This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3325624

Composing eBPF Programs Made Easy with HIKe and eCLAT

Andrea Mayer, Lorenzo Bracciale , Paolo Lungaroni, Giulio Sidoretti,
Stefano Salsano, Giuseppe Bianchi, Pierpaolo Loreti

With the rise of the Network Softwarization era, eBPF has
become a hot technology for efficient packet processing on
commodity hardware. However the development of custom eBPF
solutions is a challenging process that requires highly qualified
human resources. Indeed, in eBPF, it is difficult to devise
truly modular applications since the development model does
not favour the use of pre-compiled functions and libraries. In
addition, for safety purposes, each eBFF program must pass a
binary code verifier of the Linux kernel, which may increase the
difficulty of the development process.

To overcome such difficulties and enable a new development
model, in this paper we propose the eCLAT framework with
the goal to lower the learning curve of engineers by re-using
eBPF code in a programmable way. eCLAT offers a high level
programming abstraction to eBPF based network programma-
bility, allowing a developer to create custom application logic
with no need of understanding the complex details of regular
eBPF programming. A developer can write eCLAT scripts in a
python-like language to compose eBPF programs.

To support such abstraction at the eBPF level, we created
an eBPF framework called HIKe which brings code reuse
and modularity in eBPF. The eCLAT/HIKe solution does not
require any kernel modification. The new development model is
tested through two concrete examples and compared with other
proposed frameworks in the eBPF world.

Index Terms—Computer networks, Computer network man-
agement, Network function virtualization

I. INTRODUCTION

Extended Berkeley Packet Filter (eBPF) [1] is a technology
for packet processing in Linux/x86 nodes of datacenters,
which has recently gained a prominent position among the
solutions to improve the packet processing performance [2],
[3], [4], [5]. eBPF has been successfully adopted for the
development of Cilium [6], a leading framework for secure
networking in the Kubernetes container orchestration platform,
for the GKE Dataplane V2, and for Katran [7], a layer-4 load
balancer open-sourced by Meta. The wide adoption of eBPF
for networking applications has shown that developing eBPF
programs is not easy. There are a few annoying limitations
and issues in the eBPF architecture and development model
that generate complexity, preventing a wider application of this
technology and limiting the advantages that eBPF could bring
(81, [9].

The eBPF composition approach has historically been based
on tail calls, i.e. lightweight calls between one program and

Andrea Mayer, Lorenzo Bracciale , Paolo Lungaroni, Giulio Sidoretti,
Stefano Salsano, Giuseppe Bianchi, Pierpaolo Loreti are with the Electronic
Engineering Dept. of the University of Rome Tor Vergata, Rome, Italy and
the CNIT - Consorzio Nazionale Interuniversitario per le Telecomunicazioni,
Parma, Italy. Lorenzo Bracciale is the corresponding author.

This work was partially supported by the European Union under the
Italian National Recovery and Resilience Plan (NRRP) of NextGenerationEU,
partnership on “Telecommunications of the Future” (PEO0000001 - program
“RESTART”).

******* ~

i flow_rate = flowmeter(packet)
> #drop flows greater than 10Mbps
if flow_rate > 10:

; 'droppacket!()

s else:

6 \’allowpacket\,()

Listing 1: Example of an eCLAT chain. Inside a chain, eBPF
programs are called as they were functions, allowing an easy
and flexible programming of application logic.

another in which the execution context is not maintained and
which neither allow parameter passing nor support a return
value. Only recently the eBPF is introducing the function
calls to improve code composability. Such feature is still
under development and presents not negligible limitations with
respect to regular function calls [6] and, for now, it is supported
only by the x86_64 architecture, excluding an important share
of servers using ARM processors (22% by the 2025 according
to [10]). As a consequence, the eBPF world still lacks the
concept of a function library as we are used to in other
programming frameworks, effectively preventing a reuse of
the code.

Moreover, eBPF programs need to be verified by the kernel
before being loaded, this process is very annoying for the
developer [11] and it can increase the development time
with a significant loss of productivity. Difficulties in verifying
complex and/or large eBPF programs have led developers
to choose the decomposition approach. This means that the
logic contained in a complex eBPF program is distributed
over simpler eBPF programs that are verified individually,
thus increasing the chances of passing the verification stage.
However, the problem is finding a way to chain these programs
in order to regain the business logic of the single and initial
complex program.

In this work, we propose an approach where “small” and
independent eBPF programs can be easily arranged together
to build complex workflows, without changing their source
code but just composing them together in a programmable
way. Using a Unix similarity is like having many standalone
programs such as cut, tail, grep, sed, and using bash scripts to
compose them for a wide range of specific application needs.

The proposed approach is called eCLAT (eBPF Chains
Language And Toolset). eCLAT offers a python-like script-
ing language for composing eBPF programs and helpers for
simplifying the interaction with eBPF maps. An example of
an eCLAT script, which we call chain, is shown in Listing 1.
In the eCLAT scripts it is possible i) to define variables;
ii) to implement looping/branching operations, and iii) to
execute independent eBPF programs (highlighted in green in
Listing 1).

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3325624

eCLAT foster a new vision in which there are two types
of developers: i) the expert eBPF developers, a minority
of developers highly skilled in eBPF programming that can
develop the eBPF components; ii) the eCLAT developers, the
large majority that writes eCLAT scripts using the eCLAT
language and toolkit to compose the custom applications. We
believe that the high-level python-like abstraction offered by
eCLAT greatly simplifies the learning curve for developers
allowing them to focus more on application logic. System
administrators accustomed to command line tools can easily
become eCLAT developers and benefit from the power and
the speed of eBPF, without the difficulties of becoming eBPF
programmers. Using the eCLAT framework, a large number of
novice programmers can implement complex application logic
exploiting the eBPF powerful capabilities. Also the expert
developers can benefit from using the eCLAT scripts because
it can boost their productivity when a given problem can be
solved by combining existing eBPF programs.

In order to turn our vision to reality, we have designed an
eBPF framework called HIKe (HIKe stands for Hide, Improve
and desKill eBPF) for executing the eCLAT Chains. The eBPF
programs to be composed within a chain have to be extended
with proper “calls” to the HIKe library and thus we refer to
them as HIKe eBPF programs or HIKe programs for short.
The HIKE framework will allow such programs to look like
functions of a precompiled library, which can be imported,
which are called, which return a value, etc. as we are used to
in programming other languages.

The contributions of the paper are as follows: i) we pro-
pose eCLAT and HIKe as the first framework enabling the
composition of precompiled and pre-verified eBPF code ii)
we designed a Python-like scripting language that is transpiled
in bytecode for implementing network eBPF applications iii)
we design and implemented HIKe eBPF framework and the
eCLAT toolset both released as open source software iv) we
devised a distributed architecture for the management of HIKe
programs and eCIAT scripts, integrating a packet manager.

The paper is organized as follows: in Section II we introduce
eBPF and discuss some shortcomings, then in Section III and
IV we present the HIKe and eCLAT frameworks. Section
VI provides some implementation insights, while Section VII
discusses the evaluation of the proposed solution. We present
the related work in Section VIII and finally conclusions are
drawn. This paper is an extended version of [12].

II. BACKGROUND: EBPF SHORTCOMINGS

eBPF is definitely a complex technology. Developing com-
plex systems based on eBPF is challenging due to the intrinsic
limitations of the model and the known shortcomings of the
tool chain (not to mention a few bugs that can affect this tool
chain). The learning curve of this technology is very steep and
needs continuous coaching from experts. In this section, we
provide an overview on the eBPF technology, then we discuss
some shortcomings.

