
The Case for Native Multi-Node In-Network
Machine Learning

Lorenzo Bracciale
lorenzo.bracciale@uniroma2.it

Univ. of Rome Tor Vergata / CNIT
Rome, Italy

Tushar Swamy
tswamy@stanford.edu
Stanford University

USA

Muhammad Shahbaz
mshahbaz@purdue.edu

Purdue University
USA

Pierpaolo Loreti
pierpaolo.loreti@uniroma2.it

Univ. of Rome Tor Vergata / CNIT
Italy

Stefano Salsano
stefano.salsano@uniroma2.it

Univ. of Rome Tor Vergata / CNIT
Italy

Hesham Elbakoury
helbakoury@gmail.com

Consultant
USA

ABSTRACT
It is now possible to run per-packet Machine Learning (ML) infer-
ence tasks in the data plane at line-rate with dedicated hardware in
programmable network switches. We refer to this approach as per-
packetML. Existing work in this area focuses on a single node setup,
where the incoming packets are processed by the switch pipeline
to extract features at different levels of granularity: packet-level,
flow-level, cross-flow level, while also considering device-level fea-
tures. The extracted features are then processed by an ML inference
fabric inside the same switch.

In this position paper, we propose to extend and enhance this
model from a single node to a collection of nodes (including swit-
ches and servers). In fact, there are several scenarios where it is
impossible for a single node to perform both feature processing
(e.g., due to lack of or limited access to data) and the ML inference
operations. In a multi-node setup, a node can extract ML features
and encode them in packets as metadata, which are then processed
by another node (e.g., switch) to execute native inference tasks. We
make a case for a standard model of extracting, encoding, and for-
warding features between nodes to carryout distributed, native ML
inference inside networks; discuss the applicability and versatility
of the proposed model; and illustrate the various open research
issues and design implications.

1 INTRODUCTION
Recent efforts (e.g., Taurus [17], IIsy [20], and pForest [4]) show
that, with programmable hardware blocks (like MapReduce and
Match-Action Tables, MATs) inside network switches, it is now
possible to run per-packet Machine Learning Inference (MLI) tasks
inside the data plane, i.e. to run ML algorithms on each packet
individually and at line rate. We refer to this approach as per-packet
ML. For example, a Taurus-enabled switch (Figure 1) extends the
Protocol Independent Switch Architecture (PISA) [14] by adding an
ML inference engine (based on MapReduce). The new block allows
network switches to operate ML inference tasks on a per-packet
basis at line rate.

However, despite the new inference block, the accuracy of a
given ML task heavily depends on the availability of and access to
input features for inference. When operating inside a switch, these
features can either arrive as metadata on packets or via flow tables.
For example, Taurus employs the packet parser to extract features

Parse Preprocess Infer Postprocess Schedule

Read 
packet
fields

Integrate / 
augment 

data

Vector
multipl.

Nonlinear
operations

Analyze
Inference

Output

Forward,
Drop,

Redirect

Feature 
Extraction

ML
Inference

Figure 1: Taurus-enabled switch: a single-node model.
from packets and a sequence of flow tables to preprocess these
features before passing them along to the inference block (Figure 1:
Parse/Preprocess stages). More generally, the switch retrieves the
information inside a packet (header and payload) and combines it
with the existing stateful information (e.g., counters)—a process we
call Feature Extraction (FE). A switch can, for example, evaluate the
accumulated number of bytes and packets received for a particular
flow.1 It can also augment it with other (cross-flow) information,
which is not direly associated with the flow; for example, the num-
ber of total packets received by the switch or the total active flows
on a given TCP port. As FE and MLI blocks are operating in the
same node in Figure 1, we refer to it as a single node model.

