN [14] is the only solution 
providing an open-source alternative to EveryWAN. FlexiWAN 
envisages a more classic approach to SD-WAN with the control 
functionalities still running at the edge in the virtual routers. 
Compared with this work, we considered also the possibility of 
controlling the devices in a classical SDN fashion which led us 
to adopt an approach that is similar to OSHI and SRv6-SDN in 
some extents, where traditional IP protocols coexist seamlessly 
with a SDN SouthBound (SB) in the devices. On top the 
controller can leverage the SB protocol to manage and control 
the nodes. In this way, we can combine the fault-tolerance based 
on the regular IP routing together with the openness and the 
abstraction of a SDN control plane which can ease the 
development of new services and foster innovation. Moreover, 
thanks to this approach, the EveryWAN architecture is very 
flexible and can be tailored to different needs. 

The source code of all the components of the EveryWAN 
architecture and the different tools that have been developed are 
published at [15]. The contributions of this paper are multifold: 

 High level design of our open source SD-WAN 
architecture, called EveryWAN; 

 Design and implementation of a virtual CE device made of 
open source components and built with SDN principles in 
mind; 

 Design and implementation of a SD-WAN controller to 
control and program the edge devices; 

 Compelling SD-WAN services like overlay networks and 
network slicing; 

 Design and implementation of an orchestration layer 
through which customers or MSP can implement and 
manage the deployed SD-WANs; 

 Design and implementation of an open reference 
environment to deploy and test EveryWAN and related 
network services. 

The paper is structured as follows: Section 2 presents the 
high level architecture of EveryWAN. We will describe 



EveryWAN architecture using a bottom up approach. The 
design and the implementation of the vCE, called EveryEdge, is 
described in Section 3. EveryEdgeOS is the SDN controller that 
programs the edge devices, Section 4 describes the controller 
architecture and the southbound APIs. In Section 5, we describe 
the orchestrator layer, the devops and the management tools. 
Section 6 explains the testbed. We draw conclusions and 
highlight the next steps in the final Section of the paper. 

II. EVERYWAN ARCHITECTURE 

EveryWAN has been designed with SDN and NFV 
principles in mind. CE devices are replaced by Universal 
Customer Premise Equipment (uCPE) boxes, that integrate 
computing, storage and networking on COTS hardware, giving 
the possibility of realizing new services as virtual functions to 
any site and optimizing the provisioning of the existing ones 
through orchestration. In general, any server providing 
computing, storage and network interfaces can be used as 
replacement of a CE equipment. This approach would also 
overtake the monolithic hardware trend of the legacy CE that 
has been a barrier for innovation for several years. 

 

Fig. 3. EveryWAN architecture 

Figure 3 shows the building blocks of the EveryWAN 
Architecture. Virtual CEs (vCE), the so called EveryEdge 
routers, are deployed as virtual network functions (VNF) and are 
controlled by the EveryEdgeOS. The SDN controller deals with 
many aspects of the device life cycle which includes not only 
the management and the programming but also the initial device 
registration, authentication and configuration leveraging a Zero 
Touch Provisioning (ZTP) approach. An overarching 
orchestrator sits on top of this SDN architecture, which 
orchestrates and automates the deployment of the virtual routers 
and of the SD-WAN services to any edge site on a network. The 
orchestrator offers also a GUI through which the tenants can 
design the network topology, configure services, manage the 
SD-WAN interconnections, the virtual devices and the users. 
The Network Operating System (NOS) and the orchestrator can 
run in a self-managed IAAS or in a public Cloud. Instead, the 
tenants will deploy the EveryEdge nodes in all the sites where 
SD-WAN interconnections need to be established. 

We report in Figure 4 a more complex architecture where the 
EveryWAN control is extended to the border and the EveryEdge 
devices are also in charge of managing the LAN where the users 
are. This approach of extending the control to the LANs is 
typically known in literature as SD-LAN. In this particular use 
case, we envisage the possibility of deploying the edge devices 
and the SDN controllers locally in the same IAAS infrastructure 

available on any SD-WAN site. There are inherent scalability 
benefits from having a layered architecture since each NOS 
controls a subset of devices. However, each deployment 
scenario can be customized based on the user needs. 