A. eBPF overview

The extended Berkeley Packet Filter (eBPF) [13] is a low
level programming language that is executed in a Virtual

User Space

Process Process

bytecode
eBPF

,a program
____l Syscall [

bpf()

eBPF Verifier

oeBF'!:
a program

| eBPF JIT Compiler |—

Kernel Space

eBPF
program

vy
XDP

t " Network Device

Fig. 1: eBPF programs compilation and verification

Machine (VM) running in the Linux kernel. eBPF has been
profitably used to efficiently and safely manage packets in
a very flexible way, defined by eBPF programs, without
requiring any changes in the kernel source code or loading
kernel modules.

eBPF programs can be written using assembly instructions
that are converted in bytecode or in a restricted C language,
which is compiled using the LLVM Clang compiler as depicted
in Fig. 1. The bytecode has to be loaded into the system
through the bpf () syscall that forces the program to pass a
set of sanity/safety checks performed by a verifier integrated
in the Linux kernel. In fact, eBPF programs are considered
untrusted kernel extensions and only “safe” eBPF programs
can be loaded into the system. The verification step assures that
the program cannot crash, that no information can be leaked
from the kernel to the user space, and it always terminates. In
order to pass the verification step, the eBPF programs must be
written following several rules and limitations that can impact
on the ability to create powerful network programs [14]. After
the verification, JIT (Just In Time) compilation translates the
eBPF bytecode into the specific instruction set for a given
architecture (i.e. x86, arm, 64 or 32 bits).

Once loaded, the execution of eBPF programs is triggered
by some internal and/or external events like, for example
the invocation of a specific syscall or the reception of a
network packet. The eBPF infrastructure provides specific data
structures, called BPF maps, that can be accessed by the eBPF
programs and by the userspace when they need to share some
information.

Focusing on packet processing, eBPF programs can be
attached to different hooks and packets trigger their execution.
Among these hooks, we focus for our purposes on the so-
called eXpress Data Path (XDP) hook. XDP [15] is an eBPF
based high performance packet processing component merged
in the Linux kernel since version 4.8. XDP introduces an early
hook in the RX path of the kernel, placed in the NIC driver,
before any memory allocation takes place. Every incoming
packet is intercepted before entering the Linux networking
stack and, importantly, before it allocates its data structure,

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3325624

eBPF programs

Tail Call
—

Fig. 2: Chaining eBPF programs with tail calls

foremost the sk_buff. This accounts for most performance
benefits as widely demonstrated in the literature (e.g., [16]
[17] [18] [19D).

B. The verification hell

The verification phase is the one creating major issues in
the eBPF programming model. The kernel validation approach
is almost adequate for simple eBPF programs, i.e. few in-
structions, loop-free code, and no complex pointer arithmetic,
while it has been shown to be a very tough obstacle to the
development of complex applications [9]. As analyzed in [8],
there are four main issues: i) the verifier reports many false
positives, forcing developers to insert redundant checks and
assume quite contrived programming solutions; ii) the verifier
does not scale to programs with a large number of logical paths
(i.e.: nested branches); iii) it does not support programs with
unbounded loops; iv) its algorithm is not formally specified.
This often causes that even a semantically correct program
does not pass the validation.

One of the reasons for these problems is that the compiled
bytecode offered to the verification step is the results of the
optimization procedures executed by the compiler/optimizer.
For optimization reasons, the compiler/optimizer can change
the sequence of operations (preserving the correctness of the
program) with respect to the C source code and this can violate
some constraint that must be checked by the verifier. The final
bytecode obtained from the compilation of an eBPF program
often depends on the version of the used compiler/optimizer
(toolchain). Different versions of the compiler/optimizer may
not produce identical bytecode from the standpoint of the
individual instructions used as well as their order. At the same
time, the eBPF verifier evolves as new features are added in the
later releases of the kernel. All of this can affect the possibility
that a given program compiled with a specific version of the
toolchain is correctly verified on one specific kernel version
but is rejected on another one.

C. Poor program composition abstractions in eBPF

In the eBPF framework, a program can call another program
using the tail call approach. Figure 2 provides an example of
composition of eBPF programs that invoke each other via tail
calls. When an incoming packet is handed to the eBPF “Entry
Prog”, it can select another program to handle the packet and
execute it with a tail call. The execution control is handed
over to the callee eBPF program and the processing continues

along all the calling tree. Unlike “traditional” function calls,
tail calls can be seen as a mechanism that allows an eBPF
program (caller) to call another one (callee), without returning
control to the caller. Such mechanism excludes the possibility
to return any value to the caller, as the execution context of
the caller is totally replaced with the one of the callee.
Moreover since the call logic is in the calling program if we
need to change the application behavior, all the affected eBPF
programs need to be recompiled (and pass the verification).
For example, this strategy is implemented by the state-of-the-
art eBPF composition framework called Polycube [20].
Recently, the ability to invoke global functions that are
independently verified has been introduced in eBPF. Clearly,
the use of such functions can simplify the work of eBPF
developers by enabling the reuse of code. However, this feature
does not solve the verification problem. In fact, to change the
application logic, it will still be necessary to write eBPF code
that must pass through the verifier to be executed by the kernel.

D. Lack of a package manager

Considering the limitations in the reuse and composition
of eBPF programs, there is no surprise that there is not a
package manager tool for eBPF, with functionality similar to
pip (for Python modules) or to npm (for Javascript packages).
An eBPF package manager should facilitate the reuse and the
management of eBPF components, promoting the development
of an eBPF ecosystem.

E. The clumsiness of BPF maps

eBPF programs need to interact with user space programs
to get configured and to provide information (i.e. statistics).
Moreover, eBPF programs may need to access (i.e. read/write)
global state information, which represents a way to exchange
information among different invocations of the same eBPF
programs. The eBPF framework provides the abstraction of
eBPF maps to these purposes. The eBPF maps are key/value
stores residing in the Linux kernel memory. Different types
of eBFP maps are supported, i.e. with different key and value
types (see [1]). The use of eBPF maps is not straightforward
for the developer, in particular accessing eBPF maps from user
space programs is a cumbersome operation. Moreover, the risk
of race conditions is another critical issue that needs to be
taken into account when designing the interaction of eBPF
programs and user space programs with the eBPF maps.

III. HIKE: HEAL, IMPROVE AND DESKILL EBPF
A. The HIKe Concept

As pointed out in section II-C, the main problem in dynam-
ically chaining different eBPF programs is that the application
logic must be statically written in the programs (hard-coded).
Thus using the traditional approach, the developer needs to
re-compile the programs to change the composition logic.

How can we create arbitrary chains of pre-compiled pro-
grams? Our solution is to define the composition logic
separately from the pre-compiled eBPF programs, and to add
an executor of such logic that we call HIKe Virtual Machine

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3325624

HIKe domain

HIKe mychain1

\\
A
T

HIKe mychain1

— _ call Pk
~\\
A

HIKe mychain1

B

taildgall A tail gall
runl mychain1 \ run:mychaim \ runl mychaint
L Y I A I
HIKe N pi HiKe : HiKe
‘ Loader | '\ m) | Prog.Pj UM »‘ Prog—'Pk"’"\'/M B
J

Y Y g
HIKe eBPF Loader HIKe eBPF Program Pj HIKe eBPF Program Pk

eBPF domain

time

Fig. 3: A high-level graphical representation of HIKe Chain
processing by the HIKe VM embedded in the HIKe eBPF
Programs.

(HIKe VM). The externalized composition logic, that we call
HIKe Chain, is saved in a shared eBPF map and it is expressed
using a programming language, so that the developer can
specify rules like “if the packet contains a certain field, then
run program P1, otherwise program P2”.

For implementation convenience, we selected the eBPF
instruction set as the definition language for the HIKe Chains,
in order to reuse everything provided by the eBPF world (e.g.
the toolchain).

B. HIKe building blocks and execution flow

The HIKe programming concept is implemented by the
following components:

« HIKe Loader: it is a special eBPF program which is
attached to the XDP hook. Its role is to load a specific
chain. It may implement a classifier logic such as “call
chainl if packet is IPv4, or chain2 if it is IPv6”.

« eBPF/HIKe program: it is a conventional eBPF pro-
gram with the HIKe VM appended at the “bottom”. It
represents a “module” of this architecture. Typically it
can implement a specific function such as encapsulate a
packet or drop a packet or run a token bucket monitor. In
what follows, we will refer to the eBPF/HIKe programs
as HIKe programs.

« HIKe Chain: it defines the application logic by encoding
when and which HIKe programs to call. It is expressed
by means of eBPF instructions which are stored in a map.
Such instructions are interpreted by the HIKe VM which
is appended at the end of each program.

