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Abstract 

The DREAMER project had the objective of developing and exploiting Software Defined Networking (SDN) capability in carrier grade IP 

backbones.  DREAMER focused and delivered results on how a network based on an OpenFlow/SDN control plane can provide the same 

functionalities of an IP/MPLS control plane, offering a carrier grade approach to resiliency and fault management. 

DREAMER has developed software, performed testing and achieved results in three main areas of OpenFlow/SDN research: data plane, 

control plane and experimental tools. Concerning the Data Plane, a hybrid IP and SDN networking approach has been considered. A 

solution called “OSHI” (Open Source Hybrid IP / SDN networking ) has been designed and implemented over Linux OS. As for the 

Control Plane, the project exploited and contributed to the development of the ONOS Open Source controller, with a solution to distribute 

the control of a geographical scale SDN network among a set of clusters of ONOS controllers. The solution is called “ICONA” (Inter 

Cluster ONos Application ). As for the experimental tools, DREAMER has developed and released Mantoo  (Management tools) that 

provides an easy design, deployment and control of the SDN experiments. It Includes a web front end called “Topology 3D ” (Topology 

Designer, Deployer & Director ) that allows to graphically design a network topology (made of L3 routers, L2 switches, end devices) and 

to configure the set of services to be provided on top. 

DREAMER has implemented prototypes of the proposed solutions based on Open Source tools and has contributed to the development of 

some of these tools. Therefore DREAMER is having an impact towards the availability of a truly open eco system for carrier grade 

backbone IP networks  based on the SDN paradigm . DREAMER has produced results than can be used by the NRENs and the GÉANT 

backbone when planning future upgrades. The software has been released as Open Source. 
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Executive Summary 

This document represents the final report of the DREAMER project, one of the beneficiary projects of the 
GÉANT Open Call research initiative. Its partners are the CNIT research consortium (www.cnit.it), the 
CREATE-NET research center (www.create-net.org) and the GARR consortium, the Italian NREN (www.garr.it). 
The DREAMER project started in November 2013 and ended in March 2015, according to its work plan it has 
produced a set of internal milestone documents describing the requirements, the architecture and the software 
prototypes. The purpose of this document is to collect all the relevant information produced by the project in a 
single publicly available document. 

The DREAMER project had the objective of developing and exploiting Software Defined Networking (SDN) 
capability in carrier grade IP backbones . DREAMER focused and produced results on how a network based 
on an OpenFlow/SDN control plane can provide the same functionalities of an IP/MPLS control plane, offering 
a carrier grade approach to resiliency and fault management. 

The requirements for the DREAMER project have been analyzed as reported in section 2. DREAMER 
considered the operational requirements coming from the GARR National Research and Education Network 
(NREN) to drive the design of the solutions.  

The DREAMER project had two main dimensions: scientific and experimental. The scientific dimension  
considered a resilient SDN system  able to smoothly operate in case of link and node failures, by providing 
resiliency to the controller element and by promptly restoring paths in the data plane. The experimental 
dimension  implemented and validated the designed modules over the testbed facilities provided by GÉANT.  

The project developed software, performed testing and achieved results in three main areas of OpenFlow/SDN 
research: data plane , control plane  and experimental tools , which are respectively dealt with in sections 3, 5 
and 4. 

Concerning the Data Plane (activities described in section 3), hybrid IP and SDN networking has been 
considered. A solution called “OSHI” (Open Source Hybrid IP / SDN networking ) has been designed and 
implemented over Linux OS. An OSHI node combines traditional IP forwarding/routing (with OSPF) and SDN 
forwarding implemented by means of Open vSwitch in a hybrid IP/SDN node. No open source solutions for 
such a hybrid node were available before. As services to be offered to the customers, DREAMER considered 
IP point to point Virtual Leased Lines (VLL), Layer 2 Pseudo Wires (PW) and Layer 2 Virtual Switches over an 
IP backbone. These services are implemented with virtual circuits which have been denoted as “SBP”, for SDN 
Based Paths. The SBPs are established by the centralized SDN Controllers. 
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Two approaches have been designed and implemented for the SBPs. The first approach is based on VLAN 
tags, it has some limitations in terms of scalability and interoperability with legacy equipment, but it can be 
implemented using OpenFlow 1.0 compliant equipment. The second approach is based on MPLS tags, it does 
not suffer from scalability issues and can better interoperate with legacy equipment, but it requires OpenFlow 
1.3. The section 3 of this report provides the detailed design of the OSHI solution, a discussion on alternative 
design approaches and some considerations on the potential evolution of OpenFlow standards and equipment 
capability. The performance evaluation of the implemented solutions for the data plane are reported in section 4. 

The activities related to the Control Plane are described in section 5, the project exploited and contributed to 
the development of the ONOS Open Source controller [2]. Thanks to an agreement with ON.LAB (a research 
lab on SDN based in San Francisco), the DREAMER project partners were able to work on the ONOS source 
code before it was released to the general public (which happened on December 2014 [4]). The default ONOS 
features provide data plane resilience, as well as control plane resilience for a single cluster of controllers in the 
same data center. The contribution of the project is a solution to distribute the control of a geographical scale 
SDN network among a set of clusters of ONOS controllers. The solution is called “ICONA” (Inter Cluster ONos 
Application ). Section 5 includes the results of experimental tests aimed at comparing ICONA with a standard 
ONOS setup, and evaluating the performance of the two solutions in an emulated environment. 

As for the experimental tools (see section 4), DREAMER has developed and released Mantoo  (Management 
tools) that provides an easy design, deployment and control of the SDN experiments. It Includes a web front 
end called “Topology 3D ” (Topology Designer, Deployer & Director ) that allows to graphically design a 
network topology (made of L3 routers, L2 switches, end devices) and to configure the set of services to be 
provided on top. Then the topology can be automatically deployed as an overlay network over a distributed 
testbed (e.g. the GÉANT testbed) or within a Mininet emulator. Finally, the web front end allows to access the 
shell interface on each node of the deployed topology. The Mantoo experimental tools have been used to 
gather performance measurements of some aspects related to the data plane (OSHI) solution as described in 
sections 4.2. 

DREAMER has implemented prototypes of the proposed solutions based on Open Source tools and has 
contributed to the development of some of these tools (the details about software installation and use are 
reported in appendix). The software developed by the DREAMER project has been released as Open Source, 
under the terms of the Apache 2.0 license. Therefore DREAMER is having an impact towards the availability 
of a truly open ecosystem for carrier grade backbon e IP networks  based on the SDN paradigm . 
DREAMER has produced results than are available and can be used by the NRENs and the GÉANT backbone 
when planning future upgrades. The software has been released as Open source. 
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1 Introduction 

Software Defined Networking (SDN) [12] is proposed as the new paradigm for networking that may drastically 
change the way IP networks are run today. Important applications have been found in Data Centers and in 
corporate/campus scenarios and there have been several proposals considering SDN applicability in wide area 
IP networks of large providers. Considering the wide area IP networks use-case, critical open issues are: 

(i) how to provide the scalability and fault tolerance required in operators’ environments; 

(ii) how to cope with the high latency in the control plane (due to a geographically distributed deployment). 

More generally, the scientific and technological question “what is the best approach to introduce SDN in large-
scale IP Service Providers (ISP) networks?” is definitely still open and different solutions have been proposed, 
A complete and definitive answer to this question needs to consider data plane and control plane aspects. 

The OSHI (Open Source Hybrid IP/SDN) networking architecture, addresses the above question from the point 
of view of data plane. The DREAMER project has designed the OSHI and provided an Open Source reference 
implementation complemented with a set of services (IP Virtual Leased Lines, Ethernet Pseudo-Wirese and 
Virtual Switches, that will be described in section 3) and a set of management tools for performing experiments 
(described in section 4).  

As for the control plane, its reliability, scalability and availability were among the major concerns expressed by 
Service and Cloud Providers since the beginning of the Software Defined Networking (SDN) revolution. Existing 
deployments show that standard IP/MPLS networks natively offer fast recovery in case of failures. Their main 
limitation lies in the complexity of the distributed control plane, implemented in the forwarding devices. IP/MPLS 
networks fall short when it comes to design and implementation of new services that require changes to the 
distributed control protocols and service logic. The SDN architecture, that splits data and control planes, 
simplifies the introduction of new services, moving the intelligence from the physical devices to a Network 
Operating System (NOS), also known as controller, that is in charge of all the forwarding decisions. As the NOS 
cannot introduce a single point of failure in production environments, it is usually considered logically 
centralized. In practical terms, it needs to be replicated to provide the required resiliency. The DREAMER 
project starts from the resiliency solution provided by the ONOS controller, which implements a cluster of 
controllers. This solutions works well when the cluster of controllers resides in a single data center and it is not 
able to properly synchronize remote controller instances. The proposed ICONA (Inter Cluster ONos 
Application) solution considers a set of clusters of ONOS controllers. The controllers in each cluster are in the 
same data center, but the different clusters are geographically distributed. 
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The main contributions of DREAMER are listed hereafter. Items 1 to 3 are related to data plane aspects of SDN 
integration in ISP networks. Items 4 and 5 concern the emulation platform and its management tools. Item 6 is 
about performance assessment. 

1. Design of a hybrid IP/SDN architecture called Open Source Hybrid IP/SDN (OSHI). 

2. Design and implementation of an OSHI node made of Open Source components. 

3. Analysis of extensions to the OpenFlow protocol and to hardware/software switches to optimize the 
support the proposed architecture. 

4. Design and implementation of the ICONA (Inter Cluster ONos Application) solution to control a large 
scale geographical network with a set of clusters of ONOS controllers. 

5. Design and implementation of an open reference environment to deploy and test the OSHI framework 
and the services developed on top of it. 

6. Design and implementation of a set of management tools for the emulation platforms, called Mantoo. 

7. Evaluation of some performance aspects of the proposed architecture and its implementation. 

 

The source code of all the components of the prototypes developed by DREAMER is freely available at [26] 
(OSHI and Mantoo) and [52] (ICONA). In order to ease the initial environment setup, several components have 
also been packaged in a ready-to-go virtual machine, with pre-designed example topologies up to 60 nodes. To 
the best of our knowledge, there is no such hybrid IP/SDN node available as Open Source software, nor such 
an emulation platform with a comprehensive set of management tools. 
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2 Requirement analysis: Carrier Grade 
Requirements and Research and Education 
Networks 

The objective of the DREAMER proposal is to investigate and prototype how a network based on the  
OpenFlow/SDN control plane can provide the same functionalities of an IP/MPLS control plane, offering a 
“carrier grade” approach to resiliency and fault management. 

Most NRENs and the GÉANT backbone introduced the MPLS protocol in the operation of their IP-based 
networks. The main functionalities considered are the possibility to do traffic engineering and the creation of 
virtual circuits, including at Layer 2 to provide VPN services.  

The NRENs and GÉANT networks are largely over provisioned and Traffic engineering is seldom used. The 
request for VPNs has instead constantly increased during the last years. Multi Domain VPNs are particularly 
suited to the large number of Research and Education domains and projects in Europe. A MD-VPN service has 
been recently brought into service [5]. For this reason the Traffic Engineering aspects will be taken into account 
with lower priority in the DREAMER project. The designed architecture will offer the capability of doing traffic 
engineering, but the design and implementation of specific algorithms and solution will be out of the scope of 
the DREAMER project. 