Often times a single node (e.g., core or Top-of-the-Rack switch)
may not have access to certain features or it might just be infea-
sible or inefficient to run FE and MLI on the same node. As an
example of the first issue (accessibility), the switch does not have
access to potentially important features related to the Virtual Ma-
chine that originated a packet, such as its current CPU utilization
or the number of failed login attempts [6]. Considering the other
issue (feasibility and efficiency), the evaluation of flow based fea-
tures in a switch could be challenging due to the potentially very
large number of flows that needs to be monitored. Therefore, we
posit that it is necessary to split and distribute the FE and MLI
tasks on different nodes [17], and have them share features using
a standard interface. In this position paper, we make the case of
designing a native interface for FE and MLI inter-communication
1Different granularities of a flow can be considered by the switch (e.g., 5-tuple of
protocol type, source/destination IP address, source/destination transport layer address
or the source/destination MAC address).

1



when operating in distributed multi-node configuration (such as,
in a datacenter network). We discuss the applicability and advan-
tages of such a distributed FE/MLI model and the need for a native
inter-communication interface. We also highlight the accompany-
ing open-research challenges and their implications.

2 NATIVE DISTRIBUTED IN-NETWORK
MACHINE LEARNING

We posit that there is a need to extract features located elsewhere
in a network (e.g., servers and switches) and transmit them to node
performing per-packet ML. This can be done in different ways; for
example by sending out of band control plane messages from the
FE node to the MLI node. On the other hand, to mitigate delays
and network overheads, we follow a similar in-band approach as
Taurus and propose to forward messages by encoding features
as headers on existing traffic flowing in the network. Doing so,
therefore, requires extending the data plane (at the network layer)
to support the proposed distributed FE/MLI architecture.

We extend the conceptual single-node model (Figure 1) to a more
general multi-node model (Figure 3). The nodes that include MLI
engines also have accompanying FE components to process features
extracted by the previous nodes and, in turn, transmit them to the
subsequent nodes. Next, we discuss the scenarios under which the
proposedmulti-nodemodel yields benefits (§2.1) and how andwhen
to transmit features in a such a model (§2.2).

2.1 When to Use Distributed FE/MLI?
The proposed distributed FE/MLI architecture allows transmitting
extracted features between a collection of nodes in a network. Doing
so, in turn, would reduce the available capacity on the links and
consume compute resources at both the transmitting and receiving
nodes. Therefore, it is worth discussing under what scenarios is it
feasible to use the proposed approach and in which contexts. Our
stand is that the distributed FE/MLI enables scenarios that are not
possible using a single-node model, and therefore can yield greater
benefits despite the additional overheads.

Benefit #1: Scaling memory and compute. One issue in the
single-node model stems from the limited available memory in a
node to store state information for the feature-extraction process.
For example, the amount of per-flow information that needs to be
maintained in the node grows linearly with the number of flows that
need to be analyzed. The number of flows in a switch/router that
should run the feature extraction in the single-node model could
exceed the node capability and capacity. The distributed FE/MLI
approach distributes the state information across a number of up-
stream FE nodes, improving the scalability of the system. Each
FE node processes a subset of all flows that are crossing a switch,
sharing not only state information but also the processing burden.

Benefit #2: Access to remote data. The FE nodes in distributed
FE/MLI have visibility to information that is not directly available
on a switch, operating in a single-node model. Examples of such
information include system-level monitoring of data at the end-
hosts and virtual machines (e.g., CPU utilization and number of
login attempts).

Feature 
Extraction

ML
Inference

FE node MLI node

Features
transmission

Figure 2: Distributed approach for Feature Extraction and
ML Inference: Distributed FE/MLI.

FE

FE : Feature Extraction
MLI : Machine Learning Inference

MLIFE MLIFE

FE

Feature
Transmission

Feature
Transmission

Figure 3: General scenario for Distributed FE/MLI.

Benefit:#3: Complex FE processing at the end-hosts. A dis-
tributed FE component running at the end-hosts can exercise the
full flexibility and capabilities of general-purpose software (as op-
posed to switch-level hardware) to execute more complex- and
custom-processing algorithms for feature extraction. For instance,
in a multi-tenant data center (Figure 4, we can have FE modules
that execute inside VMs (using eBPF [19]), and a hardware-based
ML module working at the aggregation switch level. The software
FE modules scale with the number of VMs and have access to all the
VM- and application-level information (e.g., CPU utilization and
failed login attempts); whereas, the hardware ML modules work at
line-rate and can make packet-level decisions.