« HIKe VM: it is an interpreter of the HIKe Chain instruc-
tions which contains the application logic. Remarkably,
such logic, although written in eBPF, never has to pass
through the verifier, because it is interpreted by the HIKe
VM that is pre-verified and thus guarantees safety.

Figure 3 shows a packet journey in HIKe. A packet is
captured in the XDP hook and processed by an eBPF program
which we call HIKe Loader. The goal of an HIKe Loader is
to determine which is the right chain for processing a packet,
and start its execution through the HIKe VM. In the example
of figure 3, the loader starts the execution of mychainl that
contains the application logic. In the presented example, the

chain code first executes the HIKe program Pj and then
the program Pk. Each HIKe program ends its execution by
launching the HIKe VM which then continues the execution
of the HIKe Chain. Remarkably, each HIKe eBPF Program
has a custom Program Logic, however the code of the HIKe
VM is the same for every possible HIKe eBPF Program.

C. The HIKe VM

The HIKe VM is an eBPF library that runs the HIKe
Chains. The HIKe VM reads the chain code from an eBPF
map and executes it. The VM supports several instructions:
from branching and looping instructions, to the executions of
external HIKe programs. In particular when a chain requires
the execution of an external HIKe program, the VM launches
it through a tail call, saving the chain execution state in the
map. Every HIKe program before terminating calls back the
HIKe VM which resumes the execution of the HIKe Chain.
The HIKe VM takes care of passing input parameters to HIKe
programs and of collecting their return values ready to be used
in the chain.

Thus, from the HIKe Chain developer point of view, the
execution of an HIKe program is seen as a conventional call
to a function that accepts parameters and returns a result.

HIKe VM brings two major advantages:

1. We get rid of the “verification hell” problem because
the HIKe Virtual Machine is pre-verified together with
the HIKe programs. Therefore, the application logic con-
tained in the HIKe Chains does not have to be verified
because its code is executed by the “pre-verified” HIKe
VM.

2. Tt introduces a new abstraction of program composition in
eBPF based on function calls enabling the HIKe programs
to accept arguments, and return values.

From a technical point of view, the HIKe VM is designed
as a register-based Virtual Machine using a subset of the
eBPF VM 64-bit RISC instruction set. The HIKe Chains are
compiled into a bytecode that is loaded in memory (using
eBPF maps). This bytecode is interpreted by HIKe VM which
fetches, decodes and executes the instructions. The bytecode
codifies logical and arithmetical instructions, jump instructions
to control the program flow, calls to HIKe Programs and also
calls to other chains. At run time, the HIKe VM counts the
number of instructions of the chain that are executed. When
the number of executed instructions exceeds a configurable
threshold (e.g. 64 instructions) the processing is stopped (and
the associated packet is dropped). In this way, kernel blocking
is avoided with a “run-time” check by the Hike VM and not
with a static analysis of code sanity as done by the eBPF
verifier. The HIKe VM also provides a set of helper functions
(e.g., for packet handling) which are in turn made available to
Chain programmers.

A deeper technical discussion on the HIKe VM and its
Runtime Environment is provided in section V.

IV. THE ECLAT ABSTRACTION

Although HIKe allows the developer to externalize the logic
of ebpf program chains, there still remains the difficulty of

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3325624

writing such logic into eBPF. This involves the use of a fairly
non-user-frendly syntax, which is still complex to write about
high-level scripts. Thus we designed eCLAT (eBPF Chains
Language And Toolset), a software framework that offers a
high level programming abstraction to eBPF. Such abstraction
is implemented with a python-like scripting language, called
eCLAT Scripting Language, devised for composing eBPF
programs and configuring eBPF maps. The overall goal is to
lower the learning curve of engineers, allowing them to re-use
eBPF code in a programmable way. This is possible thanks to
HIKe which allows eBPF programs to be composed arbitrarily
to implement flexible application logic.

A. The eCLAT Scripting Language

In the eCLAT framework, the complex operations and
heavy lifting must be done within eBPF programs which are
programmed in C by experts and stand “outside” eCLAT.
Within eCLAT is it possible to call such eBPF programs as
they were conventional functions, passing to them some input
values (arguments) and receiving from them their return value.
Such values can be used in the eCLAT script to define the
application logic in a simple but programmable way.

To this aim, the eCLAT scripting language supports the def-
inition of variables, arithmetic operations, branching/looping
conditions and function calls which, as we said, masquerade
the call to eBPF programs. The eCLAT language also offers
the capability of importing modules, interacting with a package
manager. An example of an eCLAT script is shown in Listing
2. The full specification and the formal definition of the
eCLAT language grammar are in the documentation !.

An eCLAT script is processed by the eCLAT framework (in
particular by the eCLAT deamon), performing the following
operations:

1. the package manager fetches the eBPF programs that are -

imported
2. all the eBPF programs are compiled and loaded in eBPF
3. the code of the eCLAT script is transpiled to C language
the C code is compiled in bytecode for the HIKe Virtual
Machine
5. the bytecode is stored in eBPF maps ready to be executed

B.

The three main elements of the eCLAT framework are:
Chains, Loaders and HIKe programs. Such elements wraps
the HIKe components described in section III-B.

Chains, loaders and programs are stored on public repos-
itories together with their documentation. In this way, the

Architecture and modularity

package manager of eCLAT can automatically download the |
imported programs on demand. eCLAT programmers can.
view the catalog of available eBPF programs (organized in >

packages) and consult their documentation [21].

Fig. 4 shows the architectural view of eCLAT where we -
can see eCLAT as composed by a daemon and a client line
interface (CLI). Section VI discusses the internal architecture

of the daemon and the CLI.

1 https://hike-eclat.readthedocs.io/en/latest/eclat_doc.html

eCLAT repo @

eCLAT scripts %l

N\
eCLAT CLI | Protocol Engine | ‘
gRPC interface
eCLAT oo
eCLAT Daemon | Protocol Engine I
l Controller ‘ l Parser ]
U [ Program | [ Chain | [ Chain Loader | [<—
ser
space l Command Abstraction Layer ‘

Fig. 4: eCLAT Overall Architecture

C. An eCLAT Script Example

DDoS mitigation is a popular application of eBPF on XDP
[22]. Let us consider the following packet processing logic
that a developer wants to implement using eCLAT.

If the packet rate for any IP destination D is over a threshold
R1, analyze all IP sources S.ny that are sending packet for this
“overloaded” IP destination D.

If an IP source S in S.ny is sending packets with a packet rate
over a threshold R2, put the IP (S, D) in a blacklist for a duration
of T seconds.

During this interval T, drop all packets in the blacklisted (S, D)
couple and send a sample of the dropped packets (e.g., one
packet every 500 packets) to a collector.

» # send all
7 ip6_sc[ipv6_sc_map] = { (0):

Implementing this logic for a non-skilled eBPF programmer
is not easy. Using eCLAT, the non experienced programmer
can write a script like the one shown in Listing 2.

from prog.net import hike_drop, hike_pass, \
ip6_hset_srcdst , ip6_sd_tbmon, monitor ,\
ip6_dst_tbmon , ip6_sd_dec2zero, 12_redirect
from loaders.basic import ip6_sc

to our chain
(ddos_tb_2_lev) }
“xdp )

IPv6 packets
ip6_sc.attach ('DEVNAME’ ,

def ddos_tb_2_lev ():
PASS=0; DROP=1; REDIRECT=2;REDIRECT_IF_INDEX =
6; ADD=1; LOOKUP=2; BLACKLISTED = 0; IN_PROFILE
= 0;
# (src,dest) in blacklist ?
u64 : res = ip6_hset_srcdst (LOOKUP)
if res == BLACKLISTED:
# redirect one packet out of 500
res = ip6_sd_dec2zero(500)
if res :
monitor (REDIRECT)
12_redirect (REDIRECT_IF_INDEX)
return 0
monitor (DROP)
hike_drop ()
return 0
# check the rate per
res = ip6_dst_tbmon ()
if res != IN_PROFILE:
# check the rate per (src,dst)
res = ip6_sd_tbmon ()
if res != IN_PROFILE:
# add (src,dest) to
ip6_hset_srcdst (ADD)

(dst)

blacklist

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3325624

monitor (DROP)
hike_drop ()
return 0
monitor (PASS)
hike_pass ()
return 0

Listing 2: eCLAT script for DDoS mitigation

Specifically, the script ddos_tb_2_1lev (DDoS with two
levels token bucket) uses and combines in a custom way 7
different eBPF HIKe programs, which are imported in lines
1-3. The Chain Loader is called ip6_sc (line 4) and it selects
all the IPv6 packets. The Chain Loader is configured in line
10, which binds the Chain ddos_tb_2_ lewv to the classifier.