The SDN paradigm and the OpenFlow protocol may provide a simplification in control plane and their main 
advantage lies in the flexibility and “openness” of the approach: adding a new service or feature can be a 
matter of software engineering, and may not be limited to protocols/capabilities of the existing hardware; vendor 
lock-in issues could be avoided or reduced. 

This section of the document elaborates on the carrier grade requirements for NREN networks and considers 
their implication for an SDN/OpenFlow implementation to side and eventually replace the MPLS technology in 
the NRENs and GÉANT networks.  

2.1 The NRENs and the GÉANT networks 

Research and education networking in Europe is organised in a hierarchical fashion, connecting research and 
education community users. The network connection between two end users will be provided by a chain of 
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several networks, each connected to the next. This chain will typically start with a campus network, then may 
include a regional network before connecting to a national (NREN) network. Then to the pan-European 
backbone GÉANT, from there to another NREN and so on back down the chain to the user at the other end. 
Most of international connectivity is provided through GÉANT. Connectivity to General Internet is often local to 
each country, only some NRENs use the  GÉANT DWS service to access Internet providers. 

The networks are used by tens of millions of users for all purposes and are required to perform to high quality 
standards for reliability and performance. 

2.1.1 GÉANT 

The GÉANT [1] network topology is shown in Figure1. The topology is based on a large core of leased dark 
fibers and a set of circuits. The physical topology has been carefully chosen to avoid or minimize any shared 
path between fibers. The optical data plane is based on INFINERA equipment, with up to 100 Gbps for each 
wavelength and a maximum of 500Gbps for each direction in an optical node. The switching equipment is 
based on Juniper equipment. 

The offered network service include to provide point to point circuits at all layers, including optics and IP/MPLS. 

GÉANT Plus is delivered over the highly resilient IP network and, as such, offers extremely high availability: 

• 99.999% in the core backbone 

• 99.4% (across GÉANT, including client interfaces). 

For an unprotected lambda, the availability target is 99.5% up to 1000km, which is then reduced by 0.5% for 
every additional 1000km. 
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Figure1: GÉANT network topology [6] 

 

2.1.2 GARR-X 

GARR-X is the latest generation of the GARR network infrastructure (Figure 2). It is based on direct control of 
all its components, from its 8500 Km of fiber to application level systems. The GARR-X network seamlessly 
peers and it is integrated with regional or metropolitan networks to provide an end to end services to all its 
users. 
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Figure 2: GARR-X fiber topology 

On top of the fiber topology the GARR-X network features a highly reliable and robust IP network. Its availability 
is similar to the GÉANT: 

• 99.99% in the core backbone 

• 99.84% (including client interfaces). 
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2.2 Carrier Grade requirements 

The term "carrier grade" is used in telecommunication and computing to denote a system that is extremely 
reliable and with stable performances and functionalities [9].  

Large communication networks provide essential services to the community, which are expected to be always 
available and therefore networks have to exhibit “carrier grade” characteristics. The network is itself a complex 
system made from different active and passive components arranged in a physical topology. The Table 1 
summarizes the key characteristics required by the system as a whole and by its components to various degree. 
It is a summary of requirements in literature [7], [8] and reference therein. 

Table 1: Carrier Grade Network characteristics 

Characteristic Description 

Reliability  Low failure rates to minimize maintenance and inventory costs. 
High availability, including live upgrades. 

Fault-tolerant architecture is here 
considered a subset of Reliability 

The architectural aspect refers to the type of redundancy—both 
internal redundancy and inter-element or network-level 
redundancy. The system has to behave with none or minor 
degradation under known/random faults and recover in a short 
period of time 

Robustness  and security  features Required to avoid and/or mitigate the impact of intrusion or denial 
of services (DoS) attacks, traffic overloads, and human error.  

Scalability  Support a variety of equipment and services, capacities up to 100 
Gbps, operate up to thousands of equipment. Operate in a wide 
range of network latencies,  

Management  features to support 
operational measurement and tracking, 
performance and alarm monitoring, and 
fault diagnostics 

Effective monitoring of failures and system performance. It 
provides operators with data for proactive network planning and 
pre- and post-failure data for causal analysis to drive corrective 
and preventive actions. 

Maintainability is here considered a 
subset of Reliability 

fast provisioning, fault tracking, performance measurement 

Quality of Service is here considered a 
quantification of above characteristics 
implementation 

More a service definition of SLA supported by the characteristics in 
this table. The availability and quality of packet transmissions 
(packet losses, delay variation and errors), also known as  
“number of ‘9’”, places more stringent requirements for carrier 
grade characteristics 

Resiliency (see picture below) Resiliency is not consider an elementary characteristic, but rather 
the intersection of reliability and security. The choice in dreamer is 
in line with the definition of the word as “the ability of a substance 
or object to spring back into shape; elasticity” and “the capacity to 
recover quickly from difficulties”. 
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Reliability Security  .
Robustness

Resiliency

 

Figure 3: Resiliency as a secondary characteristics 

The implementation of Carrier Grade characteristics involves every component of the system and its 
architecture. In case of networking every layer has to be carefully engineered.  

In the NRENs networks the fiber and leased circuit topology is chosen to obtain physical path resiliency in case 
of failures and avoid physical partitioning also in the case of multiple failures in the core. The optical equipment 
and the switching equipment are also redundant in their components and in the physical positions. 

 

2.3 DREAMER Requirements 

The objective of DREAMER is “to investigate how a network based on an  OpenFlow/SDN control plane can 
provide the same functionalities of an IP/MPLS control plane, offering a carrier grade approach to resiliency 
and fault management.” 

This restrict the focus of the project to the control plane (and virtual data planes created), considering software 
running on computing elements. The project will take the following assumptions:  

• The physical network has been engineered to be carrier grade, as defined above, in its components: 
fibers/circuit, topology, hardware in routers and switches  

• The computing elements’ hardware and the operating systems used are carrier grade (e.g. [10]) 

• Usual control and data  plane IP is present in all network nodes, including DREAMER own control plane 
(e.g. based on OSPF, BGP) 

• IP/MPLS service targeted are VPN (high priority for DREAMER) and traffic engineering (lower priority 
for DREAMER). 

The DREAMER architecture requirements can be derived from the MPLS functionalities to be replaced and 
from Table 1 characteristics, quantified according to the GARR and GÉANT network current performance 
metrics. 
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In considering the DREAMER objectives, the carrier grade requirements will consider that the physical 
components of the network have been engineered to be carrier grade. Also computing system are supposed to 
be carrier grade, see for Linux the specification of carrier grade Linux [10]. The control plane functionalities and 
the DREAMER behavior will be engineered and tested to verify their grade. 

The MPLS functionalities that DREAMER has to provide, with carrier grade characteristics are: 

• virtual point to point circuit creation at layer 2 (emulation of Ethernet circuits), with and without 
automatic resiliency 

• a VPN functionality similar to the one that can be created with MPLS (the BGP/MPLS solution uses 
BGP to distribute VPN routing information across the provider's backbone and MPLS to forward VPN 
traffic from one VPN site to another) 

• traffic engineering of flows (implementation of specific algorithms is out of scope for DREAMER project) 

Given the multi-domain nature of the European NREN and the need to provide virtual private networks that 
span more than one NREN, the DREAMER architecture and functionalities it should be possible to extend it 
toward multi-domain stitching of virtual circuit at layer 2 and at layer 3, either manually or automatically.  

Table 2: Characteristics and requirements 

Characteristic DREAMER requirement 

Reliability The software components and the architecture should ensure that 
the system can remain active for a very long period of time, without 
interruption. 

Fault-tolerant architecture The DREAMER architecture should be capable of graciously 
handling the various type of failures, mostly in software. It should 
also react to physical substrate failures, e.g. redirecting traffic to 
different paths. 

Robustness and security features The DREAMER active components and the protocols used to 
communicate should react properly to attacks and protect 
information, using encryption, authentication and authorization e.g.  

Scalability Support a variety of equipment and services, capacities up to 100 
Gbps, operate up to thousands of equipment. Operate in a wide 
range of network latencies, preserving fast resilience 

Management features to support 
operational measurement and tracking, 
performance and alarm monitoring, and 
fault diagnostics 

The dreamer components should include monitoring functionalities 
for the system and the traffic. 

 

Maintainability The system should be modular and upgradable with minor 
downtime. 
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Two architectural aspects, will be specifically targeted:  

i) the control plane controller resilience and its distribution;  

ii) the data plane resilience, with carrier grade fast restoration mechanism. 

The target performance is to offer availability values in the same range of GÉANT and GARR-X networks. 

In addition to availability, the architecture should also keep at minimum the packet loss in case of circuit or 
node failures. The capacity to consider are between 10 Gbps and 100 Gbps, which correspond to about one to 
twelve MB for each millisecond. A typical router buffer of 2 GB is capable of storing between 2 and 100 
millisecond of traffic in case of routing issues, in case of circuits longer than 1 millisecond the buffering time is 
correspondently reduced. A target convergence time of tens of milliseconds is desirable. 
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3 Data plane aspects 

This section deals with data plane aspects, reporting on the design of the proposed hybrid IP/SDN networking 
solution (OSHI). In section 3.1 we discuss some issues related to the introduction of SDN in IP Service 
Providers networks and describe the state of the art of similar solutions; in section 3.2 we define the main 
concepts of the proposed hybrid IP/SDN networking architecture; section 3.3 provides the detailed description 
of the proposed design, the notion of “SDN Based Paths” (SBP) is provided and the two implemented solutions 
using VLAN tags or MPLS labels to guarantee the coexistence among regular IP and SDN traffic implementing 
the so called  are respectively described in section 3.3.3 and 3.3.4; in section 6.1 we show some limitations of 
current SDN ecosystem and propose the needed extensions. The performance evaluation of some aspects of 
the proposed OSHI solution will be reported in the section 4 later on, after the discussion of the experimental 
tools. 

3.1 SDN Applicability in IP Providers Networks 

SDN is based on the separation of the network control and forwarding planes. An external SDN controller can 
(dynamically) inject rules in SDN capable nodes. According to these rules the SDN nodes perform packet 
inspection, manipulation and forwarding, operating on packet headers at different levels of the protocol stack. 