2.2 How & When to Transmit Features?
There can be various mechanisms to transmit features, which are
extracted by an FE node, towards the nodes that run the MLI engine,
based on their location (e.g., management, control, or data plane).
These different mechanisms operate at varying time scales. The
management-plane solutions are the slowest., as they require the
extracted features to be collected and distributed via a centralized
management system.The control-plane approaches involves control
elements running inside the FE and MLI nodes, exchanging control
messages that carry the extracted features. These approaches oper-
ate on a similar time scale as the management plane and, therefore,
introduce latency overheads that can hinder the execution of the
desired per-packet ML tasks (as discussed in Taurus [17]). To op-
erate at per-packet time scales, the solution therefore is to extend
the network data plane (both physical and virtual) to support the
proposed distributed FE/MLI architecture—transmitting features
in-band along with the packets.

We will discuss in §4 how to extend the data-plane packets (in
the context of the IPv6 network layer) to carry and transmit the
extracted features between FE and MLI nodes. Supporting faster re-
action time would require adding features to every packet; however,
this will induce considerable overhead (1) in terms of the amount
of information (features) to encode in the packet as well as the
processing time to extract and write these features into the packets
on each FE node; and (2) in terms of the processing load to read and
process them on the MLI nodes. Depending on the particular MLI

2



Aggregation switch

Top of the rack 
switch

ServerVM VM VM VM

VM VM VM VM

VM VM VM VM

VM VM VM VM

VM VM VM VM

VM VM VM VM

Feature extraction

ML Inference

Figure 4: Distributed FE/MLI model applied to a multi-tenant
data center.

use case, the extraction, encoding, and transmission of FE features
on every packet might not be necessary. To save the bandwidth and
processing overhead, we can therefore use a sampling approach.
On average, the features are transmitted every # packets for each
flow or based on a timer with a rate limit (e.g., at most on every mil-
lisecond). There is a tradeoff in implementing such an approach to
optimize for detection/reaction time of an MLI task versus network
and processing overheads. As such, careful consideration much be
taken when employing this approach. We identify this tradeoff as
a research challenge that deserves future attention and leave it as
future work here.

3 FEATURE DEFINITION & EXTRACTION
Feature engineering is a complex process that can be hard to auto-
mate. It is deeply correlated with the specific problem that machine
learning has to address, making it difficult to specifically identify
the feature set.

3.1 In-band Transmission of Features
In the networking context, we can make a broad classification
of features as per-packet features, per-flow features, and cross-flow
features.

Examples of per-packet features include those extracted by tools.
such as nPrint [11], which provides a convenient representation
of packets in a ML friendly format, e.g., associating more than 480
features to IPv4 headers.

However, for the scenario we are discussing in this paper, the
above approach is not feasible:
• Per-packet features lead to redundancy when transmitted

in-band. Carrying per-packet features essentially duplicates the
data, which is already present in the packet.

• Per-packet features bring limited information: The network
state can be better characterized using aggregated information
at the flow (or flowlet) level, as evidenced through several work,
e.g., [3, 8]. Also, in nPrint [11], the Snowflake classification uses
43 packets (DTLS handshake): single packet information is ac-
tionable primarily when correlated with other information of the
same flow.
For these reasons, in what follows we will focus on features

related to a specific flow (flow-level features) or to a bunch of

flows (cross-flow features). It is important to note that we are not
considering the final statistic of a flow at the end of the flow, but
we are considering features that dynamically change on a packet-
by-packet basis during the lifetime of the flow. Examples are the
accumulated number of bytes and packets transmitted in a flow.
We also refer to these statistics as window-based meaning that they
are referred to a temporal window of observation and not to the
overall lifetime of the flow.