In line 11 the ip6_sc is attached to the XDP hook of et h0
interface.

The logic of the ddos_tb_2_1lev chain is defined starting
from line 13, as follows.

1 call the ip6_hset_srcdst program with a parameter
(LOOKUP). The result is O if the IPv6 (src, dst) is
blacklisted.

2 if the packet is blacklisted, send one packet every 500
to an interface that collect packet samples and drop the
others (line 14); count the REDIRECT and the DROP
events

3 if the packet is not blacklisted, check the IPv6 destination
against a token bucket. If the rate is out of profile for the
token bucket (per destination), check the IPv6 (source,
destination) against another token bucket. If the rate of the
(source, destination) flow is out of profile, put the (source,
destination) flow in the blacklist by calling again the
ip6_hset_srcdst, this time with parameter ADD,
and then drop the packet (increasing the DROP events
counter.

3 if the packet is not out of the profile, increment a counter
of the passed packets and exit the eBPF program by
handing the packet to the regular kernel processing.

eCLAT scripts support branching and looping instructions
(if, for, while, although in the limits set by the HIKe VM
and eBPF verifier), and simplify the operations to read/write
packets (resolving the endianness automatically). Variables
are typed, using the Python syntax for Syntax for Variable
Annotations (PEP 526) [23]. Data returned by Chains and
Programs is 64 bit long but can be cast to shorter subtypes.

As we can see already by this simple example script, eCLAT
provides the flexibility to define custom application logic in
an easy way, by reusing different standalone HIKe eBPF
programs as they were Python functions.

V. HIKE IMPLEMENTATION
A. Runtime Environment

In Figure 5, we depict the internal structure of the HIKe VM
and the main components of the HIKe Runtime Environment
used by the VM during the execution of a HIKe Chain. When
the HIKe VM is started, the Executor accesses the top of
the HIKe VM Chain Stack which has been initialized by the
HIKe Chain Loader/Traffic Classifier by pushing the execution
context of the chain to be run. The execution context of

‘ HiKe Runtime Environment

HIKe VM

Registers

Executor

bytecode interpreter

HiKe Persistence Layer H

HIKe VM Chain Stack

HIKe Chain Table

top of the

stack D bytecode

execution context

{ 1D,

ancillary data
[ spiil
{ rix s

X 010101110001.,

chain
stack
frame

Y 110111010011..

W 0010110000011..

HIKe Shared Memory Table HiKe Program Table

ID Prog (FD)

A aaa

shared memory area
B bbb

Fig. 5: Overview of the HIKe Runtime Environment.

a HIKe Chain contains the ID that uniquely identifies the
chain in the HIKe Runtime Environment, the snapshot of
the HIKe VM registers, filled/spilled registers, the values of
the local variables assumed during the last execution of that
chain and some ancillary data. Thus, the HIKe VM keeps
the internal values of its registers up-to-date with those of
the chain execution context. In addition, the VM retrieves the
bytecode of the chain to be run from the HIKe Persistence
Layer (specifically, from the HIKe Chain Table). At this point,
everything is ready for the Executor to start fetching, decoding,
and executing the instructions provided through the bytecode.

There are two configuration parameters that have to be taken
into account by the HIKe developer: i) the maximum number
of instructions that compose the bytecode of a HIKe Chain;
ii) the maximum number of instructions that can be executed
by an instance of a chain. Both parameters can be changed by
recompiling the HIKe VM. The second parameter affects the
verification phase since the HIKe VM is compiled and verified
as any eBPF program. The higher the value, the longer the time
the verifier will take to check the validity of the HIKe VM
before loading it.

B. VM Instruction Set and helper functions

The HIKe VM has 10 general purpose registers and a
read-only frame pointer register (in total, 11 registers), all of
which are 64-bit wide. The HIKe VM adopts the same calling
conventions and types of the eBPF VM and the VM registers
are intended to be used as follows:

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3325624

o r0: contains the return value of a function call to a HIKe
eBPF Program/Chain;

e r1-r5: hold arguments to be passed to a HIKe eBPF
Program/Chain;

e r6-r9: callee saved registers preserved on HIKe eBPF
Program/Chain call;

e r10: read-only frame pointer to access the HIKe VM
Chain Stack.

r0-r5 are scratch registers and HIKe Chains use to fill/spill
them if necessary during a function call to a HIKe eBPF
Program/Chain or when the pressure on registers is high. The
r10 always points to the frame held in the HIKe VM Chain
Stack, containing saved/spilled registers and local variables of
the executing chain.

The instruction set supported by the HIKe VM is a large
subset of the one implemented by the eBPF VM and, thus, the
instruction encoding is the same. The instructions are classified
into classes that correspond to operations such as load/store,
arithmetic/logic (64-bit), jump (64-bit) and so on. The HIKe
VM supports all the classes of eBPF VM, except for the 32-bit
ones. For load/store classes, the HIKe VM does not support
atomic instructions yet. The list of supported instructions by
the HIKe VM is available at [24], while [25] reports a in-
depth explanation about all the details regarding the instruction
encoding we adopted also for our VM.

HIKe does not support the same helper functions available
for the eBPF. The HIKe VM is meant to work on top
of the eBPF/XDP packet processing hook and therefore we
only provided those features which are meaningful for packet
processing scenarios. Thus, the HIKe VM implements few
helper functions which are used for accessing the packet in
read/write mode directly. It is worth pointing out that the
HIKe VM implements the function call feature through helper
functions.

C. HIKe VM and Execution Mode

When a HIKe Chain is executed, it can run in different
modes: the chain mode or vm mode. It runs in the chain mode
when the HIKe VM executes operations/instructions of the
chain which do not require a privilege such as arithmetic/logic
instructions, jump to address, conditional jumps, etc. However,
when the HIKe Chain has to execute a function call to a HIKe
eBPF Program/Chain, the execution mode changes from the
chain mode to vm mode and the HIKe VM takes over the
control. Calling a HIKe eBPF Program/Chain from a HIKe
Chain is a privileged operation, since it does not only affect
the execution of the caller chain but also requires coordination
between the HIKe VM and the HIKe Runtime Environment,
involving many state changes for both.

D. HIKe VM Memory Management

In order to execute the HIKe Chains associated with the
packets being processed, the HIKe VM implements memory
management mechanisms that make it possible to: i) isolate
the execution contexts of the HIKe Chains; ii) support the
Sfunction call pattern typical of imperative programming; iii)

provide transparent access to the bytes of a packet for read-
/write operations; iv) provide the Shared Memory Area (SMA)
through which eBPF programs, HIKe eBPF Programs, and
HIKe Chains can exchange information.

For performance reasons, the HIKe VM maintains the
information about the running HIKe Chain separately for each
logical CPU (i.e. for each core). In particular, the HIKe VM
keeps the reference to the frame of the chain stored in the
HIKe VM Chain Stack. Such a frame contains spilled/filled
registers and local variables; it is leveraged for supporting the
function call to another HIKe Chain as it stores the execution
context of the caller chain. Such an organization of memory
enables the HIKe Chains to be independent and isolated from
each other.

The Shared Memory Area (SMA) is a scratch memory area
available in the HIKe Runtime Environment that can be used
by HIKe Chains, eBPF Programs and HIKe eBPF Programs
to share some information. SMA is implemented through an
eBPF map and is part of the HIKe Persistence Layer. For
performance reasons, the SMA is per-CPU only: it means
that in a system where multiple CPUs (or logical cores) are
available, a HIKe Chain running on CPU k can not use the
SMA to share some data with another HIKe Chain running on
a CPU j, where k # 1.