We focus on SDN applicability in IP Service Providers networks. Figure 4 shows a reference scenario, with a 
single IP provider interconnected with other providers using the BGP routing protocol. Within the provider 
network, an intra-domain routing protocol like OSPF is used. The provider offers Internet access to its 
customers, as well as other transport services (e.g. layer 2 connectivity services or more in general VPNs). 
Using the terminology borrowed by IP/MPLS networks, the provider network includes a set of Core Routers 
(CR) and Provider Edge (PE) routers, interconnected by point to point links (Packet Over Sonet, GigaBit 
Ethernet, 10GBE…) or by legacy switched LANs (and VLANs). The Customer Edge (CE) routers is the node in 
the customer network connected to the provider network. Most often, an ISP integrates IP and MPLS 
technologies in its backbone. MPLS creates tunnels (LSP – Label Switched Path) among routers. On one hand, 
this can be used to improve the forwarding of regular IP traffic providing: 

i) traffic engineering 

ii) fault protection 

iii) no need to distribute of the full BGP routing table to intra-domain transit routers. 
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On the other hand, MPLS tunnels are used to offer VPNs and layer 2 connectivity services to customers. In any 
case, the commercial MPLS implementations are based on traditional (vendor-locked) control plane 
architectures that do not leave space for introducing innovation in an open manner. As a matter of fact, in case 
of complex services involving the MPLS control plane, IP Service Providers rely on single-vendor solutions. The 
management of large-scale IP/MPLS network is typically based on proprietary (and expensive) management 
tools, which again constitute a barrier to the innovation. 
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Figure 4. Reference scenario: an IP provider network 

Let us consider the migration of a Service Provider network, based on IP/MPLS, to SDN. CR and PE routers 
could be replaced by SDN capable switches, giving the ability to realize advanced and innovative services 
and/or to optimize the provisioning of existing ones. The migration paths should foresee the coexistence of IP 
and SDN based services, in a hybrid IP/SDN scenario (resembling the current coexistence of IP and MPLS). 
According to the taxonomy defined by Vissicchio et al [14], this approach can be classified as Service-Based 
Hybrid SDN or Class-Based Hybrid SDN, depending on the portion of the traffic controlled: classes of traffic or 
different type of services. In this migration scenario a set of hybrid IP/SDN nodes are capable of acting as plain 
IP routers (running the legacy IP routing protocols), as well as SDN capable nodes, under the control of SDN 
controllers. We observe that IP/MPLS control and forwarding plane have been optimized in the years and are 
capable to operate on large-scale carrier networks, while SDN technology has not reached the same maturity 
level. Therefore, the advantage of introducing SDN technology in a carrier grade IP backbone is not related to 
performance improvements. Rather we believe that the openness of the SDN approach eliminates the need of 
complex distributed control planes architectures with closed implementations and difficult interoperability, 
facilitates the development of new services and fosters innovation. 

3.1.1 State of the art 

Pure SDN solutions based on L2 switches inter-connected with a centralized controller have been 
demonstrated both in data-centers and in geographically distributed research networks, such as OFELIA [20] in 
EU, GENI [21] and Internet2 [22][23] in US. To the best of our knowledge, these solutions do not integrate L3 
routing among the SDN capable L2 switches. We argue that an ISP network requires a more sophisticated 
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approach that integrates IP routing protocols and can natively interwork with legacy IP routers. As stated in [14], 
a hybrid SDN model that combines SDN and traditional architectures may “sum their benefits while mitigating 
their respective challenges”. The recent literature presents some preliminary architectures toward hybrid 
IP/SDN networks. An example of a solution that tries to integrate also L3 routing and SDN is reported in [24]. 

RouteFlow [17] creates a simulated network, copy of the physical one, in the SDN controller, and uses 
distributed routing protocols, such as OSPF, BGP, IS-IS between the virtual routers inside the emulated 
network. A traditional IP routing engine (Quagga) computes the routing tables that are eventually installed into 
the hardware switches via the OF protocol. 

In [16] the authors present an Open Source Label Switching Router that generates OSPF and LDP packets 
using Quagga [30]. The node computes the MPLS labels that are then installed in the switches using the 
OpenFlow (OF) protocol. This architecture provides a distributed “standard” control plane, while it uses OF only 
locally in a node to synchronize the FIBs and to program the data plane.  

The Google B4 WAN [19] can be considered as an integrated hybrid SDN solution, and it has likely been the 
first application of the SDN approach to a large-scale WAN scenario. However in this use case the intra-domain 
routing protocol uses SDN as an interface to the forwarding plane. The B4 solution takes into account the WAN 
which interconnects the Google’s datacenter, we believe that this use case is rather different from traditional 
ISP scenario. To give an example, administrative problems are not addressed in a single administrative domain. 
The RouteFlow hybridization is quite similar to the one designed for Google’s B4 solution. 

Compared with these works, our solution considers hybrid IP/SDN nodes also capable of dealing with IP 
routing, thus achieving easier interoperability with non-OF devices in the core network and fault-tolerance 
based on standard IP routing. The idea of supporting retro-compatibility and incremental deployment of SDN is 
not new. According to the OF specifications [18], two types of devices are considered: OF-only and OF-hybrid 
which can support both OF processing and standard L2/L3 functionalities. Currently, only proprietary hardware 
switches implement the hybrid approach offering also L3 standard routing capabilities; in our work we analyzed 
and implemented a fully Open Source OF-hybrid solution designed to be flexible and scalable, so as to facilitate 
experimentation on hybrid IP/SDN networks at large scale. 

3.2  Proposed Hybrid IP/SDN Architecture 

In the IP/MPLS architecture there is a clear notion of the MPLS tunnels, called Label Switched Paths (LSPs). In 
an SDN network several types of tunnels or more generically network paths can be created, leveraging on the 
ability of SDN capable nodes to classify traffic based on various fields such as MAC or IP addresses, VLAN 
tags, MPLS labels. As there is not a standard established terminology for such concept, we will refer to these 
paths as SDN Based Paths (SBP). An SBP is a “virtual circuit” setup using SDN technology to forward a 
specific packet flow between two end-points across a set of SDN capable nodes. The notion of packet flow is 
very broad and it can range from a micro-flow i.e. a specific TCP connection between two hosts, to a macro-
flow e.g. all the traffic directed towards a given IP subnet. As highlighted before, a flow can be classified looking 
at headers at different protocol levels. 

We address the definition of the hybrid IP/SDN network by considering: 
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i) mechanisms for coexistence of regular IP traffic and SBPs 

ii) the set of services that can be offered using the SBPs; 

iii) ingress traffic classification and tunneling mechanisms.  

Let us consider the coexistence of regular IP traffic and SBPs on the links between hybrid IP/SDN nodes. An 
SDN approach offers a great flexibility and can classify packets with a “cross-layer” approach, by considering 
packet headers at different protocol levels (MPLS, VLANs, Q-in-Q, Mac-in-Mac and so on). Therefore it is 
possible to specify a set of conditions to differentiate the packets to be delivered to the IP forwarding engine 
from the ones that belong to SBPs. In general, these conditions can refer to different protocol headers, can be 
in the form of white- or black- lists and can change dynamically, interface by interface. This flexibility may turn 
into high complexity, therefore the risk of misconfigurations and routing errors should be properly taken into 
account (see [11]). Without preventing the possibility to operate additional coexistence and tunneling 
mechanisms in a hybrid IP/SDN network, we propose MPLS tagging as the preferred choice and VLAN tagging 
as a sub-optimal choice. Both solutions have been implemented in our platform. 

Let us now consider the services and features that can be offered by the hybrid IP/SDN network. As primary 
requirements we assume three main services/functionalities: 

(i) virtual private networks (Layer 2 and Layer 3), 

(ii) traffic engineering 

(iii) fast restoration mechanisms. 

Moreover the architecture should facilitate the realization of new services or the development of new forwarding 
paradigms (for example Segment Routing [33]) without the introduction of complex and proprietary control 
planes. 

As for the traffic classification, the ingress PEs need to classify incoming packets and decide if they need to be 
forwarded using regular IP routing or they belong to the SBPs. The egress edge router will extract the traffic 
from the SBPs and forward it to the appropriate destination. We considered (and implemented in our platform) 
two approaches for the ingress classification: i) classification based on physical access port; ii) classification 
based on VLAN tags. As the ingress classification is not a specific feature of our architecture, we did not 
consider other traffic classification, e.g. based on MAC or IP source/destination addresses. However these 
approaches can be easily implemented without changing the other components. 

Finally, we considered a VLAN based tunneling mechanisms and two MPLS based tunneling mechanisms: 
plain IP over MPLS ([34], here referred to as IPoMPLS) and Ethernet over MPLS (EoMPLS, described in RFC 
3985 [35]). Different services are supported by these tunneling mechanisms: the IPoMPLS and the VLAN 
based tunneling only support the relay of IP and ARP packets between two IP end points. We refer to this 
service as IP Virtual Leased Line (IP VLL). The EoMPLS tunneling mechanism can support the relaying of 
arbitrary layer 2 packets, providing the so called Pseudo-Wire (PW) service. 

3.3 Detailed Design of the Hybrid IP/SDN Solution 

In this section we present the detailed design and the implementation of the proposed architecture. We 
describe the Open Source tools that we have integrated and how their practical limitations have been taken into 
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account to deliver a working prototype. We will first introduce the high level architecture of an OSHI node 
(3.3.1) and the basic services we provide (IP Virtual Leased Line and Pseudo-wires, 3.3.2). Then we describe 
the two different options of using VLAN tags or MPLS labels to realize SDN Based Paths (SBPs) and to support 
the coexistence between IP based forwarding and SBP forwarding. As we will show, the design of MPLS based 
option has been more challenging and the resulting implementation is more complex. In part this is due to 
inherent limitation of OpenFlow architecture, in part to the shortcomings of the Open Source tools that we have 
integrated. In part due to the fact that MPLS over Ethernet is not clarified because usually MPLS over PPP is 
used. 

3.3.1 OSHI High Level Node Architecture 

We designed our Open Source Hybrid IP/SDN (OSHI) node combining an OpenFlow Capable Switch (OFCS), 
an IP forwarding engine and an IP routing daemon. The OpenFlow Capable Switch is connected to the set of 
physical network interfaces belonging to the integrated IP/SDN network, while the IP forwarding engine is 
connected to a set of OFCS virtual ports, as shown in Figure 5. In our OSHI node, the OFCS component is 
implemented using Open vSwitch (OVS) [29], the IP forwarding engine is the Linux kernel IP networking and 
Quagga [30] acts as the routing daemon. 

Virtual ports

Physical 

interfaces

IP Forwarding Engine – IP FE
(Linux networking)

IP Routing Daemon
(Quagga)

IP

SDN
OF Capable Switch - OFCS 

(Open vSwitch)

Local

Management
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Figure 5. OSHI Hybrid IP/SDN node architecture 

The internal virtual ports that interconnect the OFCS with the IP forwarding engine are realized using the 
“Virtual Port” feature offered by Open vSwitch. Each virtual port is connected to a physical port of the IP/SDN 
network, so that the IP routing engine can reason in term of the virtual ports, ignoring the physical ones. The 
OFCS differentiates among regular IP packets and packets belonging to SDN Based Paths. By default, it 
forwards the regular IP packets from the physical ports to the virtual ports, so that they can be processed by the 
IP forwarding engine, controlled by the IP routing daemon. This approach avoids the need of translating the IP 
routing table into SDN rules to be pushed in the OFCS table. A small performance degradation is introduced 
because a packet to be forwarded at IP level will cross the OFCS switch twice. It is possible to extend our 
implementation to consider mirroring of the IP routing table into the OFCS table, but this is left for future work. 
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An initial configuration of the OFCS tables is needed to connect the physical interfaces and the virtual 
interfaces, to support the OFCS-to-SDN-controller communication, or for specific SDN procedures (for example 
to perform Layer 2 topology discovery in the SDN controller). A Local Management Entity (LME) in the OSHI 
node takes care of these tasks. In our setup, it is possible to use an “in-band” approach for OFCS-to-SDN-
controller communication, i.e. using the regular IP routing/forwarding and avoiding the need of a separate out-
of-band network. Further details and the block diagram of the control plane architecture of OSHI nodes are 
reported in [27]. 