3.2 Attempts at Defining Per-flow Features
A conventional definition of a flow is given by NetFlow, a solution
that was invented by Cisco to measure and export flow-level data
in routers [7]. Following such definition, a flow is a sequence of
packets with the same ingress interface, source and destination IP
addresses, IP protocol, source and destination ports, and IP Type of
Service.

Then IETF standardized IPFIX [10], a push protocol to moni-
tor and export flow-related information, which has been derived
from NetFlow v9 (RFC 3954). The protocol is specified in a series
of RFCs (e.g., RFC 3917, 7011 and 6313) which define the architec-
ture, requirements and protocol aspects. For what concerns the
feature definition, the IPFIX Information Model, defined in RFC
7012, defines the Information Elements with their Data Types (e.g.,
unsigned16, ipv4Address, dateTimeNanoseconds) and their Se-
mantics (e.g., totalCounter, deltaCounter). The complete and
updated list of Information Elements is made available by the IANA
“IPFIX Information Elements” registry [12] where , currently, 491
different Information Elements are reported.

However, if we look at the feature-extraction software, such
as Cisco’s Joy2 used in [2], we can see many deviations from the
standards. For instance it adds much more features regarding TLS
fingerprints, to enhance encrypted traffic analytics. This is an ex-
ample of how, in practice, there does not exist a reference set of
universally adopted flow-based features, since it varies with the
specific needs of the applications.

3.3 Going Beyond Flow-based Features
A flow can be characterized by a number of features, such as
bandwidth, packet count or bytes exchanged. It can also have
more complex indicators (such as histogram of tcp flag counting) or
distribution-based features (such as number of packets with header
lengths between 28 and 40).

Most of these features have been standardized by IPFIX, however,
these may not be enough for some machine-learning application.
For instance, in all the three dataset provided by NetML [3], a
proprietary flow feature-extraction library has been used to extract
several TLS, DNS, HTTP, and other metadata flow features from
raw traffic. Moreover, additional features can represent cross-flow
information, such as how many flows start from the same node and
expanding the set from a single flow to a graph-of-flows information.
Example of cross-flow features in ML are provided in [8], which
uses the srv_count feature defined as the number of connections to
the same service as the current connection in the past two seconds.
Such features provide a concise information about the network
graph to the ML module.

2https://github.com/cisco/joy

3

https://github.com/cisco/joy


It is worth mentioning that we can also have device- or software-
related features mixed inside network-related ones. For instance, in
the popular NSL-KDD dataset [6], we have security-related features
(such as the num_failed_logins or su_attempted that are outside
the networking domain, but which can provide a valid knowledge
to characterixe the intent of a network flow.

3.4 Challenges with Extracting Features
The problem of feature extraction and transmission is mainly re-
lated to the size of the tables needed to contain the information for
the different flows. In order to reduce the memory occupancy and,
thus, the subsequent amount of information that must be trans-
ferred to the ML algorithms, it is better to act by aggregating the
measurements of the different flows or by applying techniques to
evaluate the statistical characteristics of the packets.

For instance Flowlens [5] learns at line rate the statistical dis-
tribution of the packets and propose a compact way to represents
the distributions called flow-markers. If the choice of quantization
coefficients and truncation level of the distribution are made ap-
propriately, it is possible to control the performance degradation of
ML algorithms caused by compression.

Thus, using techniques such as flow-markers or similar, it is
possible to (i) extract flow-level features at line rate, even in a
distributed manner; (ii) transport these features in packets in a
compressed manner, thanks to compression formats that are de-
signed to preserve the significant characteristics of the distributions
characterizing the flows; and (iii) use this information to provide
the switches with a view of the global network state so that the ML
engine is not limited to inference using local state only.

4 ENCODING FEATURES IN DATA PLANE
In our proposed distributed FE/MLI architecture, the features are
extracted in FE node and transmitted to MLI nodes (in the data
plane). To do so, the extracted information needs to be carried
inside packets and processed by the receiving MLI node at the
data-plane level—to perform per-packet ML with minimal delay
in the ML analysis (and reaction). As packets sizes (and count)
lead to network traffic overhead, transmitted feature in-band in
the network requires efficient encoding schemes to reduce the
transmission overhead (in terms of additional bytes needed) and
the processing overhead associated with the writing and reading
of these features and the FE and MLI nodes.