The code of a HIKe Chain can access SMA or packet data
through different Virtual Memory Addresses (VMAs). The
HIKe VM implements a very simple Memory Management
Unit (MMU) which receives a VMA and translates it into a
meaningful address for the eBPF VM. In other words, the
MMU transparently remaps the VMA to the actual address
where the data to be accessed is available.

VI. ECLAT IMPLEMENTATION

eCLAT has been implemented in Python as a daemon
(eclatd). The eCLAT daemon receives user commands from
a CLI (eclat) through a gRPC interface. The structure of the
data is described through a protocol buffer language [26].
Through the CLI, users can load an eCLAT script which
instructs the daemon to i) import all necessary HIKe eBPF
Programs by collecting their code, compile, inject and register
them to the HIKe VM; ii) translate the high-level code of
the chain in C language, compile and load them in the HIKe
VM,; iii) manage the entry point (chain loader) by retrieving
its code, compile, inject and configure according to custom
parameters. The daemon is needed to assign run time IDs
to HIKe programs and chains and to use these IDs when
compiling/linking the chains. The daemon keeps the state of
eCLAT consistent and avoids concurrency issues in the loading
of programs and chains. The eCLAT CLI allows users to query
the daemon about the current status of eBPF maps.

As shown in Fig. 4, the eCLAT daemon is composed by the
following functional blocks:

e Protocol engine: implements the gRPC protocol service
and is responsible for the communication with the CLI;

o Controller: is responsible to set up the networking en-
vironment, to interact with the parser and to execute the
scripts invoking the managers. It generates/retrieves IDs for

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3325624

HIKe eBPF Programs and HIKe Chains. Such identification
numbers will be fundamental for the chain compilation
phase since the HIKe Chains rely on numerical IDs for
calling HIKe eBPF Programs, rather than on the names
which are used in the eCLAT domain;

e Program: wraps and manages a HIKe eBPF Program.
The component fetches programs from the eCLAT public
repository, compiles them, and takes care of the loading
and unloading operations. Finally, it registers the output in
the HIKe Persistence Layer. During the compilation of the
HIKe eBPF Programs, the debug info about the program
(i.e.: variables, functions, structs, etc.) are automatically
extracted and registered in a JSON file. This file is parsed to
obtain all map/program associations as well as the number
of input parameters accepted by the specific HIKe eBPF
Program;

o Chain: handles the script part related to HIKe Chains.
It is in charge of translating the source code, from the
(python-like) eCLAT script to a C-defined HIKe Chain.
Then compiles it to generate artifacts (i.e. ELF file object)
through the execution of a dedicated Makefile. Finally, it
registers the output in the HIKe Persistence Layer. The
HIKe Persistence Layer contains a catalog between all the
HIKe Chains loaded (and thus their bytecodes) and the
Chain IDs assigned by the eCLAT Runtime Environment;

o Chain Loader: this component handles one or more HIKe

Chain Loader(s) and interacts with their maps. Using the

eCLAT scripting language, users can specify the chain

loader that has to be loaded, attached to the XDP hook
as well as the configuration that has to be enforced through
configuration maps;

Parser: has the task of analyzing the eCLAT scripts and

creating the Abstract Syntax Tree (AST), in order to inter-

pret the provided commands and generate the C code which
defines the HIKe Chains;

o« Command Abstraction Layer: provides an abstraction
over the different shell commands that need to be invoked
on the operating system to deal with eBPF / HIKe.

The eCLAT daemon automatically fetches the required
programs from the Package Repository. The repository con-
tains packages which in turn may contain different programs,
chains, or chain loaders. Few examples of programs are shown
in Table I, the full list is in [21].

When a user wants to execute an eCLAT script the flow
is the following. The eCLAT Daemon receives the scripts
from the eCLAT Chains described in the eCLAT language.
The daemon first fetches the required code from the eCLAT
Repo and then “transpiles” the eCLAT chain code into into C
language, generating the source code of HIKe Chains, which
is then compiled into a executable format suitable for being
loaded and executed by the HIKe VM. Actually this is not
only a compilation operation, because the eCLAT Daemon
also works as a linker: it resolves the references to HIKe
eBPF Programs and to other HIKe Chains called inside a
Chain and writes the HIKe eBPF Program IDs and Chain IDs
into the bytecode. Moreover, the eCLAT daemon manages the
dynamic compilation, verification and loading of the HIKe

eBPF Programs that are referred in the Chains. In fact, when
a HIKe Chain refers to a HIKe eBPF Program, the eCLAT
daemon checks if that program is already loaded and if not,
it loads it. The executable of a HIKe Chain (i.e. the bytecode
with some additional info) is stored by the eCLAT Daemon
in the HIKe Persistence Layer, which is based on eBPF maps.
The eCLAT Daemon also interacts with eBPF maps in the
HIKe layer, that are used by the HIKe eBPF Programs to
read/write information. The HIKe layer provides the Runtime
Environment for executing the bytecode of the HIKe Chains.

A. Package Manager

We created a package repository for eCLAT which is
available at http://eclat.netgroup.uniroma?2.it/.

The repository allows the the login of the developers
through github, the submission of a new package, and the
listing of available packages. Then the project exposes a set
of APIs for different usage: authentication, packages and users.
The packages APIs allows the eCLAT daemons to dynamically
fetch the packages needed from the current eCLAT script they
are running, facilitating the development process through the
automatic retrieval of dependencies.

The package repository has been implemented using Vue
for the frontend, and MongoDB for the database, Node.js for
the backend.

The system is also responsible for package verification and
testing. Specifically, we implemented the package verification
through Agenda, a Node.js library used for scheduling jobs
in the background. Agenda uses MongoDB and relies on data
persistence. When a program is loaded, the system checks all
the files and directories in the package, which must respect
a certain structure. For instance, the package can include
several directories, two of which can be named python and
scripts. The python directory must only contain files written
in Python with the extension ".py", while the scripts directory
must only contain files representing scripts written in the Bash
language with the extension ".sh". If the package complies
with these constraints, the verifier will update the version
status to ’verified’, otherwise return an error to the developer.

VII. EVALUATION OF THE SOLUTION
A. Prototype

We have implemented a full prototype, running on a single
Docker container [27]. Inside the prototype, it is possible to
develop and test HIKe eBPF programs and eCLAT Chains.
In particular, we emulate a node implementing the eCLAT
framework and a node that generates traffic to be processed.
We provide a number of HIKe eBPF packages and programs
(see examples in Table I) and demonstrate how they can
be easily combined in eCLAT Chains to implement fairly
complex packet processing scenarios (like the DDoS example
coded in Listing 2). The technical documentation and the
instructions to replicate the experiments are available at [21].

B. Modularity

The greatest benefit of adopting the eCLAT framework is
in the flexibility and modularity it offers. Table II objectivize

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3325624

HIKe eBPF Program | Package Name Description
ip6_dst_meter meter Counts the packets per IPv6 destination
ip6_sd_tbmon meter Token bucket monitoring per IPv6 (source, destination) couple
ip6_sd_dec2zero sampler Implement a counter-to-zero per IPv6 (source, destination) couple
show_pkt_info info Print debug information about a packet
ip6_alt_mark alt_mark Decode the Alternate Mark TLV in the Hop-by-hop Options Extension Header

TABLE I: Examples of HIKe programs available in the package repositories.

TABLE II: Comparison of the modularity features for different eBPF frameworks

Dimension Cilium Polycube eCLAT
Application logic defini- | configuration and API configuration of modules and | programmatic
tion topology

Composition approach assembling and compiling dif-

ferent building blocks

interconnection  of
through ports (e.g., veth pairs)

cubes | dynamic composition of eBPF pro-

grams with no recompilation.