 

Fig. 4. Extended EveryWAN architecture 

In our first design, EveryWAN does not include any IAAS 
management functionality and we assume that the EveryWAN 
users will deploy the vCE images in their self-managed uCPEs 
distributed across the WAN sites. The container/VM images are 
shipped with a minimal configuration which allows the virtual 
routers to reach the controller, download the configuration and 
complete the provisioning process. 

As regards the services, the first shift is how the private 
interconnections are realized. PE based VPNs are now replaced 
by CE based VPNs, overlay technologies are used in place of 
legacy VPNs based on MPLS to realize end-to-end connectivity 
and build "virtual links" on top of the WAN pipes - which can 
be made secure using technologies like IPSEC [16]. With 
reference to Figure 3 and Figure 4, we call Slice the edge 
segments where the applications and users are. They are 
terminated in the LAN ports of the vCE. The overlays are 
established between virtual endpoints in the vCE and are 
logically terminated in the WAN interfaces of the vCEs. Finally, 
we define End to End Slices (E2E Slice) the composition of 
Slices and Overlays/Tunnels. 

Existing overlay mechanisms provide the ability of building 
different logical instances of a multipoint network over the same 
WAN. This means that different applications can run on 
different slices and obtain the needed isolation requirements. An 
overlay approach has also the inherent advantage of abstracting 
the transport layer and being less dependent on the service 
providers and their networks. Thanks to this approach manyfold 
broadband technologies can be leveraged together with MPLS 
(or as a backup): overlays are not tied to a specific WAN and 
can use different connections, also in parallel to implement load 
balancing policies and guarantee better performance. WAN 
connections can be selected also on a schedule basis, in this case 
the edge nodes will classify the packets and send them 
accordingly to the scheduling decisions made by the SD-WAN 
tenant. 

III. EVERYWAN SERVICES 

We designed and implemented a basic service called 
EveryWAN Overlay Network (EON) as the basic building block 
of the EveryWAN architecture. EON can be used to support 
VPN use cases (e.g. interconnect different branch offices of a 
company through the ISP WAN) as well as to transport traffic 



of specific applications. EON can be seen as an implementation 
of a decentralized free Internet, where the connections are 
established at the edge and the data is managed by the same 
users. The overlay is realized between end-points in vCEs 
belonging to the same tenant. The end-points are logical ports: 
Virtual Tunnel Endpoint (VTEP) on a physical port. At the time 
of writing, the connection is established only in a full-mesh 
fashion. In our current implementation, the overlays can be 
realized by means of different technologies which include 
VXLAN [17] and IPv6 Segment Routing (SRv6) [18].  

These tunnelling mechanisms allow us to build an even more 
powerful construct over the EON service that is typically called 
in the industry as Network Slicing. Network slicing provides the 
means of building several instances of virtual networks over the 
same WAN connection. A typical usage of this functionality is 
the service oriented SD-WAN where tenants can redirect the 
traffic of a specific application over a defined Slice. In this way, 
different applications can run in isolation and still share the same 
connectivity. We represent in Figure 5 and in Figure 6  the 
different types of slicing that are supported by EON at the time 
of writing: Switched End-to-end Slice and Routed End-to-end 
Slice. 

 

Fig. 5. Layer 2 Slices 

The proposed Layer 2 Slice (represented in Figure 5) 
guarantees the IP endpoints to be directly interconnected as if 
they were in the same Ethernet LAN and sending each other 
arbitrary packets including Layer 2 protocols like ARP and 
NDP. This use case can be leveraged each time there is a need 
to preserve the original content of the user packets. Instead, the 
Routed slice, shown in Figure 6, is a simplified implementation 
of a L3VPN where the users attached to the remote sites belong 
to different broadcast domains and each site's endpoint acts as 
gateway for these broadcast domains. It is not meant to allow the 
served end-points to send packets with arbitrary Ethertype since 
only Layer 3 traffic will be transported across the remote sites. 
Moreover, in this scenario it is possible to set up several 
broadcast domains behind the slice endpoints using a multi-
subnet configuration (Figure 6). 