Existing Tag-Length-Value (TLV) solutions (as used for example
in the IPFIX encoding) will not suffice in this context. Traditional
TLV encoding has the advantage of being self descriptive, e.g., by
looping up the Tags in the IPFIX specification one can decode the
IPFIX message. However, this self-descriptive property results in
additional overhead (in terms of bytes per packet). Therefore, to
transfer features, its is better to carry information in binary format
as a byte array, with no explicit tags. We call this byte array an
Encoded Features Representation or an EFR record. In the distributed
FE/MLI architecture, the FE node extracts features, create an EFR
record, and transmit it in-band using the data plane. The MLI node
(or switch) on receiving the EFR record, parses the EFR header and
rung the MLI tasks directly on the incoming bytes (provided as
input the MLI engine).

ID Structure of EFR

x
num of packets (2 bytes),
num of bytes (4 bytes),
duration in ms (4 bytes)

y duration in ns (8 bytes),
num of packets (2 bytes)

Table 1: An example definition of EFR records.

4.1 The EFR Record
The definition of an EFR record corresponds to the definition of
a fixed-sized struct in the C programming language: an EFR is
composed of a sequence of features, and each feature is encoded
in binary format with a specific number of bytes. Different ML
applications require different sets of features; hence, different EFR
record structures will need to be defined. The sender and receiver
of a given EFR record should both be aware of its content: the exact
sequence of features it carries, and the size of each feature in bytes.
The idea is to associate an identifier (agreed upon by the transmitter
and receiver) to describe the EFR record structure, i.e., the sequence
of features (and their format) that are carried in the EFR record.
In this way, each packet can carry a different type of EFR record
identified by a different ID. As an example, in Table 1, two EFR
records are defined, a record of 12 bytes that carries three features,
has a fixed length of 12 bytes, and is associated to the ID G as well
as a record of 10 bytes that carries two features, has a length of 10
bytes and the ID ~. (In comparison, the array of bytes containing
the features used by the Inference processor in Taurus is called
Packet Header Vector or PHV.)

4.2 Standardization Aspects and EIP
We believe that there are different aspects that are relevant for
standardization:
(1) How to carry the encoded features (e.g., the proposed EFR

record) in a given network protocol (in particular, we focus on
the IPv6 data plane)?

(2) Which features are used and how they are encoded (i.e., the
format and the content of the EFR records)?

(3) What set of potential features to consider?
We advocate a “lightweight” standardization approach, only fo-

cusing on the first aspect, i.e., how to carry the EFR record in IPv6.
We believe that the format and content of the EFR record is depen-
dent on the specific use case and any standardization effort should
enable support for defining these individual formats in arbitrary
ways per application.

Using EIP to carry the EFR Record. Extensible In-band Process-
ing (EIP) [15, 16] is a framework to add information in IPv6 packet
headers to support different use cases. The EIP framework can be
extended to support new use cases by adding specific Information
Elements. An open source prototype of the framework is available
at [1].

The EIP framework can be easily extended to support the dis-
tributed FE/MLI architecture. A new Information Element in the
EIP header, called the EFR (Encoded Features Representation) is
needed. The EFR information element contains: (i) the identifier

4



that is used by the receiver to understand the content and (ii) the
EFR record, i.e., the array of bytes with the encoded features.

5 DATASETS AND THEIR LIMITATIONS
Well-defined features are essential to the performance of MLmodels.
Applications like anomaly detection can be assessed on a packet-
by-packet basis by interpolating packet-level data from flow-level
events to ensure fine-grain security. Systems, like Taurus [17], have
had to breakdown existing flow-level data such as the NSL-KDD
dataset [6] to reproduce packet-level events. Features that appear in
the dataset, such as the duration of the connection or the number of
urgent flags, can change on a packet-by-packet basis and need to be
monitored on that same granularity. This can also be seen with the
use of partial packet length and inter-arrival time histograms seen
in applications like Botnet Chatter detection [5]. Structures that
aggregate information can be useful for training in their finished
forms, but in order to detect events at the appropriate scale, they
must be used for inference in their incomplete, packet-level forms.