Composition topology

linear (tail call)

arbitrary

Code generation BCC-based

BCC-based

transpiled from eCLAT script to C, and
compiled with CLang/LLVM

Modularity pre-defined programs

big modules (cubes)

any eBPF program

Extensibility submit a patch to the main

project

creation of a new cube within
the framework

conventional eBPF programs with mi-
nor modifications

the benefits of this approach by comparing the presented so-
lution with popular frameworks, Cilium and Polycube, across
different dimensions, and specifically:

« Application logic definition: how an eCLAT user can
define/implement a custom application logic? eCLAT
allows users to define their business logic in a pro-
grammable way through eCLAT scripts. Conversely, other
frameworks allow defining custom configuration. The
difference is that programming flows allow much more
expressibility than relying on a pre-defined set of param-
eters to conﬁgure;

« Composition topology: which topology of the data
pipeline is supported by the framework? eCLAT supports
arbitrary topology as the data flow can follow different
branches and loops. Other frameworks like Polycube are
limited by a linear topology: packets flow through a
predefined set of eBPF Programs which are connected
over through a set of tail calls. If developers want to
implement a custom calling logic with specific interaction
patterns (i.e. a program calls another program accordingly
to given conditions), they must do it on their own;

« Composition approach: where the composition of dif-
ferent modules happens? eCLAT is the only one which
permits composition inside eBPF, without requiring any
eBPF Programs (modules) recompilation. This is different
from models where the composition happens in user
space and then, through code generation, eBPF programs
bytecode is injected;

¢ Code generation: differently from others, eCLAT is not
based on BCC [28] but on CO-RE [29] which is fostered
and maintained by the Linux kernel community;

o Modularity: What is a module? for Cilium there are pre-
defined generated programs, and Polycube relies mainly
on “big” modules (i.e. “the firewall”) as they can be only
chained together. Conversely, for eCLAT a module is a
standalone HIKe eBPF Program that can be also quite
small (i.e. “flow meter”) as its utility must not be absolute,

but functional of the context where it will be placed in the
HIKe Chain (i.e. in an if expression to decide a branch);

« Extensibility: How can an expert eBPF programmer cre-
ate a new module to extend the framework? HIKe/eCLAT
module can be any legacy eBPF program with very few
changes (3 or 4 lines of C needs to be added). Extending
other frameworks requires more skills.

C. Dataplane performance (throughput)

In order to evaluate the dataplane performance of the
eCLAT framework in terms of throughput, we have run two
experiments.

1) Match, Mark, Lookup and Forward (MMLF)

In this experiment, we defined as a benchmark a set of
packet processing operations to be performed. In particular,
we assume that a node is forwarding packets and needs to
identify the packets that belong to a blacklist of source IP
addresses. The packets in the blacklist have to be marked
with a given IP TOS. After the classification and marking
the packets are forwarded with a lookup in the routing table.
We called this benchmark MMLF (Match, Mark, Lookup and
Forward). The classification and marking operations add a
processing burden to the normal forwarding operations, the
obvious goal is to keep this burden as low as possible. We
developed and compared three solutions: i) an IP set [30] based
approach (IP Set), ii) a chain of HIKe eBPF programs (HIKe);
and iii) a conventional eBPF program (eBPF). According to
our experience, the conventional eBPF solution is the most
difficult to be programmed, only the expert eBPF developers
can do it. The HIKe solution is simpler and it can be
programmed by the eCLAT developers. The IP Set solution
has an intermediate development complexity.

Our performance evaluation consists in measuring the max-
imum forwarding throughput of a node executing the MMLF
benchmark, for the three solutions (IPset, HIKe and raw
eBPF). The maximum forwarding throughput (R,,.;) is de-
fined as the maximum packet rate (measured in kilo packets

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3325624

Cloudlab.us

Sender port

10 Gbps

" Receiver port

Fig. 6: Testbed architecture

per second) for which the packet drop ratio is smaller than or
equal to 0.5%, according to the methodology reported in [31].

The experiment has been carried out on the testbed depicted
in Figure 6, made of two nodes denoted as Traffic Generator
and Receiver (TGR) and System Under Test (SUT). The testbed
is deployed on the CloudLab facilities [32]. Both the TGR and
the SUT are bare metal servers with Intel Xeon E5-2630 v3
processors with 16 cores (hyper-threaded) clocked at 2.40GHz,
128 GB of RAM and two Intel 82599ES 10-Gigabit network
interface cards.

In the experiment, we considered two types of packets: i)
packets that need to be marked; ii) packets that do not need
to be marked (their source address is not in the blacklist). For
reference, we have evaluated in the same conditions of our
experiment the maximum forwarding throughput of plain IPv6
forwarding performed by the Linux kernel (Plain). Table III
reports the R,,,, (averaged over 30 experiments). To give
evidence of the reliability of the measurements, we report the
Coefficient of Variation (the Standard deviation divided by the
average value).

IP set | No match | Plain | HIKe | eBPF
Roas 0.99 1.32 1.39 1.87 2.57
Cv 0.14% 0.10% 0.10% | 0.21% | 0.08%

TABLE III: Dataplane Performance: R,,,, in Mpps

The R4, for the IP Set solution is 0.99 Mpps (for packets
that need to be marked). The reference R,,,, for the plain
IPv6 forwarding operation (with a lookup in the routing
table) in the Linux kernel is 1.39 Mpps. The degradation
accounts for the cost of classification and marking using the
IP Set framework. We observe that the throughput of the
HIKe based solution is 1.87 Mpps (for packets that need
to be marked), with an increase of performance of 88% (a
factor 1.88x) with respect to the IP Set solution. The HIKe
solution performs the lookup in the kernel routing tables by
using an eBPF helper function. HIKe is faster than the plain
IPv6 forwarding in the kernel, despite the fact that it also
performs the classification and the marking in addition to the
route lookup. This is because it benefits from the advantages
of XDP/eBPF processing compared to regular Linux kernel.
As expected, the custom eBPF program achieves the highest
throughput for packets that needs to be marked (2.57 Mpps),
at the price of requiring expert eBPF programming skills. The
second column (No match) reports R,,,, for packets that do
not need to be marked, which is the same for the HIKe and
eBPF solutions. In this case, only the initial (unsuccessful)
match operation is performed and then the packet is left to

10

the kernel for the regular processing. The R, is 1.32 Mpps,
only a 5% reduction with respect to plain IPv6 forwarding.
This result shows that the performance penalty introduced by
the initial classification made by XDP/eBPF is minimal.

2) Tunnelling solution

We further evaluate the performance of the system consider-
ing the implementation of a tunneling solution based on Seg-
ment Routing for IPv6 (SRv6) [33]. The testbed configuration
is the same described in Figure 6. In particular, we evaluate
the performance of the “SRv6 H.Encaps” behavior which
is a component of the SRv6 Network programming model
[34], with the purpose of applying an SRv6 encapsulation
on IPv4/IPv6 traffic. This means that an incoming packet
is encapsulated in an outer IPv6 packet carrying a Segment
Routing Header (SRH). The SRH includes a list of segments,
which is also called an SR Policy. We analyzed three cases:

« HIKe version: we implemented a HIKe Chain made of
three different HIKe eBPF Programs: i) the SRv6 Policy
Manager, which retrieves the SR Policy to be used for
a packet; ii) the SRv6 Encapsulator, which performs the
encapsulation; iii) the IPv6 Router, which forwards the
packet to the next hop. The reason for implementing a
single behavior through a HIKe Chain is the reusability
of the basic HIKe eBPF Programs.

« Raw eBPF version: we implemented the same function-
ality using eBPF and four programs connected through
tail calls.

o Vanilla Kernel version: since kernel 4.10 the SRv6
H.Encap is natively implemented through LWT tunnels,
e.g. packet processing operations attached to routes.