 

Fig. 6. Routed Slices 

EveryEdge nodes can leverage multiple WAN connections 
to forward the traffic of the EON local slices. Overlays are not 
tied to a specific WAN: vCE can select which WAN interface to 

use for the forwarding of the traffic belonging to a particular 
slice based on a customer defined policy. An important 
mechanism for implementing this slice scheduling is the ingress 
classification performed by the vCE. In our first 
implementation, it can be either based on the physical input port 
or on a virtual input port - we use the so called VRF lite approach 
[19] where each interface is individually mapped to a Slice. 

IV. EVERYEDGE NODE ARCHITECTURE 

We have built our Open Source virtual CE, the so called 
EveryEdge router, combining a Programmable IP Forwarding 
Engine (P-IPFE), an IP routing daemon (IPRE) and a 
Southbound API (SB API). The EveryEdge architecture 
foresees the coexistence of a local control logic based on 
distributed IP routing and of a classic SDN design in which the 
node implements a Southbound API towards a SDN controller. 
Regarding the P-IPFE, it is programmable in the sense that the 
SDN controller leveraging a Southbound protocol can instruct 
the nodes and program the forwarding entries in its Forwarding 
Information Base. Similar solutions have been already proposed 
in literature, i.e. [2] and [10]; others have been rolled out in 
production recently [20]. While these solutions, often referred to 
as hybrid IP/SDN, have been applied in datacenter fabric or in 
WAN scenarios as replacement of the WAN routers, the novelty 
of our approach lies in proposing and utilizing such hybrid 
approach for the commoditization of the CE routers. 

 

Fig. 7. EveryEdge node architecture 

Figure 7 shows the high level architecture of the EveryEdge 
node and its main components. Each P-IPFE is connected to a 
number of local interfaces and a number of virtual ports. These 
two groups participate both in a specific Slice. The traffic is 
forwarded from the local interfaces to the virtual ports and vice 
versa according to L2/L3 rules. The local ports face always the 
edge network where the users requiring connectivity are 
attached to and transport the traffic of a specific service. The 
virtual interfaces are Virtual Tunnel Endpoint (VTEP); they are 
responsible for encapsulating the Ethernet frames coming from 
the users and decapsulating the user frames from the packets 
coming from the WAN interfaces. Tunnels are established 
between VTEPs on different vCE to realize an E2E Slice. The 



virtual ports are closely related to the WAN interfaces that are 
available in the bare metal servers; they can be of different types 
and can give access to different types of connections which can 
span from low-cost and commercially available broadband 
access (LTE/5G and broadband internet services) to a MPLS 
core. There is always a two-way relation between a virtual port 
and a WAN interface. The choice of using a given WAN is 
always defined by the EveryWAN customer. Additionally, if 
several virtual ports are available in a given P-IPFE, a logical 
group can be instantiated by the SDN controller and advanced 
forwarding behaviors  can be leveraged by the traffic.  

All the ports, except for the WAN interfaces, can be 
organized as Logical Groups; each one implementing a different 
type of forwarding. We defined in our architecture the following 
behaviors: i) Hashed; ii) Weighted Hashed; iii) Failover; iv) 
Broadcast; v) Intelligent. Interfaces belonging to a logical group 
are seen as a single forwarding entity exhibiting a specific 
behavior. For example, a Hashed group implements an Equal 
Cost Multi Path forwarding that leverages the interfaces 
participating in the group. A Weighted Hashed allows to prefer 
some interfaces with respect to others assigning different 
weights to the virtual ports. Failover groups can be used to 
implement fast recovery mechanisms. Many to many 
communications are implemented using Broadcast groups. 
Finally, Intelligent groups are used together with an active 
monitoring mechanism to select each time the best interface 
according to some objectives specified by the tenant. The group 
type is strictly dependent on the type of service that has to be 
supported - for example a Broadcast group is used to implement 
a L2 Slice. In our first implementation, EveryWAN does not 
include the support for Logical Groups. We plan to add this 
functionality in the future. 

We have realized EveryEdge node leveraging commodity 
hardware and open source software. We did not reinvent the 
wheel but when needed we built from scratch the missing 
functionalities. The IP forwarding engine is implemented using 
the Linux networking. We have used a general purpose 
distribution of the Linux OS, the only requirement is to have a 
recent kernel version (at least 4.14) in order to have native 
support for VXLAN operations in the kernel space. We have 
leveraged the approach designed in [10] to make it 
programmable. 