3.3.2 OSHI basic services: IP VLL and PW 

We designed and implemented two basic services to be offered by the hybrid IP/SDN networks: the IP “Virtual 
Leased Line” (IP VLL) and the Layer 2 “Pseudo-wire” (PW) see Figure 6. Both services are offered between 
end-points in Provider Edge routers, the end-points can be a physical or logical port (i.e. a VLAN on a physical 
port) of the PE router connected to a Customer Edge (CE). The interconnection is realized in the core hybrid 
IP/SDN network with an SBP using VLAN tags or MPLS labels. 

 

Figure 6. IP VLL and PW services  

The IP VLL service guarantees to the IP end-points to be directly interconnected as if they were in the same 
Ethernet LAN and sending each other IP and ARP packets. It is not meant to allows the served SBP end-points 
to send packets with arbitrary Ethertype (e.g. including VLAN packets). We implemented the IP VLL service 
both using VLAN tags and MPLS tags. In both cases the original source and destination MAC addresses, 
shown as “C” (for Customer) in the headers of the packets in Figure 6, are preserved in the transit in the 
network core. This may cause problems if legacy L2 switches are used to interconnect OSHI nodes, therefore 
our implementation of IP VLL service can only work if all edge and core nodes are OSHI capable connected to 
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each other without legacy intermediate switches in between. In principle one could implement MAC address 
rewriting replacing the customer addresses them with the addresses of the ingress and egress PEs or on a 
hop-by-hop case. This is rather complex to realize and to manage, because the egress node should restore the 
original addresses, needing state information per each SBP, so we did not follow this option. 

The PW service is also known as “Pseudowire Emulation Edge to Edge” (PWE3), described in RFC 3985 [35]. 
The PW service provides a fully transparent cable replacement service: the endpoints can send packets with 
arbitrary Ethertype (e.g including VLAN, Q-in-Q). We implemented the PW service only using the MPLS tags, 
the customer Ethernet packet is tunneled into an MPLS packet as shown in Figure 6. This approach solves the 
interworking issues with legacy L2 networks related to customer MAC addresses exposure in the core. 

3.3.3 OSHI - VLAN based approach 

3.3.3.1 Coexistence mechanisms 

Two coexistence mechanisms have been designed: 

i) Tagged coexistence, in which the IP traffic is transported with a specific VLAN tag while SBPs use 
other VLAN tags; 

ii) Untagged coexistence, in which the IP traffic travels “untagged” and SBPs use VLAN tags. 

Both mechanisms can interwork with existing legacy VLANs, as long as a set of tags is reserved for our use on 
each physical subnet/link (and this is needed only if the link between two routers already runs on a VLAN). As 
for the implementation of coexistence mechanisms we used the multiple tables functionality. It has been 
introduced with OF v1.1, but it is possible to emulate it using OF v1.0 with the so called “Nicira extensions”. We 
have initially leveraged the Nicira extensions implementation in Open vSwitch and then migrated to standard 
multiple tables when their support has been included in Open vSwitch. For Untagged coexistence, incoming 
untagged traffic will be directed to a virtual port (toward the IP forwarding engine), incoming tagged traffic will 
be directed to a physical port according to the configuration of the SBPs (VLAN tag can be switched 
appropriately). For Tagged coexistence, incoming traffic tagged with the specific VLAN tag for regular IP traffic 
will be directed to a virtual port (toward the IP forwarding engine), while traffic tagged with the other VLAN tags 
will be directed to a physical port according to the configuration of the SBPs (VLAN tag can be switched 
appropriately). The details are also reported in [27]. 

3.3.3.2 Ingress classification and tunneling mechanisms 

As for the ingress classification functionality in a Provider Edge router, we use the input port to classify 
untagged traffic as regular IP traffic or as belonging to the end-point of a VLL. For VLAN tagged traffic entering 
in a physical port of a PE router, each VLAN tag can individually mapped to a VLL end point or assigned to 
regular IP traffic. For the untagged traffic, the implementation of the ingress classification is realized within the 
OFCS of the OSHI Provider Edge nodes. By configuring rules in the OFCS, it is possible to map the untagged 
traffic on an ingress physical port to a virtual port (for regular IP) or to an SBP (for a VLL end-point). For the 
tagged traffic, the incoming classification relies on the VLAN handling of the Linux networking: each VLAN tag x 
can be mapped to a virtual interface eth0.x that will simply appear as an additional physical port of the OFCS. 
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The IP VLL service is realized with an SBP that switches VLAN tags between two end-points (in both 
directions). This has a severe scalability issues as the number of SBPs on a link is limited to 4096. Moreover in 
case legacy VLAN services are implemented on the links among the OSHI nodes, the VLAN label space needs 
to be partitioned between the SBPs and the legacy VLAN services, complicating the management and reducing 
the maximum number of SBPs on a link. 

We have implemented the IP VLL service in the VLAN based approach on top of the Floodlight controller [28]. 
In particular, the SBPs are setup using a python script called VLLPusher. It uses the Topology REST API of the 
Floodlight controller in order to retrieve the route that interconnects the VLL end-points. In this approach the 
route is chosen by the Floodlight controller (currently it simply selects the shortest path). The implementation of 
traffic engineering mechanisms for the VLLs would require to modify the route selection logic within the 
Floodlight controller. The script allocates the VLAN tags and then uses the Static Flow Pusher REST API of 
Floodlight in order to set the rules for packet forwarding and VLAN tag switching. 

3.3.3.3 Requirements on protocol and tools versions 

The proposed implementation of the VLAN based approach only requires OpenFlow 1.0 compliance in the 
controller. On the OFCS side, it requires the support for multiple tables which has been introduce in OF 1.1 and 
can be emulated using the proprietary Nicira extensions. In fact, the Local Management Entity uses the multiple 
table features for the initial configuration of the OFCS, while the run-time rules injected by the controller use OF 
v1.0. In our first implementation we relied on the Nicira extensions implemented in Open vSwitch, hence we 
were able to release a working prototype of a hybrid IP/SDN network using Open Source components in May 
2014. 

3.3.4 OSHI - MPLS based approach 

In this subsection we illustrate the MPLS based approach. With respect to the VLAN based solution, it extends 
the functionality and the services offered by the OSHI networks. It solves the scalability issue (in terms of 
number of SBPs that can be supported on each link) of the VLAN solution. The use of MPLS labels enables the 
establishment of up to 220 (more than 106) SBPs on each link. We have implemented both IP VLL and PW 
services with MPLS, in both cases the MPLS solution does not interfere with VLANs that can potentially be 
used in the links between OSHI nodes. 

3.3.4.1 Coexistence mechanisms 

For the coexistence of regular IP service (best effort traffic) and SDN services (using SDN Based Paths) we 
use the Ethertype field of the L2 protocol. This corresponds to one of the mechanisms that can be used in the 
IP/MPLS model: regular IP traffic is carried with IP Ethertype (0x0800), SBPs are carried with MPLS Ethertypes 
(0x8847 and 0x8848). We have implemented the coexistence solution using the OpenFlow multi-table 
functionality, as shown in Figure 7. Table 0 is used for regular IP, ARP, LLDP, BLDP, etc..., table 1 for the 
SBPs. In particular, Table 0 contains: 

i) two rules that forward the traffic with the Ethertypes 0x8847 (MPLS) and 0x8848 (Multicast MPLS) to 
Table 1; 
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ii) the set of rules that “bridge” the physical interfaces with Virtual Interfaces and vice versa; 

iii) two rules that forward the LLDP and BLDP traffic to the controller. 

Table 1 contains the set of rules that forward the packets of the SBPs according to the associated IP VLL or 
PW service. The coexistence in Table 0 is assured through different levels of priority. As regards the rule 
associated to the Multicast MPLS Ethertype, it is used for the VLL service (more below), while the PW service 
would need only the rule matching the unicast MPLS Ethertype. 
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set
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Figure 7. Packet processing in the OFCS flow tables 

3.3.4.2 Ingress classification and tunneling mechanisms 

As regards the ingress classification, the same mechanisms described for the VLAN approach are reused: the 
classification can be based on the physical input port or on the incoming VLAN.  

Let us analyze the tunneling mechanisms in the OSHI MPLS approach. Figure 8 shows the tunneling realized 
by OSHI-PE for the IP VLL service in the left half. C stands for Customer, Ingr refers to the ingress direction 
from customer to core, Egr refers to the opposite direction (egress). This solution borrows the IPoMPLS 
approach, in which an MPLS label is pushed within an existing frame. In this case an input Ethernet frame 
carrying an IP or ARP packet, keeps its original Ethernet header, shown as C-ETH in Figure 8. As we have 
already stated for the VLAN implementation of the IP VLL, this solution has the problem of exposing the 
customer source and destination MAC address in the core. Moreover, note that the MPLS Ethertype (0x8847) 
overwrites the existing Ethertype of the customer packets. This does not allow to distinguish between IP and 
ARP packets at the egress node. A solution would be to setup two different bidirectional SBPs, one for the IP 
and one for the ARP packets. In order to save the label space and simplify the operation we preferred to carry 
IP packets with the MPLS Ethertype and to (ab)use the multicast MPLS Ethertype (0x8848) to carry the ARP 
packets. With this approach, the same MPLS label can be reused for the two SBPs transporting IP and ARP 
packets between the same end-points. 
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Figure 8. IP VLL and PW tunneling operations at the Provider Edges  

The right half of Figure 8 shows the tunneling operations performed by the PE for the PW service. P stands for 
Provider, it indicates the headers added/removed by the PE. This tunneling mechanism is an “Ethernet over 
MPLS” (EoMPLS) like solution. In the EoMPLS case the customer packet is encapsulated, including its original 
Ethernet header, in an MPLS packet to be carried in a newly generated layer 2 header. Unfortunately the 
OpenFlow protocol and most OpenFlow capable switches (including Open vSwitch that we are using for our 
prototype) do not natively support EoMPLS encapsulation and de-capsulation. A similar issue has been 
identified in [36], in which the authors propose to perform Ethernet in Ethernet encapsulation before handing 
the packet to a logical OpenFlow capable switch that will deal with pushing MPLS labels. Obviously this 
requires a switch capable of doing Ethernet in Ethernet encapsulation. Note that the process cannot be fully 
controlled with OpenFlow, as the Ethernet in Ethernet encapsulation is out of the OpenFlow scope. In our 
solution, Open vSwitch does not offer Ethernet in Ethernet encapsulation and we relied on GRE encapsulation. 
As shown in Figure 8, this approach introduces the additional overhead of a GRE tunnel (20 bytes for P-IP and 
4 bytes for GRE headers) to the standard EoMPLS encapsulation, but allowed us to rely on Open Source off-
the-shelf components. The implementation of the PW service required a careful design, whose result is shown 
in Figure 9. A new entity is introduced, called ACcess Encapsulator (ACE) in order to deal with the GRE tunnel 
at edges of the pseudo wire. The ACE is further analyzed in subsection 3.3.5. 
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Figure 9. PW implementation in the OSHI node prototype 

With this approach it is possible to rewrite the outer source and destination MAC addresses in the core OSHI 
network, so that they can match the actual addresses of the source and destination interfaces of the OSHI 
IP/SDN routers. This allows to support legacy Ethernet switched networks among the OSHI IP/SDN routers, 
which can be an important requirement for a smooth migration from existing networks.  