Figure 7 shows the performance comparison of the three
solutions in terms of maximum forwarding throughput [mil-
lions of packets per seconds (Mpps)]. As we can see, clearly
the eBPF raw solution outperforms the other two solutions
achieving more than 2 millions of packets per seconds. The
performance reduction of HIKe with respect to the raw eBPF
solution is 22.21%. This can be seen as the cost for using
a modular solution which does not require any modification
at eBPF level and thus, is not subject to eBPF verification
issues. On the other hand, the HIKe solution reaches a sen-
sible improvement with respect to the vanilla Linux kernel
implementation of SRv6 H.Encaps, attaining a +27.34% of
maximum forwarding throughput.

e _

HiKe

0.00 025 050 075 100 125 150 175  2.00
Packets per second le6

Fig. 7: Performance of the ENCAP function: Raw eBPF vs
HIKe vs Vanilla Kernel

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3325624

Raw eBPF | HIKe Ratio
MMLF | 305.7 ns 480.8 ns 1.573
Tunneling | 396.2 ns 621.7 ns 1.569

TABLE IV: Latency of eBPF execution for the two example
programs: Match, Mark, Lookup and Forward (MMLF) and
Tunneling (ENCAP)

D. Dataplane performance (latency)

To evaluate the latency performance of our solution, we have
considered the same two experiments described in the previ-
ous subsection, MMLF (Match, Mark, Lookup and Forward)
and ENCAP (Tunneling). Latency measurements have been
performed considering the execution time of eBPF programs
attached to the XDP hook. Starting from Linux 5.1, the kernel
offers a standardized mechanism to collect useful statistics on
the execution of eBPF programs attached to the XDP hook.
These statistics are as follows:

1) run_time_ns, representing the cumulative time (in
nanoseconds) spent by a specific eBPF program during
all its executions. For each execution, the kernel records
the interval from the instant in which the XDP hook
passes the execution flow to the eBPF program until when
the flow control is returned to the kernel. If the eBPF
program, in turn, executes a tail call to another eBPF
program, the total cumulative time is recorded.

2) run_cnt, indicating the number of executions of the
specific eBPF program.

Statistics are kept on a “per-eBPF program” basis, for
each eBPF program that is directly called by the XDP
hook. These eBPF program statistics are turned off by
default because they have (a minimal) impact on perfor-
mance. The collection of statistic is activated using the
sysctl kernel .bpf_stats_enabled parameter. Once ac-
tivated, the user space can access the collected data using the
bpftool program.

Table IV reports the average latency [ns] of MMLF and
ENCAP, for the two implementations (eBPF raw and HIKe).
The average latency is evaluated by dividing the cumulative
elapsed time run_time_ns by the number of executions
run_cnt collected during the experiments. For each mea-
surement, we have considered at least 400 million executions
(corresponding to processed packets). The third column reports
the ratio between the latency of the HIKe implementation
and the latency of the raw eBPF implementation. This larger
measured latency is compatible with the observed difference
in throughput discussed in the previous subsections.

VIII. RELATED WORK

eBPF has been widely used to build fast and complex
applications in several domains such as tactile [35], security
[36], cloud computing [37] and network function virtualization
[38]. In what follows, we limit our analysis to the limitations
of the system and the relevant frameworks.

A. eBPF limitations and investigations

eBPF provides advantages to network programmers but it
also presents several limitations that have been highlighted
by researchers and often tackled to provide mitigation or
propose re-design. A comprehensive review of eBPF technol-
ogy opportunities and shortcomings for network applications
is provided in Miano et al. [14] that analyzes the use of
eBPF to create complex services. The authors pinpoint the
main technological limitations for specific use cases, such as
broadcasting, ARP requests, interaction between control plane
and data plane, and when possible they identify alternative
solutions and strategies. Some of the problems reported in
[14] are part of the motivations which led us to the design
and development of HIKe and eCLAT. Gershuni et al. [8§]
analyze a design of eBPF in-kernel verifier with a static
analyzer for eBPF within an abstract interpretation framework,
to overcome the current verifier limitations. The authors’ goal
is to find the most efficient abstraction that is precise enough
for eBPF programs and their choice of abstraction is based
on the common patterns found in many eBPF programs with
several experiments that were performed with different types
of abstractions. We also recognize the relevant role of the
“validation hell” and we believe that the HIKe architecture
can help to mitigate the problem.

B. eBPF frameworks for networking

There are several eBPF based projects and frameworks
devoted to simplify or manage the networking using eBPF.
The most popular ones are three: Polycube, Cilium and Inkev.
Polycube aims to provide a framework for network function
developers to bring the power and innovation promised by
Network Function Virtualization (NFV) to the world of in-
kernel processing, thanks to the usage of eBPF [20], [39].
Network functions in Polycube are called Cubes and can be
dynamically generated and inserted into the kernel networking
stack. Like us, Polycube is devoted to implement complex sys-
tems through the composition of cubes. However, Polycube’s
goal is not to reconstruct functional programming but to build
chains of independent micro-services. The absence of function
calls does not allow eBPF programs to return values or accept
input arguments, and thus it is not possible to change the flow
logic according to the output of a given program.

We have been inspired by the work [40] where eBPF
programs can be chained but our ideas of the HIKe VM and
of function calls are missing.

Another approach for using eBPF inside the NFV world
is provided by Zaafar et al. with their InKeV framework
[41]. InKeV is a network virtualization platform based on
eBPF, devoted to foster programmability and configuration
of virtualized networks through the creation of a graph of
network functions inside the kernel. The graph which repre-
sents the logic flow, is loaded inside a global map. The logic
implemented by the graph is merely related to the function
composition, while we provide a more complex flow within
the HIKe VM (e.g., branch instructions, loops, and in general
programmable logic). Such as for Polycube, the goal of InKeV
is to provide network-wide in-kernel NFV, which is not our

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3325624

framework main goal but that can certainly be one of the most
important applications of it.

Cilium is an open source application of the eBPF tech-
nology for transparently securing the network connectivity
between cloud-native services deployed using Linux container
management platforms like Docker and Kubernetes [1]. With
respect to this work, Cilium has a totally different target
as it is focused on the security of applications running in
containers. Conversely, our target is the reusability of different
eBPF programs and their composability inside the chains,
separating the composition logic flow from the eBPF (HIKe)
programs themselves. We think big applications like Cilium
could greatly benefit from this new approach.

Risso et al. proposed an eBPF-based clone of iptables
[42]. The approach uses an optimized filtering based on Bit
Vector Linear Search algorithm which is a reasonably fast and
consolidated programming interface based on iptables rules.
Clearly, the focus of the work is not composability, but an
extended version of such an approach could be used to define
the entry point for the HIKe applications.

It is worth mentioning the application of eBPF to provide
a greater flexibility to Open vSwitch (OVS) Datapath [43],
[44]. The works propose to move the existing flow process-
ing features in OVS kernel datapath into an eBPF program
attached to the TC hook. Finally, several authors implement
eBPF Hardware Offload to SmartNICs [45], [46].

IX. CONCLUSIONS

eCLAT simplifies the creation of complex eBPF appli-
cations by providing a scripting language for implementing
custom application logic. With eCLAT it is possible to mesh
up eBPF programs, seen by the eCLAT script developers
as “simple” function calls. Each of these programs can be
reused in several different application contexts with no code
change needed. A Virtual Machine built inside eBPF and
called HIKe VM takes care of the runtime composition with
a minimal overhead. As further extension, we are considering
the possibility to “push” eCLAT chains in remote nodes to
achieve network programmability. Both HIKe and eCLAT
frameworks are available under a liberal open source license,
the pointers to the source code are in [21].

REFERENCES
[1] The Cilium project, “BPF and XDP Reference Guide,”
2021, available online at {https://docs.cilium.io/en/latest/bpf/\#

bpf-and-xdp-reference-guide}.

[2] M. Bertrone, S. Miano, F. Risso, and M. Tumolo, “Accelerating linux
security with ebpf iptables,” in Proceedings of the ACM SIGCOMM
2018 Conference on Posters and Demos, 2018, pp. 108-110.

[3] F. Parola, S. Miano, and F. Risso, “A proof-of-concept 5g¢ mobile
gateway with ebpf,” in Proceedings of the SIGCOMM’20 Poster and
Demo Sessions, 2020, pp. 68—69.

[4] W. Tu, J. Stringer, Y. Sun, and Y.-H. Wei, “Bringing the power of ebpf
to open vswitch,” in Linux Plumbers Conference, 2018.

[51 Y. Ghigoff, J. Sopena, K. Lazri, A. Blin, and G. Muller, “Bmc:
Accelerating memcached using safe in-kernel caching and pre-stack
processing.” in NSDI, 2021, pp. 487-501.

[6] The Cilium Project, “Cilium Project Home Page,” https://cilium.io/,
2020, accessed: 15-01-2021.

[7]1 Engineering at Meta, “Open-sourcing Katran, a scalable network load
balancer,” 2021.

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]
[26]
(27]

[28]
[29]

[30]
[31]

[32]

E. Gershuni et al., “Simple and Precise Static Analysis of Untrusted
Linux Kernel Extensions,” in PLDI 2019: Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and
Implementation.  New York, NY, USA: Association for Computing
Machinery, 2019, p. 1069-1084.