5.1 Challenges with Existing Datasets
Although the performance of ML applications (and network-ML
applications by extension) are largely dependent on their datasets,
modern datasets in networking fall short in a number of ways.
Datasets tend to be assembled in a haphazard way and cater only
towards a singular application.

Limitation #1: Packet-level features vs flow-level features.
Most current networking datasets contain flow-level features, pri-
marily to reduce the size of the dataset. ML training relies on draw-
ing correlations between high-dimensional inputs. To do this, large
quantities of data are necessary as well as many faceted inputs to
draw correlations between. In addition, many network events are
not confined to the flow-level. Events like security breaches, con-
gestion window modifications, queue management configuration
changes, etc., can all occur at sub-flow, flow-let, or packet levels. Re-
moving access to timescales like this from datasets prevents models
from properly picking up on these events, inhibiting their effec-
tiveness. Condensing traffic information to the flow-level trades off
data size for the accuracy of ML models and is antithetical to the
use of ML in general.

Limitation #2: Need for real-time statistics in datasets. In addi-
tion to the added fidelity of having packet-level features, flow-level
features can also benefit from being broken down into sub-flow data
samples, we call them window-based features. In this way, instead
of providing just a single value for a given feature of a flow which
is computed when the flow ends, we can have a temporal series
of values. As shown in the Homunculus compiler [18], working
with aggregated statistics made from flows (or even multiple flows)
can still yield good results when operating on partially constructed
statistics (i.e., sub-flow level data) by training with completed sta-
tistics and running predictions on incomplete statistics. Because
they use the same datasets, the effect of working with partial his-
tograms can be applied to other security applications like Website
Fingerprinting and Covert Channel Detection [5]. The predictions
will not signal detection of an event until the partially constructed
statistic reaches the fidelity of the completed one. In these cases,

the detection is immediate rather than alternative methodologies
where flows are logged and the aggregate statistics are calculated
offline at regular intervals.

Limitation #3: Consensus on reference network ML datasets.
WithML-networking research still in its infancy, datasets are sparse
and vary wildly from task to task. The lack of a common format
or methodology in constructing these datasets has a deleterious
effect on both research in this area as well as industry adoption of
ML techniques. In addition to the excess work required to adapt
these datasets to existing ML infrastructure, the inconsistency in
formatting makes it difficult to extend these datasets as well. Har-
monization of header fields for ML means that models need to
be trained on datasets with these same harmonized fields as data
samples.

6 RELATED WORK
In-Band Processing and Telemetry. In addition to passing in-
formation within network elements for consumption, the use of
in-band telemetry to collect data-plane information can also be
beneficial to the control plane. Geng et al. showed that their system
SIMON [9] can send query packets into the data plane to collect
information about devices in the network and reconstruct queue
states and predict throughout of the network. The SIMON system
also uses machine-learning inference to reconstruct the global state.
In this scenario, the feature extraction elements are still located in
the data plane, but the machine-learning inference is moved to the
control plane.

The problem of feature transmission in in-band telemetry sys-
tems has been addressed extensively in the literature. In order to
reduce the data flow, it is possible to sample traffic (as in [13]) or use
probabilistic data structures to obtain limited error representations
(as in [21]). Hybrid solutions, such as Flowlens [5], discussed in
§3.1, seem to provide a good compromise between implementation
complexity and representation efficiency.

Feature Encoding and Extraction. nPrint [11] is proposed by
Holland et al. to extract features from packets in a way that is con-
venient for machine learning. This approach is suited for local data
preprocessing but not for multi-node in-network ML, as discussed
in §3.1. IPFIX [10] is a standard protocol for sending IP flow data
from network devices to collector systems for network monitoring
and analysis. It is a management plane protocol and is also not
suitable for sending information within the data plane.