We have also used several virtualization technologies 
offered by the Linux kernel to build up our slicing mechanisms 
and multi tenancy. In particular, the VRFs are used to construct 
several instances of P-IPFE logically decoupled. Virtual 
interfaces and VTEPs drivers are involved to instantiate virtual 
Ethernet interfaces that encapsulate/decapsulate traffic using a 
specific tunneling technology. A Routing Engine and the 
EveryEdge controller sit on top of the P-IPFE instances and 
implement proper isolation mechanisms to make sure that the P-
IPFEs are separated “jails”. In this way, we are able to guarantee 
that the routing information of a P-IPFE instance cannot be 
mixed up with the Routing Information Base (RIB) of another 
P-IPFE. Nor the forwarding of P-IPFE X can interfere with the 
forwarding decision taken in P-IPFE Y, for example by 
overriding the rules.  

The EveryEdge node with its virtualization mechanisms 
guarantees the IP applications running on top of the Slices to be 
directly interconnected as if they were using their own routers. 
Moreover, from an architectural standpoint this arrangement 
closely resembles a chassis based router having the dataplane 
cards and the routing engine in the same rack. The P-IPFEs are 
essentially the line-cards and the backplane of the chassis router, 
while the IPRE together with the EveryEdgeOS represent the 
redundant route processors.  

We foresee the coexistence between the control logic based 
on distributed routing control protocols and the SDN approach: 
BGP programs the VRFs using its internal logic and allows the 
vCE at the edge of the overlay to exchange the basic reachability 
information, in this way the IP forwarding can be always used 
as default choice by the services running in the network slices. 
We have integrated BGP implementation of Free Range Routing 
project [21] in our node as IPRE. The decisions taken by the 
routing protocol may be overridden by the SDN controller which 
programs the nodes leveraging the Southbound API (SB API) 
exposed by the EveryEdge node itself. Controller and devices 
talk to each other using a protocol based on gRPC technology 
[22] . 

Another important component of this architecture is the 
EveryEdgeManager. It takes care of the initial configuration of 
the node: it implements a ZTP (Zero Touch Provisioning) 
approach which includes also the download of the bootstrap 
configuration of the routing daemon; it authenticates the device 
with the controller and implements NAT traversal protocols 
with the help of additional control plane components. It supports 
in-band and out-of-band connectivity and it can establish 
insecure or secure channels with the control plane. This wide 
range of choices avoid the need of setting up a separate out-of-
band network and the same WAN interfaces can be used to reach 
the EveryEdgeController. 

Moreover, the EveryEdgeManager acts as a mediator 
interacting on the south with the P-IPFE instances and on the 
north with the SDN controller: it translates the messages 
received over the Southbound API into actions to be sent to the 
kernel components. The communication library used to enable 
the communication with Linux kernel is based on the open 
source project pyroute2 [23], a pure python netlink library that 
has been properly extended to support our needs. Last but not 
least, a number of management/operational protocols are used 
for the daily check routines, to keep alive the sessions with the 
controller and avoid the expiration of the NAT bindings.  

The virtual slices are implemented through end-to-end 
tunnels established between VTEPs and then mapping local 
interfaces and VTEPs into a specific slice; we do not expect to 
change how IP networks operate in these days. Therefore, we 
decided to use VXLAN and IPv6 Segment Routing (SRv6) 
encapsulation as a coexistence mechanism. This allows us to 
interoperate naturally with existing IPv4/IPv6. The only caveat 
is that SRv6 requires a WAN network at least supporting IPv6 
transport. 

As for the ingress classification, we support, at the time of 
writing, a VRF lite approach where each interface is individually 
mapped to a slice and enslaved to the VRFs serving that slice. 
Additionally, if local trunk ports are available in the edge nodes, 



VLAN interfaces can be used in place of the physical local 
interfaces. As regards the operations at the egress, the edge 
router will extract the traffic from the tunnel and will forward it 
to the appropriate VRF. Finally, it will be delivered to the users 
according to L2/L3 rules defined for the slice. 