Both the IP VLL and PW services are realized with SBPs that switches MPLS labels between two end-points (in 
both directions). We used the Ryu [38] controller and adapted the VLLPusher python script to perform the setup 
of the SBPs. The script uses the Topology REST API of the Ryu controller in order to retrieve the network 
topology. Then it evaluates the shortest path that interconnects the end-points of the service. At this step, it is 
possible to introduce Traffic Engineering aspects in the selection of the path. Finally, the script allocates the 
MPLS labels and uses the Ofctl REST API to set the rules for packet forwarding and MPLS label switching. In 
the setup of a PW service the MAC rewriting actions are added, using the addresses of the OSHI nodes as the 
outer MAC addresses. 

3.3.4.3 Requirements on protocol and tools versions 

The MPLS solution needs at least OpenFlow v1.1, in which the handling of MPLS labels has been introduced. 
Both the SDN controller and the SDN Capable Switch need to support at least OF v1.1 (most controller and 
switches jumped from OF v1.0 to v1.3). Considering our tools, an Open vSwitch version compliant with OF v1.3 
has been released in summer 2014, making it possible to start the implementation of the MPLS based 
approach. As for the controller, we switched from Floodlight to Ryu because as of June 2014, only the latter 
included the support for OF 1.3. 

3.3.4.4 The Virtual Switch Service (VSS), also known as VPLS 

The PW service can be used as building block for creating more complex services, like for example the Virtual 
Switch Service (VSS). While a PW service instance bridges two layer 2 end-points, using the VSS service a set 
of end-points can be transparently bridged into a virtual layer2 switch (see Figure 10). The ports of a VSS 
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instance correspond to an arbitrary set of ports of the Provider Edge nodes. This service is called Virtual 
Private LAN Service (VPLS) in RFC 4761 [37]. A VSS provides the same VPLS service described in the RFC, 
but its implementations is based on SDN and does not exploit other control plane functionalities, therefore we 
renamed it. 

Physical
Virtual

Hybrid network 
IP/SDN

OSHI 1

Transparent 
Virtual Switch

OSHI 2

OSHI 3 OSHI 4

OSHI 5
 

Figure 10. Virtual Switch Service (VSS) in the OSHI network 

The VSS needs to relay upon the PW service, because using the IP VLL service the OSHI network does not 
provide a transparent forwarding of layer 2 packets. The VSS service is built using PWs that connect the end-
points to one or more “bridging points” in the OSHI network in which a virtual layer 2 switch instance is reserved 
to bridge the packets coming from the PW.  

The deployment of a VSS instance is realized in three steps: the first step is executed by a python script called 
VSSelector. It retrieves the topology from the controller and then choices the OSHI nodes that will host the 
virtual switches. The second step is the deployment of the virtual switches, according to the decision taken by 
the VSSelector, Using the OSHI management tools additional instances of Open vSwitch are deployed on top 
of the selected OSHI nodes. The final step is the deployment of the PWs that will interconnect the CEs to the 
bridging points (if multiple bridging points are used, additional PWs will interconnect them as needed. We 
implemented two versions of the first step (bridging point selection) : i) un-optimized; ii) optimized. In the un-
optimized version a random node from the topology is chosen and used to deploy the virtual bridge. For the 
optimized version, we observe that the selection of an optimal internal topology to implement a VSS exactly 
corresponds to the Steiner tree problem [39]. We implemented the heuristic defined in [40] to find an 
approximate solution of the minimal Steiner tree. Using the tree topology obtained from the heuristic, a set of 
virtual switches is deployed only in the branching points of the tree. These branching points are connected 
each other and with end-points through direct Pseudo Wires, In this way, the forwarding of the packets is 
optimized, as they are duplicated them only when it is necessary. 

3.3.5 OSHI detailed node architecture 

In order to the support of the PW and VSS services, the architecture of an OSHI node needs to be more 
complex with respect to the high level architecture shown in Figure 5. 
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Figure 11 provides a representation of the proposed solution for the PE nodes. The critical aspect is the 
support of PW encapsulation and decapsulation (as shown in the right side of Figure 8) in OSHI PE nodes. The 
circles refer to the encapsulation steps represented in Figure 8. The OF Capable Switch only handles the 
push/pop of MPLS labels, instead the ACE handles the GRE encapsulation. The ACE is implemented with a  
separate instance of Open vSwitch and it exploits two virtualization functions recently introduced in the Linux 
Kernel: network namespaces and Virtual Ethernet Pairs. For each PW the ACE has two ports, a “local” port 
facing toward the CE locally connected to the PE node, and a “remote” one facing towards the remote side of 
the PW. The remote port is a GRE port as provided by OVS, and proper rules are configured in the ACE to bind 
the two ports. Therefore the ACE receives customer layer 2 packets on the local ports and sends GRE 
tunneled packets on the remote port (and vice-versa). The interconnection of OFCS ports and ACE ports (the 
endpoints of the yellow pipes in Figure 11) are realized using the Virtual Ethernet Pair offered by Linux Kernel.  
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Figure 11. OSHI-PE architectural details 

For each PW two “Virtual Ethernet Pairs”, are needed. Three endpoints are used as plain switch ports (two 
belong to the OFCS, one to the ACE), the last one on the ACE is configured with an IP address and it is used 
as endpoint of the GRE tunnel (Virtual Tunnel Endpoint, i.e. VTEP). As regards the GRE port, it is configured 
with the IP address of the remote VTEP, the VTEPs are in the same subnet and the ARP resolution is avoided 
through a static ARP entry. The interconnection among the namespaces is assured by means of OpenFlow 
rules in the OFCS. In the access port (1F) these rules are provided by the LME at the time of the ACE creation, 
while in the 4F and 2R cases they are pushed by the OpenFlow Controller during the PW establishment. 

An instance of ACE is used to handle all the PWs of a single Customer Edge (CE): there will be as many ACE 
instances as many connected CEs that are using PWs. The ACE runs in a private network namespace, and 
has a private folders tree, as needed to guarantee proper interworking of difference instances of OVS in the 
same OSHI-PE. 

Coming to the implementation of the VSS, the internal design of an OSHI node that hosts a VSS Bridging Point 
(VBP) is shown in Figure 12. The design is quite similar to the one analyzed before for the PW encapsulation. A 
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VBP is implemented with an OVS instance that does not have local ports, but only remote ones. A VPB 
instance represent a bridging point for a single VSS instance and cannot be shared among VSS instances.  
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Figure 12. An OSHI node that hosts a bridging point for a VSS 
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4 Experimental tools and performance 
evaluation 

With respect to the issue of introducing SDN in ISP networks, let us consider two key aspects: 

(i) design, implementation and testing of a solution; 

(ii) evaluation of a solution and comparison of different ones. 

As for the development and testing of a solution, it ideally requires the availability of a large-scale test network 
with real hardware nodes on which to deploy the solution. This is clearly an expensive approach which is 
typically not feasible for a researcher or research entity. 

The evaluation of a solution (and the comparison among different ones) is a rather complex task. First of all the 
functional properties of the solution needs to be assessed: which services can be offered to the customers and 
which management tools will be available to the service provider itself. Then several non-functional properties 
need to be evaluated (and this is by far the most difficult part). These properties range from quantitative 
properties like node performance in processing packets/flows, to qualitative properties which are more difficult 
to assess, like “network scalability” or “easiness to deploy new services”.  

In order to support both the development/testing aspects and the evaluation/comparison it is fundamental to 
have a realistic emulator platform. The platform should be capable to scale up to hundreds of nodes and links, 
representing an IP carrier network at a reasonably large scale. Performing experiments should be affordable 
also for research and academic teams, not only for corporate developers, therefore we advocate the need of an 
Open Source reference node implementation and of an Open Source emulation platform. On top of the platform 
the researcher/developer should be able to design and deploy services with a minimal effort. The management 
of these emulation platforms and the tools for setting up and controlling experiments are also non-trivial 
problems, for which we propose an Open Source set of tools called Mantoo (Management tools), described in 
section 4.1.  

In section 4.2 the Mantoo experimental tools have been used to gather performance measurements of some 
aspects related to the data plane solutions (OSHI) developed by DREAMER. 
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4.1 Mantoo: Management Tools for SDN experiments on 

Mininet and Distributed SDN testbeds 

Mantoo is a set of Open Source tools meant to support SDN experiments over emulators and distributed 
testbeds. Mantoo is able to drive and help the experimenters in the three phases that compose an experiment: 
design, deployment and control. It includes: 1) the Topology 3D (Topology and Services Design, Deploy and 
Direct), a web based GUI shown in Figure 13; 2) a set of python scripts to configure and control emulators or 
distributed testbeds; 3) a set of scripts for performance measurements. The overall Mantoo workflow is 
represented in Figure 16. Using the Topology 3D, the user can design its experiment in terms of physical 
topology and services, start the deployment of the topology and finally run the experiments exploiting the 
provided measurement tools. The design of Mantoo and of its components is modular and it can be easily 
extended to support scenarios that goes beyond the use cases of our interest. Hereafter, section 4.1.1 
describes the Topology 3D GUI, section 4.1.2 the deployment and control phases over the supported testbeds, 
section 4.1.3 the Measurement Tools. 

 

Figure 13. The Topology 3D (Topology and Services Design, Deploy & Direct) web Graphical User Interface 
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4.1.1 Topology 3D 

The Topology 3D offers a web GUI to design a network topology and configure the services for an experiment 
(see Figure 13). It consists in a JavaScript client and a Python back-end. A link to a public instance of the 
Topology 3D can be accessed from [26]. The Topology 3D is meant to be an extensible framework, that can 
support different models of topology and services. A model corresponds to a technological domain to be 
emulated and is characterized by the set of allowed node types (e.g. routers, switches, end-hosts), link types, 
service relationships and related constraints. As shown in Figure 16 the Topology 3D takes in input a textual 
description of the model. The model description is used to configure the topology designer page, to enforce the 
constraints when the user is building the topology and/or during the validation of the topology. So far, we have 
provided two models: 1) the OSHI topology domain, including two types of OSHI nodes (Core Routers, Provider 
Edge routers), the Customer Edge routers which are also used as traffic source/sinks and the SDN controllers; 
2) a generic layer 2 network with OpenFlow capable switches, end-nodes and SDN controllers. Each model is 
decomposed in a set of views. A view is a perspective on a model, which focuses on some aspects hiding the 
unnecessary details. For example the OSHI model is decomposed in 5 views: data plane, control plane and 3 
views for the 3 services (IP VLLs, Pseudo Wires and Virtual Switches). In the data plane view the user can 
design the physical topology in terms of nodes (OSHI CR and PE, Controllers, and CEs) and links; in the 
control plane view the user defines the association of OSHI nodes with controllers; in the service views the user 
can select the end points of the services.  

The Topology 3D integrates Networkx [25], a pre-existing Python package for the creation/manipulation of 
complex networks, making it also possible to randomly generate a data plane topology with given 
characteristics. 

The Topology 3D exports the representation of the views (topology and services) in a JSON format, which is 
the input to the deployment phase described hereafter. 