7 CONCLUSION
To conclude, let us review our position and recall the open research
challenges. Considering the application of machine learning to
networking, we identified two emerging needs:

(1) The need for more investigation on distributed systems per-
forming machine learning at the networking level. The spatial
distribution of the elements improves the scalability of the sys-
tem, and provide hybrid systems the advantages of both software
and hardware elements.

5



(2) The need for further investigation on data-plane solutions
that enable fast communication and timely reaction in ML sub-
systems. Here, one of the key enablers is the advent of hardware-
based ML networking devices to run inference at line rate [17].
In turn, this calls for a continuous in-band flow of information
to adequately feed such ML inference engines.
Several specific issues and challenges arise from these two main

needs. Among them, we highlight:
• The definition of new mechanisms to allow entities to communi-

cate and exchange ML data in the data plane (e.g., to exchange
features or weights). In particular, we have proposed to use the
EIP framework.

• The production of new network datasets and the convergence
of the community towards “reference” challenges and perfor-
mance metrics to measure progress, as is happening in other
research communities (e.g., an equivalent of the MNIST dataset
for handwritten digit classification).

• The improvement of window-based feature extraction (flow and
cross-flow), to trade off resource usage and latency.

REFERENCES
[1] Anon. 2022. Extensible In-band Processing (EIP) Home Page. https://eip-home.

github.io/eip/. Accessed: 2022-09-29.
[2] Onur Barut, Matthew Grohotolski, Connor DiLeo, Yan Luo, Peilong Li, and Tong

Zhang. 2020. Machine Learning BasedMalware Detection on Encrypted Traffic: A
Comprehensive Performance Study. In 7th International Conference on Networking,
Systems and Security. 45–55.

[3] Onur Barut, Yan Luo, Tong Zhang, Weigang Li, and Peilong Li. 2020. NetML:
A Challenge for Network Traffic Analytics. CoRR (2020). arXiv:2004.13006
https://arxiv.org/abs/2004.13006

[4] Coralie Busse-Grawitz, Roland Meier, Alexander Dietmüller, Tobias Bühler, and
Laurent Vanbever. 2019. pforest: In-network inference with random forests. arXiv
preprint arXiv:1909.05680 (2019).

[5] D. Barradas et al. 2021. FlowLens: Enabling Efficient Flow Classification for
ML-based Network Security Applications. In Network and Distributed System
Security (NDSS) Symposium.

[6] L Dhanabal and SP Shantharajah. 2015. A study on NSL-KDD dataset for intru-
sion detection system based on classification algorithms. International journal
of advanced research in computer and communication engineering 4, 6 (2015),
446–452.

[7] Cristian Estan, Ken Keys, David Moore, and George Varghese. 2004. Building a
better NetFlow. ACM SIGCOMM Computer Communication Review 34, 4 (2004),
245–256.

[8] Tang Tuan A et al. 2016. Deep learning approach for network intrusion detec-
tion in software defined networking. In 2016 international conference on wireless
networks and mobile communications. IEEE.

[9] Yilong Geng, Shiyu Liu, Zi Yin, Ashish Naik, Balaji Prabhakar, Mendel Rosenblum,
and Amin Vahdat. 2019. SIMON: A Simple and Scalable Method for Sensing,
Inference andMeasurement in Data Center Networks. In 16th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 19). 549–564.

[10] Rick Hofstede, Pavel Čeleda, Brian Trammell, Idilio Drago, Ramin Sadre, Anna
Sperotto, and Aiko Pras. 2014. Flow monitoring explained: From packet capture
to data analysis with netflow and ipfix. IEEE Communications Surveys & Tutorials
16, 4 (2014), 2037–2064.