The creation of the tunnels and the E2E slices is always 
initiated by the EveryEdgeController which receives the 
configuration on its NorthBound API. It allocates the slice 
specific information like the segment IDs (each tunneling 
mechanism has its own concept) and then translates the 
configuration in a set of commands to be performed on the 
participating vCEs. The entire end-to-end process is 
orchestrated by the EveryEdgeController. 

V. EVERYEDGEOS AND EVERYWAN ORCHESTRATOR 

 

Fig. 8. SD-WAN controller architecture  

We have realized from scratch a prototype of a SD-WAN 
controller, called EveryEdgeOS. EveryEdgeOS is responsible 
for the registration of the tenants, the registration and 
authentication of the EveryEdge devices and the provisioning of 
the services requested by the tenants. The key components of 
EveryEdgeOS are shown in Figure 8. At the highest level there 
is the EveryEdgeOS Agent, which acts as a mediator interacting 
on the south with the controller modules and on the north with 
the EveryWAN orchestrator. The EveryEdgeOS Agent 
translates the commands received from the orchestrator into 
actions to be sent to the EveryEdgeOS modules. In our current 
design, the controller has five modules: i) the Topology 
Manager (TM), which is responsible for building and 
maintaining an updated view of the network topology; ii) the 
Device Manager (DM), which deals with many aspects of the 
EveryEdge device life cycle, such as the device registration and 
authentication; iii) the Overlay Manager (OM), which computes 
paths and tunnels needed to implement the requested overlay by 
using the topology graph provided by the TM and the devices 
information provided by the DM; iv) Tenant Manager (TeM), 
which is responsible for the tenants registration and 
configuration; v) Statistics Collector (SC), which collects and 
reports statistics on the overlay networks and the devices. In the 
proposed architecture, all the controller modules are designed to 
be stateless. All the information including statistics, overlays, 

tenants, devices and the network graph is persisted on a data 
store, which can be either external or internal to the controller. 
Storing data externally to the controller has advantages from the 
resiliency point of view, as the controller failures do not affect 
data. In our current implementation, we store data on an external 
MongoDB database [24]. 

At the lowest level, the EveryEdgeOS interacts with the 
EveryEdge devices to program and control them. The 
communication between the EveryEdgeOS and the EveryEdge 
devices is handled via an interface called Southbound API. We 
decided to extend the Southbound API proposed in [10] to 
support the functionalities needed to control an EveryEdge 
device, such as the setup of VXLAN tunnels and the 
configuration of the routing tables. In [10], the authors have 
compared four different implementations: gRPC, REST, 
NETCONF, SSH/CLI. In this work we have adopted the gRPC 
solution for the API implementation. 

On top of the SD-WAN controller there is an orchestrator 
called EveryBOSS, which is shown in Figure 9. 

 

Fig. 9. SD-WAN orchestrator and EveryGUI  

The orchestrator offers a GUI called EveryGUI through 
which the tenants can design the network topology, configure 
the services, manage the SD-WAN interconnections, the virtual 
devices and the users. The communication between the 
EveryBOSS and the EveryGUI is handled via a REST interface. 
The commands received from the GUI are sent to the SD-WAN 
controller through the Northbound interface exposed by the SD-
WAN controller. Moreover, the EveryBOSS interacts with a 
Keystone instance to support user registration and authentication 
functionalities. 

VI. EVERYWAN VALIDATION AND PERFORMANCE EVALUATION 

PLATFORM (EVPE PLATFORM) 

We have built an open reference environment on top of the 
Mininet [25] emulator to deploy and test EveryWAN and related 
network services. We call this environment EveryWan 
Validation and Performance Evaluation platform (EVPE). The 
EVPE includes pre-designed example topologies which support 
the emulation of different WAN scenarios, including the 
different broadband technologies and NATed environments. 



With EVPE it is possible to measure various performance 
indicators inside a topology. In the dataplane it can compare the 
throughput and the CPU/memory usage between VXLAN and 
SRv6. It is also possible to measure different control plane 
aspects, such as the time needed to configure various services or 
the scalability. 

Figure 10 shows the example of a SD-WAN scenario 
emulated in the EVPE. 

 

Fig. 10. Emulated topology  
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