S. Miano, M. Bertrone, F. Risso, M. Tumolo, and M. V. Bernal,
“Creating complex network services with ebpf: Experience and lessons
learned,” in 2018 IEEE 19th International Conference on High Perfor-
mance Switching and Routing (HPSR). 1EEE, 2018, pp. 1-8.
Trendforce, “Arm-based server penetration rate to reach 22% by 2025
with cloud data centers leading the way,” https://www.trendforce.com/
presscenter/news/20220329-11178.html, 2023.

L. Nelson, J. Van Geffen, E. Torlak, and X. Wang, “Specification and
verification in the field: Applying formal methods to {BPF} just-in-time
compilers in the linux kernel,” in /4th USENIX Symposium on Operating
Systems Design and Implementation (OSDI) 20), 2020, pp. 41-61.

A. Mayer, L. Bracciale, P. Lungaroni, P. Loreti, S. Salsano, and
G. Bianchi, “ebpf programming made easy with eclat,” in 2022 [8th
International Conference on Network and Service Management (CNSM).
IEEE, 2022, pp. 28-36.

Jay Schulist, Daniel Borkmann, Alexei Starovoitov, “Linux Socket
Filtering aka Berkeley Packet Filter (BPF),” https://www.kernel.org/doc/
Documentation/networking/filter.txt, 2021.

Sebastiano Miano et al., “Creating Complex Network Services with
eBPF: Experience and Lessons Learned,” in /EEE International Confer-
ence on High Performance Switching and Routing (HPSR2018). New
York, US: IEEE, 2018, pp. 1-8.

T. Hgiland-Jgrgensen et al., “The express data path: Fast programmable
packet processing in the operating system kernel,” in Proceedings of the
14th International Conference on Emerging Networking EXperiments
and Technologies. New York: ACM, 2018, pp. 54-66.

N. Van Tu et al., “evnf - hybrid virtual network functions with linux
express data path,” in 2019 20th Asia-Pacific Network Operations and
Management Symposium (APNOMS). New York: IEEE, 2019, pp. 1-6.
D. Scholz et al., “Performance implications of packet filtering with linux
ebpt,” in 2018 30th International Teletraffic Congress (ITC 30), vol. O1.
New York: IEEE, 2018, pp. 209-217.

M. AM Vieira et al., “Fast packet processing with ebpf and xdp:
Concepts, code, challenges, and applications,” ACM Computing Surveys
(CSUR), vol. 53, no. 1, pp. 1-36, 2020.

N. Van Tu, J.-H. Yoo, and J. W.-K. Hong, “Accelerating virtual network
functions with fast-slow path architecture using express data path,” IEEE
Transactions on Network and Service Management, vol. 17, no. 3, pp.
1474-1486, 2020.

S. Miano et al., “A Framework for eBPF-Based Network Functions in
an Era of Microservices,” IEEE Transactions on Network and Service
Management, vol. 18, no. 1, pp. 133 — 151, 2021.

The eCLAT project, “eCLAT HIKe Technical Documentation,” https:
//hike-eclat.readthedocs.io/en/latest/index.html, 2021.

G. Bertin, “XDP in practice: integrating XDP into our DDoS mitigation
pipeline,” in Technical Conference on Linux Networking, Netdev, vol. 2.
Nepean, Canada: The NetDev Society, 2017, pp. 1-5.

R. Gonzalez, P. House, I. Levkivskyi, L. Roach, and G. van Rossum,
“Python syntax for syntax for variable annotations,” PEP 526, 2016.
[Online]. Available: \url{https://www.python.org/dev/peps/pep-0526/}
A. Mayer, “Hike wvm - instruction set architecture,”
https://hike-eclat.readthedocs.io/en/latest/detailed\_doc.html\
#supported-hike-vm-instructions, 2022.

“ebpf - instruction set architecture,” https://www.kernel.org/doc/html/
latest/bpf/instruction-set.html.

Google Developers, “Protocol Buffers,” https://developers.google.com/
protocol-buffers, 2021.

The eCLAT project, “eCLAT docker Github Page,” https://github.com/
netgroup/eclat-docker, 2021.

“Bece project,” https://github.com/iovisor/bcc.

“BPF CO-RE (Compile Once — Run Everywhere),” https://nakryiko.
com/posts/bpf-portability-and-co-re/.

Netfilter Project, “IP Sets Home Page,” https://ipset.netfilter.org/, 2021.
A. Abdelsalam et al., “Performance of IPv6 Segment Routing in Linux
Kernel,” in Ist Workshop on Segment Routing and Service Function
Chaining (SR+SFC 2018) at CNSM 2018, Rome, Italy. New York,
US: IEEE, 2018, pp. 414-419.

Robert Ricci, Eric Eide, and the CloudLab Team, “Introducing Cloud-
Lab: Scientific infrastructure for advancing cloud architectures and
applications,” ; login:: the magazine of USENIX & SAGE, vol. 39, no. 6,
pp. 36-38, 2014.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3325624

13

[33] C. Filsfils et al., “IPv6 Segment Routing Header (SRH),” RFC 8754,
Mar. 2020. [Online]. Available: https://www.rfc-editor.org/info/rfc8754

[34] C. Filsfils et al., “Segment Routing over IPv6 (SRv6) Network
Programming,” RFC 8986, Feb. 2021. [Online]. Available: https:
//rfc-editor.org/rfc/rfc8986.txt

[35] Z. X. et al., “Reducing latency in virtual machines: Enabling tactile
internet for human-machine co-working,” IEEE JSAC, vol. 37, no. 5,
pp. 1098-1116, 2019.

[36] S.-Y. Wang and J.-C. Chang, “Design and implementation of an intrusion
detection system by using extended bpf in the linux kernel,” Journal of
Network and Computer Applications, p. 103283, 2021.

[37] J. Levin and T. A. Benson, “Viperprobe: Rethinking microservice
observability with ebpf,” in 2020 IEEE 9th International Conference
on Cloud Networking (CloudNet). 1EEE, 2020, pp. 1-8.

[38] M.Xhonneux, F.Duchene and O. Bonaventure , “Leveraging ebpf for
programmable network functions with ipv6 segment routing,” in Pro-
ceedings of the 14th International Conference on emerging Networking
EXperiments and Technologies. ACM, 2018, pp. 67-72.

[39] S. Miano et al., “A service-agnostic software framework for fast and
efficient in-kernel network services,” in 2019 ACM/IEEE Symposium
on Architectures for Networking and Communications Systems (ANCS).
IEEE, 2019, pp. 1-9.

[40] A. Mayer et al., “Performance Monitoring with H"2: Hybrid Ker-
nel/eBPF data plane for SRv6 based Hybrid SDN,” Computer Networks,
vol. 185, 2021.

[41] Z. Ahmed, M. H. Alizai, and A. A. Syed, “Inkev: In-kernel
distributed network virtualization for den,” ACM SIGCOMM Computer
Communication Review, vol. 46, no. 3, jul 2018. [Online]. Available:
https://doi.org/10.1145/3243157.3243161

[42] M. Bertrone, S. Miano, J. Pi, F. Risso, and M. Tumolo, “Toward
an eBPF-based clone of iptables,” in Netdev OxI12, THE Technical
Conference on Linux Networking. Nepean, Canada: The NetDev
Society, 2018.

[43] W. Tu et al., “Bringing the Power of eBPF to Open vSwitch,” in Linux
Plumbers Conference 2018. San Francisco, California: The Linux
Foundation, 2018, p. 11.

[44] C.-C. Tu, J. Stringer, and J. Pettit, “Building an extensible open vswitch
datapath,” ACM SIGOPS Operating Systems Review, vol. 51, no. 1, pp.
72-717, 2017.

[45] J. Kicinski and N. Viljoen, “ebpf hardware offload to smartnics: cls bpf
and xdp,” Proceedings of netdev, vol. 1, 2016.

[46] M. Spaziani Brunella et al., “hXDP: Efficient Software Packet Process-
ing on FPGA NICs,” in USENIX OSDI 2020), 2020, pp. 973-990.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