[11] Jordan Holland, Paul Schmitt, Nick Feamster, and Prateek Mittal. 2021. New
Directions in Automated Traffic Analysis. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security (Virtual Event, Republic
of Korea) (CCS ’21). Association for Computing Machinery, New York, NY, USA,
3366–3383. https://doi.org/10.1145/3460120.3484758

[12] IANA. [n.d.]. IP Flow Information Export (IPFIX) Entities. https://www.iana.
org/assignments/ipfix/ipfix.xhtml

[13] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. 2016. {FlowRadar}: A
Better {NetFlow} for Data Centers. In 13th USENIX symposium on networked
systems design and implementation (NSDI 16).

[14] N McKeown. 2015. PISA: Protocol Independent Switch Architecture. In P4 Work-
shop.

[15] S. Salsano et al. 2022. Extensible In-band Processing (EIP) Architecture and
Framework. draft-eip-arch. https://datatracker.ietf.org/doc/draft-eip-arch Work
in Progress.

[16] S. Salsano et al. 2022. Supporting Future Internet Services with Extensible In-Band
Processing (EIP). In Proceedings of the ACM SIGCOMM Workshop on Future of
Internet Routing & Addressing (Amsterdam, Netherlands) (FIRA ’22). Association
for Computing Machinery, New York, NY, USA, 92–98. https://doi.org/10.1145/
3527974.3545727

[17] Tushar Swamy, Alexander Rucker, Muhammad Shahbaz, Ishan Gaur, and Kunle
Olukotun. 2022. Taurus: a data plane architecture for per-packet ML. In Pro-
ceedings of the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems. 1099–1114.

[18] Tushar Swamy, Annus Zulfiqar, Luigi Nardi, Muhammad Shahbaz, and Kunle
Olukotun. 2022. Homunculus: Auto-Generating Efficient Data-PlaneML Pipelines
for Datacenter Networks. arXiv preprint arXiv:2206.05592 (2022).

[19] Marcos AM Vieira, Matheus S Castanho, Racyus DG Pacífico, Elerson RS Santos,
Eduardo PM Câmara Júnior, and Luiz FM Vieira. 2020. Fast packet processing
with ebpf and xdp: Concepts, code, challenges, and applications. ACM Computing
Surveys (CSUR) 53, 1 (2020), 1–36.

[20] Zhaoqi Xiong and Noa Zilberman. 2019. Do Switches Dream of Machine Learn-
ing? Toward In-Network Classification. In Proceedings of the 18th ACMWorkshop
on Hot Topics in Networks (Princeton, NJ, USA) (HotNets ’19). Association for
Computing Machinery, New York, NY, USA, 25–33. https://doi.org/10.1145/
3365609.3365864

[21] Xiwen Yu, Hongli Xu, Da Yao, Haibo Wang, and Liusheng Huang. 2018. Count-
Max: A lightweight and cooperative sketch measurement for software-defined
networks. IEEE/ACM Transactions on Networking 26, 6 (2018), 2774–2786.

6

https://eip-home.github.io/eip/
https://eip-home.github.io/eip/
https://arxiv.org/abs/2004.13006
https://doi.org/10.1145/3460120.3484758
https://www.iana.org/assignments/ipfix/ipfix.xhtml
https://www.iana.org/assignments/ipfix/ipfix.xhtml
https://datatracker.ietf.org/doc/draft-eip-arch
https://doi.org/10.1145/3527974.3545727
https://doi.org/10.1145/3527974.3545727
https://doi.org/10.1145/3365609.3365864
https://doi.org/10.1145/3365609.3365864

	Abstract
	1 Introduction
	2 Native Distributed In-Network Machine Learning
	2.1 When to Use Distributed FE/MLI?
	2.2 How & When to Transmit Features?

	3 Feature Definition & Extraction
	3.1 In-band Transmission of Features
	3.2 Attempts at Defining Per-flow Features
	3.3 Going Beyond Flow-based Features
	3.4 Challenges with Extracting Features

	4 Encoding Features in Data Plane
	4.1 The EFR Record
	4.2 Standardization Aspects and EIP

	5 Datasets and Their Limitations
	5.1 Challenges with Existing Datasets

	6 Related Work
	7 Conclusion
	References