4.1.2 Deployment and control phases 

The deployment phase translates the designed topology into the set of commands that instantiate and 
configure the nodes and the services for a given experiment. This phase can target different execution 
environments for the experiments, by means of a specific “deployer”. So far, we targeted one emulator 
(Mininet) and two distributed SDN testbeds (the OFELIA testbed [20] and the GÉANT OpenFlow Facility - 
GOFF [41]). We are now planning another deployer that will allow the deployment and the control of experiment 
over the Amazon Web Services. 

Technically, the deployment phase is performed by a set of python scripts (Topology Deployer) that parse the 
JSON file with the representation of the views and produce further scripts (mostly shell scripts). The proper 
execution of these scripts deploys the experiment over Mininet or over a distributed SDN testbeds. The 
Testbed Deployer (see Figure 14) and Mininet Extensions (see Figure 15) are Python libraries, that are used by 
the actual deployers. The Mininet Extensions library is tailored for Mininet emulator, while the Testbed Deployer 
currently supports the OFELIA and GOFF testbeds but it can be easily extended to support other testbeds. 
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Figure 14. Testbed Deployer Figure 15. Mininet Extensions 

4.1.2.1 Mininet Extensions 

By default, Mininet only provides the emulation of hosts and switches. We extended Mininet introducing an 
extended host capable to run as a router and managed to run the Quagga and OSPFD daemons on it. Then we 
have added Open vSwitch to it, as needed to realize the OSHI node. Another enhancement to the default 
Mininet setup depends on our requirement to reach the emulated nodes via SSH from an external “non-
emulated” process. To this purpose, we introduce a fictitious node in the root namespace of the hosting 
machine, that is connected to the emulated network and works as relay between the emulated world of Mininet 
and the “real” world of the hosting machine. The details on the architecture for the deployment on Mininet can 
be found in [27]. The Mininet Extensions library is able to automate all the aspects of an experiment. This 
includes the automatic configuration of IP addresses and of dynamic routing (OSPF daemons) in all nodes, 
therefore it relieves the experimenter from a huge configuration effort. As for the software design we have to 
followed a Mininet oriented design, instead of a big python script that uses the core functionality of Mininet. 
From an architectural point of view we have realized Mininet wrappers, extending and overriding when 
necessary the default behavior of the Mininet modules. This approach guarantees a more manageable, 
extensible and flexible project. 
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Figure 16. Mantoo enabled emulation workflow 

4.1.2.2 Deployment over distributed SDN testbeds 

We implemented and tested a deployer the OFELIA testbed and one for the GOFF testbed. These two testbeds 
share a similar architecture as they are based on the OCF (OFELIA Control Framework) [20]. The testbeds 
have a different organization of the management network, in particular in the OFELIA testbed there is a 
management network with private IP addresses, while the GOFF testbed all the virtual machines have a public 
IP address for the management. For the OFELIA testbed, we run our experiments on the CREATE-NET island, 
composed by a set of 8 OpenFlow capable switches and 3 Virtualization Servers that can host experimental 
Virtual Machines controlled by the experimenters. The GOFF testbed offers five sites, each one hosting two 
servers, which run respectively the OF equipment (based on OVS) and the VM hosting site. Note that we can 
deploy the OSHI prototype based on MPLS labeling only on GOFF testbed, as it offers a more recent Linux 
kernel for the virtual machines, while the VLAN based version can run on both. 

As shown in Figure 16, the OFELIA/GOFF Deployer python scripts automatically produce the configuration 
scripts for emulating a given topology, composed of access and core OSHI nodes (OSHI-PE and OSHI-CR) 
and of Customer Edge routers (CE). This includes the automatic configuration of IP addresses and of dynamic 
routing (OSPF daemons) in all nodes, therefore it relieves the experimenter from a huge configuration effort. 
The Management Tools have been used to automate and facilitate the setup, the configuration process and 
finally the deployment of an experiment. Different mechanisms have been used: a management server 
coordinates the needed operations, communicating with the rest of the experiment machines through the 
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testbed management network. It uses the Management Tools project, based on Distributed SHell (DSH), for 
distributing and executing remote scripts and commands. Once DSH has been properly configured with the IP 
of the VMs belonging to the experiment, it can run commands on a single machine, on a subset (group), or on 
all the machines deployed. 

The configuration files generated by the deployers have to be uploaded on a site reachable from the testbed, 
for example on a webserver running in the management machine. During the deployment process these files 
are downloaded by each virtual machine belonging to the experiment. The deployment is realized through the 
Management Tools, these scripts simplify as possible the running of the experiments and speed up the 
deployment through parallel commands. They relieve the experimenter from tedious and error prone activities 
and are able to: i) enable root login, activate login without password and avoid initial ssh paring; ii) 
automatically configure the local DSH (we assume that these scripts are ran by the management server); iii) 
setup the machines; iv) update machines already setup; v) configure the experiment; vi) stop the experiment; 
vii) clean the machines; viii) change the repository of the configuration files. Other shell commands can be 
executed leveraging DSH, obviously as precondition it is necessary to properly configure the above tool. A 
more detailed overview of the Management Tools and a typical use-case can be found at [26]. 

As regards the emulation, each OSHI node and each CE is mapped into a different VM running in one of the 
Virtualization Server of a given testbed (OFELIA or GOFF). The Topology to testbed mapping file contains the 
association of OSHI nodes and CEs to testbed VMs, the  functionality “Mapped” topology, offered by the 
Topology 3D, makes this file useless, however it is still used for backward compatibility with standard topology. 
An overlay of Ethernet over UDP tunnels is created among the VMs to emulate the network links among OSHI 
nodes and between OSHI nodes and CEs. 

In our first design we created the tunnels using the user space OpenVPN tool (with no encryption). The 
performance was poor, as performing encapsulation in user space is very CPU intensive. Therefore we 
considered a second design approach that uses VXLAN tunnels [32] provided by Open vSwitch (OVS). As 
explained in [31], OVS implements VXLAN tunnels in kernel space, and this allows to dramatically improve 
performance with respect to OpenVPN. The design of the VXLAN tunneling solution for OSHI over a OCF 
testbed is reported in Figure 17. We only use VXLAN as a point-to-point tunneling mechanism (the VXLAN VNI 
identifies a single link between two nodes) and we do not need underlying IP multicast support as in the full 
VXLAN model. The SDN capable OVS is also able to perform encapsulation and decapsulation of VXLAN 
tunnels, each tunnel corresponds to a port in the switch. The VXLAN tunnel ports in Figure 17 are conceptually 
equivalent to physical ports shown in Figure 5. 



 

 Experimental tools and performance evaluation 

 

 
DREAMER final report 
Document Code: GN3PLUS14-1289-49 33 

Virtual ports

VXLAN tunnel “ports”

IP

SDN
OF Capable Switch - OFCS 

(Open vSwitch)

Physical  interface with “testbed”

IP address (e.g. 192.168.1.x)

IP forwarding & routing component

eth1.199 port

Ethernet

over UDP

 

Figure 17. Implementing VXLAN tunnels using Open vSwitch (OVS) 

4.1.2.3 Control phase (running the experiments) 

After the deployment, it is possible to control the experiments by opening consoles on the different nodes fully 
integrated in the web GUI of the Topology 3D. The consoles show the output generated by ssh processes 
connected to the emulated nodes (deployed in the Mininet emulator or in a virtual machine hosted in the 
distributed testbeds). The generated output is conveyed to the terminal shell running in the experimenter 
browser, leveraging the WebSocket API, where each terminal has a separate WebSocket channel. 

 

4.1.3 Measurement Tools 

In order to automate as much as possible the process of running the experiments and collecting the 
performance data we have developed an object oriented multithreaded Python library called Measurement 
Tools (MT). The library offers an intuitive API, that allows the experimenter to “program” his/her tests. Using the 
library we can remotely (through SSH) run the traffic generators (iperf) and gather load information (CPU 
utilization) on all nodes (VMs). As for the load monitoring, taking CPU measurements from within the VMs (e.g. 
using the top tool) does not provide reliable measurements. The correct information about the resource usage 
of each single VM can be gathered from the virtualization environment, for example in Xen based system we 
can leverage on the xentop tool, which must be run as root in the hosting XEN server. Therefore for the 
OFELIA environment we have developed a python module that collects CPU load information for each VM of 
our interest in the XEN host using xentop and formats it in a JSON text file. MT retrieves the JSON file from the 
python module with a simple message exchange on a TCP socket. Instead, in the GOFF environment, we 
cannot leverage on the same tool used in the OFELIA testbed, because the measurement data are provided 
through Zabbix interface [42]. In order to retrieve the necessary information we have extended our tools, in 
particular we have realized a python module able to retrieve the data from Zabbix API.   
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Figure 18. Measurement Tools in action 

It should be noted that the MT offers a general framework simple to extend. To give an example, instead of 
iperf tool, we could run new commands with little extensions to the code. Currently we have developed tools 
able to generate UDP traffic and able to gather CPU load information from the virtualization environment. In 
future, an experimenter can easily extend this framework to run his/her tests and to measures his/her key 
indicators. 

4.2 Performance evaluation experiments 

In this section we analyze some performance aspects of the solutions designed and developed for the hybrid 
IP/SDN data plane. During the project lifetime, we had two releases of the experimental platform 
(corresponding to the two internal milestones M2 and M4). In the first release we provided the VLAN tag based 
mechanism for creating the SBPs, while in the second release we included the MPLS tag based mechanism. 
The first 3 experiments described hereafter have been realized using the first release, the second group of 3 
experiments has been run using the final release. 

i) IP forwarding performance using OSHI, with reference to the data plane architecture shown in 
Figure 5 (section 4.2.1) 

ii) Comparison of OpenVPN and VXLAN tunneling for experiments over distributed SDN testbeds 
(section 4.2.2) 

iii) IP forwarding performance (plain and OSHI) and SBP forwarding in an overlay topology using 
tunneling mechanisms over distributed SDN testbeds (section 4.2.3) 

In the experiments i, ii and iii we use the iperf tool as traffic source/sink in the CE routers and generate UDP 
packet flows from 500 to 2500 packet/s (datagram size is set at 1000 Byte). We evaluate the CPU load in the 
PE routers with our xentop based measurement tool. We executes periodic polling and gather the CPU load of 
the monitored VMs. In each run we collect 20 CPU load samples with polling interval in the order of two 
seconds, the first 10 samples are discarded and the last 10 are averaged to get a single CPU load value. Then 
we evaluate the mean (AVG) and standard deviation (DEV) over 20 runs.  
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The following 3 experiments have been executed using the final prototype. We have performed these 
experiments over GOFF testbed (physical topology is represented in Figure 25) using the overlay topology 
shown in Figure 26, the experiments are listed below: 

iv) Comparison of VLL and PW forwarding (section 4.2.4) 

v) Performance evaluation of the OVS kernel cache (section 4.2.5) 

vi) Effect of the increasing the number of OVS flows on the OSHI performance (section 4.2.6) 

 

4.2.1 First performance assessment of OSHI 

In this experiment, we consider the design in Figure 5 and compare the OSHI IP forwarding (each packet 
crosses the Open vSwitch two times) with ROUTER IP forwarding (the Open vSwitch is removed and the OSHI 
node interfaces are directly connected to the IP forwarding engine). We refer to this scenario as “plain VLAN” 
as no tunneling mechanism is used. This experiment is not automatically deployed using the Topology 3D, and 
we setup a limited topology with two CE nodes and two OSHI nodes. In this case it is not possible to deploy the 
IP VLL service and only plain IP router and OSHI IP have been compared. In the experiment results (see [27] 
for details) we can appreciate a CPU load penalty for OSHI IP forwarding with respect to plain IP forwarding in 
the order of 10%-20%. Apparently, the CPU load penalty is decreasing in relative terms at higher CPU load, but 
this is subject to further evaluation in future experiments. The theoretical CPU saturation rate  for plain IP router 
is in the order of 14000 p/s. Adding OSHI-IP forwarding reduces the theoretical CPU saturation rate to 
something in the order of 12500 p/s. 

In all the experiments (including the ones reported in the following subsections) we used UDP datagram with 
1000 bytes length. We had preliminary assessed that packet size had negligible impact on processing load, by 
using UDP packets ranging from 100 bytes to 1400 bytes. Performance was only influenced by the packet rate. 
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Figure 19 - CPU load vs. packet rate (plain VLAN) Figure 20 – CPU load linear regression (plain VLAN) 
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4.2.2 Performance comparison of OpenVPN and VXLAN tunneli ng  

In this experiment we have deployed the topology represented in Figure 22 over the physical testbed topology 
in Figure 21 (3 OF switches and 3 virtualization servers). We want to evaluate the processing overhead 
introduced by the tunneling mechanisms (OpenVPN and VXLAN) used to deploy the overlay experimental 
topologies over distributed SDN testbeds. 

In Figure 23 we compare the CPU load for OSHI IP solution in the OpenVPN, VXLAN and plain VLAN 
scenarios. It can be appreciated that VXLAN tunneling adds a reasonably low processing overhead, while 
OpenVPN tunneling would dramatically reduce the forwarding capability of an OSHI node in the testbeds. The 
theoretical CPU saturation rate for OpenVPN tunneling is in the order of 3500 p/s, which is 4 times lower than 
in the plain VLAN case. The theoretical CPU saturation rate for VXLAN tunneling is only ∼8% lower than the 
plain VLAN case, showing that VXLAN is an efficient mechanism to deploy overlay topologies. 

 

 

Figure 21. Physical network Figure 22. Overlay network 

 

Figure 23. CPU Load for different tunneling mechanisms. 
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4.2.3 Performance analysis on distributed SDN testbed 

In this set of experiments we evaluate the processing load of different forwarding solutions over the distributed 
SDN testbeds considering the topology shown in Figure 22. For the OSHI solution, we consider IP forwarding 
(“OSHI IP”) and SBP forwarding (“OSHI VLL”). Then we consider plain IP forwarding as a reference (“ROUTER 
IP”).  

We executed the performance tests of OSHI IP, OSHI VLL and ROUTER IP using the VXLAN tunneling 
solution. Figure 24 provides reports the experiment results. As shown in Figure 17, in this case in the plain IP 
forwarding (ROUTER IP) solutions the packets always cross the Open vSwitch which handles the VXLAN 
tunneling, therefore as expected there is no advantage with respect to OSHI IP forwarding. The OSHI VLL 
solution is the least CPU intensive and its theoretical CPU saturation rate is in the order of 13000 p/s. The 
OSHI IP solution increases CPU load of less than 10%, and its theoretical CPU saturation rate is in the order of 
12000 p/s.  

 

Figure 24. CPU load with VXLAN tunneling. 

4.2.4 Performance assessment of PW service 

We have performed these experiments over GOFF testbed (physical topology is represented in Figure 25) 
using the overlay topology shown in Figure 26. In the experiments we use the iperf tool as traffic source/sink in 
the CE routers and generate UDP packet flows. We evaluate the CPU load in the OSHI-PE5 node, by 
periodically polling to gather the CPU load of the monitored VM. The CPU load samples are provided by Zabbix 
every minute, and they report the average calculated in this period with 1-second-interval sample. We executed 
a single run and we collected 7 CPU load values, the first 2 are discarded and the last 5 are averaged to get a 
single CPU load value.  
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Figure 25. GOFF Physical network Figure 26.GOFF Overlay network 

 

We considered the node design shown in Figure 5 for the IP VLL service, while for the PW service we 
considered the architecture described in Figure 11. We compare the IP VLL service with the PW service, in 
order to estimate the overhead introduced by the ACE and the operations of the GRE tunnel. We generate 
UDP packet flows from 2000 to 18000 packet/s. The datagram size is set at 1000 byte, we use as baseline the 
topology represented in Figure 26 and in steps of three we have added two new Customer Edge (one receiver 
and one sender), this was necessary because once we generated 6000 packet/s in a single CE, the CPU load 
of the CE virtual machines reached high value and we saw losses in the iperf transmissions. 

In the experiment results (see Figure 27) we can appreciate a CPU load penalty for OSHI PW forwarding with 
respect to OSHI VLL forwarding in the order of 15%-21%. Apparently, the CPU load penalty is decreasing in 
relative terms at higher CPU load. These results shows the potential improvements that could be achieved by 
natively supporting EoMPLS tunneling in the switches. 
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Figure 27. CPU load for different OSHI services. 
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4.2.5 Performance analysis of the OVS kernel cache 

In the OVS architecture, the first packet of a flow arriving at a node is forwarded to ovs-switchd, a user space 
process. Ovs-switchd processes the packet, forwards it (if there exists a matching rule) and finally installs a 
“kernel flow”. The kernel flows act like a cache: if another packet belonging to the same flow arrives in a short 
time, it will be forwarded using the kernel flow cache, otherwise it will be forwarded in user space. OVS 
performance is optimal as long as the packets are forwarded using the kernel flow cache. The probability of a 
“cache-hit” depends on the cache size and on the variability of the input traffic. The aim of this test is to 
evaluate the importance of the kernel flow cache in OSHI scenario. 

According to the Open vSwitch documentation in the source code, the kernel cache can theoretically supports 
up to 200,000 flows. In the Open vSwitch instances that we used in the experiments, the practical limit was of 
10,000 flows. The default idle time before deletion from the cache is ten seconds, but a kernel flow can be 
removed earlier due to the cache management policies of Open vSwitch. 

In order to evaluate the impact of the kernel cache we generated different traffic patterns with an increasing 
number (N) of packet flows, fixing the aggregate packet rate to 12500 packet/s. For each packet flow in the 
experiment we used an independent iperf packet generator with rate of 12500/N packet/s. Part of the packet 
flows are handled with best effort IP, part with SBPs. There is not a one-to-one mapping between packet flows 
and the needed kernel flows: a number of kernel flows are needed for the best effort IP, regardless of the 
packet flows, while two kernel flows are needed for a packet flow handled with SBP (one for each direction). 
We evaluated the average number of needed kernel flows for a given traffic pattern, by running an experiment 
with the default kernel cache size (10000 entries) and periodically monitoring the number of active kernel flows 
(using the OVS command line interface). We used 6 traffic patterns and measured the number of average 
kernel flows installed as shown in Table 3. 

Table 3 – Average number of kernel flow entries for different traffic patterns 

best effort iperf 
UDP packet flows 

VLL SBPs iperf 
UDP packet flows 

average number of  
kernel flow entries 

1 0 9 
1 1 11 
1 2 13 
5 5 17 
10 10 22 
20 20 43 

 

Then we modified the OVS source code in order to limit the kernel cache dimension to 10 entries. Figure 28 we 
report the CPU load with respect to the average needed number of kernel flows. We observe that the system 
operates in two states: either the packets are handled by the kernel cache and the CPU utilization is 40% for 
the given packet rate, or the packets needs to be processed in user space and as expected there is a great 
performance degradation (the CPU load is around 94%). 
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Figure 28. CPU load with limited kernel cache (10 flows) and increasing average flows. 

The design insight that we gather from this experiment, related to our OSHI solution, is that the number of 
active SBPs should remain within the limit of the kernel flow table in order to have good performance. With the 
hardware configuration that we used in our experiments, this corresponds to 10000 active SBPs. 

4.2.6 Effects of larger flow table on the OVS performance  

In this experiment we want to evaluate how a larger flow table can influence the forwarding performance of an 
OSHI node. We evaluate the OSHI IP forwarding (each packet crosses two time the OFCS) performance with 
an increasing number of flows in the Table 0, where the rules for the IP forwarding are installed. In particular we 
analyzed two scenarios: kernel cache enabled and disabled. We fixed the UDP packet rate at 6250 packet/s 
and installed a variable number of fake flows (they will never match) from 0 to 5000. 

It is to be noted that in all the analyzed cases, the table 0 of the OFCS is not empty, but there are at least the 
rules necessary to forward correctly the IP packets. In Figure 29 we report the results of the experiment. 

The increasing number of flows in the table does not influence the forwarding performance in both cases: 
kernel cache enabled and disabled. With kernel cache enabled, this is expected. In fact, the kernel cache will 
only contain the active flows, irrespective of how many flows are installed in the switch flow table. On the other 
hand, with the kernel cache disable all the packets are sent to the user space daemon that will forward them 
using the user space table (where there are also the fake flows). The results in this case show that OVS 
performance is not influenced by the number of the flows in the switch flow table. 
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Figure 29. CPU load for different number of fake flows installed in the OFCS table. 
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5 Control plane aspects 

Several distributed NOS architectures have been proposed recently to guarantee the proper level of 
redundancy in the control plane: ONIX [43], Kandoo [44], HyperFlow [45], to name a few. 
 
One of the most promising solutions to properly deal with control plane robustness in SDN is ONOS (Open 
Networking Operating System) [50]. ONOS offers a stable implementation of a distributed NOS and it has been 
recently released under a liberal open-source license, supported by a growing community of vendors and 
operators. In ONOS architecture, a cluster of controllers shares a logically centralized network view: network 
resources are partitioned and controlled by different ONOS instances in the cluster and resilience to faults is 
guaranteed by design, with automatic traffic rerouting in case of node or link failure. Despite the distributed 
architecture, ONOS is designed in order to control the data plane from a single location, even in case of large 
Wide Area Network scenarios. 
 
However, as envisioned in the work of Heller et al. [51], even though a single controller may suffice to 
guarantee round-trip latencies on the scale of typical mesh restoration target delays (200 msec), this may not 
be valid for all possible network topologies. Furthermore, ensuring an adequate level of fault tolerance can be 
guaranteed only if controllers are placed in different locations of the network. 
 
To this purpose, we designed a geographically distributed multi-cluster solution called ICONA (Inter Cluster 
ONOS Network Application) which is working on top of ONOS and whose purpose is to both increase the 
robustness to network faults by redounding ONOS clusters in several locations but also to decrease event-to-
response delays in large scale networks. 
 
In the rest of the chapter we will consider a large scale Wide Area Network use-case under the same 
administrative domain (e.g. single service provider), managed by a single logical control plane. ICONA is a tool 
that can be deployed on top of ONOS; a first release is available under the Apache 2.0 open source license 
[52]. 
 
The ICONA multi-cluster architecture represents an answer to the control plane scalability and resiliency 
requirements outlined in section 2. The basic scalability and resilience are provided by the ONOS clustering 
approach: within each cluster the number of ONOS instances can be dimensioned depending on the number of 
devices to be controlled in the cluster. If one of the ONOS instances in the cluster fails, the other instances can 
take control of the devices that were controlled by the failing instances. The cluster dimensioning can take into 
account a maximum number of controller failures to be corrected. The multi-cluster aspects introduced by 



 

 Control plane aspects 

 

 
DREAMER final report 
Document Code: GN3PLUS14-1289-49 43 

ICONA enhances the scalability as regards the geographical dimension of the provider network. Having a 
single cluster of controllers (in which all controllers need to reside in the same data center) could be not 
adequate to cover a large geographical network, with network delays that can be in the order of 100 ms. The 
ICONA multi-cluster architecture with inter-cluster communication provides the right answer to control 
providers’ networks with large geographical span. 
 
The contribution on control plane is structured as follows. Section 5.1 discusses the state-of-the-art in the field. 
Section 5.2 provides an overview of ONOS, while section 5.3 presents the ICONA architecture. Some 
preliminary results are then discussed in section 5.4. 

5.1 State of the art in distributed controllers 

One of the fundamentals of SDN is the logical centralization of the control plane. It fosters flexibility thanks to 
the centralized network state view and common management interface with the network devices. On the other 
hand, this approach introduces some drawbacks and requires a specific design in terms of control network 
performance, scalability and fault tolerance. Most of the open source controllers currently available are focused 
on function more than on scalability and fault tolerance. This section provides a review on the literature about 
SDN distributed architectures that address the scalability and fault tolerance issues. 
ONIX [43] provides an environment on top of which a distributed NOS can be implemented with a logically 
centralized view. The distributed Network Information Base (NIB) stores the state of network in the form of a 
graph; the platform is responsible for managing the replication and distribution of the NIB, the applications have 
to detect and resolve conflicts of network state. Scalability is provided through network partitioning and 
aggregation (hiding the details), control over the consistency of the state is provided. In regard to the fault 
tolerance, the platform provides the basic functions, while the control logic implemented on top of ONIX needs 
to handle the failures. 
ONIX has been used in the B4 network, the private WAN [19] that inter-connects Google’s data centers around 
the planet, using the OpenFlow protocol to control the forwarding devices. The large geographical dimension is 
addressed through a hierarchical architecture in which multiple sites are considered as logical Autonomous 
Systems. Within each site, a modified version of the ONIX platform is deployed. A logically centralized 
application with a global view provides the overall coordination across the multiple sites, providing Traffic 
Engineering functionality. This high level design is similar to our ICONA solution, but ICONA is not tailored to a 
specific use case, providing a reusable framework on top of which it is possible to build specific applications (for 
example Traffic Engineering). 
The Kandoo [44] architecture faces the scalability issue by creating hierarchical controllers architecture: the so-
called root controller is logically centralized and maintains the global network state; the bottom layer is 
composed by local controllers in charge of managing a restricted number of switches and actions that do not 
require the network-wide state. Applications, which require a global network view, are managed by the root 
controller that consequently delegates the requests (e.g., flow installation in the devices) to the local controllers. 
Applications with a local scope are managed directly by the local controller. The Kandoo architecture does not 
focus on the distribution/replication of the root controller. Fault tolerance management either in the data and 
control plane are not considered. A local controller cannot always manage a fault (e.g., link failure between two 
switches controlled by different local controllers). The consequence is that local controllers should notify the 
root one and wait before reacting. 
HyperFlow [45] focuses on both scalability and fault tolerance. Each HyperFlow instance manages a group of 
devices without losing the centralized network view: the network state is propagated to all the instances through 
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a publish/subscribe mechanism. A control plane failure is managed by redirecting the switches to another 
HyperFlow instance. Such a solution is suited to a data-center scenario, when latencies in the control plane are 
very short (roughly under 10 ms). In a WAN scenario, where the physical distance, and thus the delay, between 
the different instances can easily exceed that threshold, this architecture is unable to react fast to network 
events. 
DISCO [46] architecture considers a multi-domain environment and provides an East-West interface between 
different controllers. This approach is specifically designed to control a WAN environment, composed of 
different geographical controllers that exchange summary information about the local network topology and 
events. This solution overcomes the HyperFlow limitations, however it does not provide local redundancy: in 
the case of a controller failure, a remote instance takes control of the switches, increasing the latency between 
the devices and their primary controller. 
ElastiCon [47] and Pratyaastha [48] aim to provide an elastic and efficient distributed SDN control plane to 
address the load imbalances due to static mapping between switches and controllers and spatial/temporal 
variations in the traffic patterns. 
Fleet [49], PANE [57] and STN [58] design robust and distributed SDN control planes, which consider the 
problem of conflicting network-policy updates, each one from a different point-of-view. Fleet aims to resolve the 
“malicious administrator problem” that arises in a multi-domain administrative environment. PANE considers as 
scenario the participatory networks, in which the control plane provides a configuration API to its users, 
applications and end-hosts. Finally, STN “focuses on how to solve concurrency issues that arise from the 
concurrent execution of control modules on different physical nodes”. SMaRtLight [59] considers a distributed 
SDN controller aiming at a fault-tolerant control plane. It only focuses on control plane failures, assuming that 
data plane failures are dealt with by SDN applications on top of the control platform. Its core component is the 
replicated database that stores all network state. Each replica is “warm” and immediately updated. Scaling of 
such solution to WAN scenarios is not addressed. 
The Beacon cluster [60] project also targets the Datacenter scenario, with a general framework focusing on 
load balancing (with addition and removal of controllers), dynamic switch-to-controller mapping and instance 
coordination. 
In OpenDaylight [61], an initial work on clustering has been provided in the last release of the project (Helium), 
where the Akka framework [62] and the RAFT consensus algorithm [63] have been exploited to realize a 
clustered version of the data store. At the time of writing, it is not possible for us to assess the maturity of these 
components in implementing a reliable, available and scalable control platform. 
 

5.2 An overview of ONOS 

ONOS (Open Network Operating System) is a distributed SDN controller that has been recently released as 
open source by ON.Lab as part of a joint community effort with a number of partners including AT&T, NEC and 
Ericsson among the others [53]. 
 
ONOS implements a distributed architecture in which multiple controller instances share multiple distributed 
data stores with eventual consistency. The whole cluster manages the entire data plane simultaneously. 
However, for each device a single controller acts as a master, while the others are ready to step in if a failure 
occurs. With these mechanisms in place, ONOS achieves scalability and resiliency. Figure 30 shows the 
ONOS internal architecture within a cluster of four instances. 
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Figure 30 - ONOS distributed architecture 

 
The Southbound modules manage the physical topology, react to network events and program/configure the 
devices leveraging on different protocols. The Distributed Core is responsible to maintain the distributed data 
stores, to elect the master controller for each network portion and to share information with the adjacent layers. 
The NorthBound modules offer an abstraction of the network and the interface for application to interact and 
program the NOS. Finally, the Application layer offers a container in which third-party applications can be 
deployed.  
 
In case of a failure in the data plane (switch, link or port down), an ONOS instance detects the event (using the 
Southbound modules), computes alternative paths for all the traffic crossing the failed element (operation in 
charge of the Intent Framework), and publishes them on the Distributed Core: then, each master controller 
configures accordingly its network portion. 
 
ONOS leverages on Apache Karaf [54], a java OSGi based runtime, which provides a container onto which 
various component can be deployed. Under Karaf, an application, such as ICONA, can be installed, upgraded, 
started and stopped at runtime, without interfering other components.  
 

5.3 The ICONA Architecture  

The basic idea behind ICONA is to partition the Service Provider's network into several geographical regions, 
each one managed by a different cluster of ONOS instances. While the management of the network is still 
under the same administrative domain, a peer-to-peer approach allows a more flexible design. The network 
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architect can select the number of clusters and their geographical dimension depending on requirements (e.g. 
leveraging on some of the tools being suggested within the aforementioned work [51], without losing any 
feature offered by ONOS, neither worsening the system performances. In this scenario, each ONOS cluster 
provides both scalability and resiliency to a small geographical region, while several clusters use a publish-
subscribe event manager to share topology information, monitor events and operator's requests. 
 

 

Figure 31 - ICONA architecture: the data plane is divided in portions interconnected through so-called inter-
cluster links (in red). Each portion is managed by multiple co-located ONOS and ICONA instances, while 

different clusters are deployed in various data centers. 

 
The ICONA control plane is geographically distributed among different data centers, each one controlling the 
adjacent portion of the physical network. Figure 31 shows the aforementioned architecture where each cluster 
is located in a different data center (e.g. ONOS 1a and ONOS 1b are co-located instances). To offer the same 
reliability already available in ONOS, the ICONA application runs on top of each instance. Referring on Figure 
30, ICONA is deployed in the Application layer, and interacts with ONOS using the Northbound - Intent 
Framework. 
Inside each cluster, a master controller is elected, using a distributed registry. The ICONA master is in charge 
of sharing information and applying decisions, while all the backups are aware of the network status, and can 
become master in case of failure. 
 
The communication between different ICONA instances, both intra and inter-cluster, is currently based on 
Hazelcast [55]. Hazelcast offers a multicast event-based messaging system, inspired by Java Messaging 
System (JMS). Applications (e.g. controllers) can publish a message onto a topic, which will be distributed to all 
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instances of the application that have subscribed to that topic. Hazelcast does not have a single point of failure 
that is not achieved easily by pure JMS solutions. In ICONA, one Hazelcast channel is devoted to the intra-
cluster communication (e.g. local ONOS cluster) and another one for the inter-cluster messages. 
ICONA runs as bundle in the ONOS Karaf container, taking advantages of all the features mentioned in Sect. 
5.2.  
 
In devising a geographical architecture, covering thousands of square kilometers, a key element is the type and 
amount of information that the different segments of the control plane have to share. 
Control traffic has to be minimized and the system has to optimize is performance in terms of: 

• Offering an up-to-date view of the network, including status of the nodes,  
• Configuring the network devices, 
• Reacting to failures both in data and control plane without disrupting customer's traffic.  

 
Three internal modules implement these features in ICONA (see Figure 31): the Topology Manager, the 
Service Manager and the Backup Manager. In the following Sections an overview of each of these components 
is provided.  

5.3.1 Topology Manager  

The Topology Manager (TM) is responsible to discover the data plane elements, reacts to network events, 
stores in a persistent local database the links and devices with the relevant metrics. To offer a partial view of its 
network portion, each TM shares with the other ICONA clusters the following information through the inter-
cluster channel: 

• Inter-cluster link (IL):  an IL is the physical connection between two clusters. ICONA implements an 
enhanced version of the ONOS discovery mechanism, based on the Link Layer Discovery Protocol 
(LLDP). Each IL is shared with all the clusters tagged by some metrics, such as the link delay, available 
bandwidth and number of flows crossing the link. 

• End-point (EP) list:  an EP defines the interconnection between the customer's gateway router and the 
ICONA network. Each cluster shares the list of its EPs and the metrics (bandwidth, delay) between 
these EPs and all the clusters ILs. 

5.3.2 Service Manager  

 
The Service Manager (SM) handles all the interaction between the network operators and the control plane. 
This module offers a REST API used to poll ICONA for network events and alarms, and to manage (instantiate, 
modify and delete) the services. In our initial implementation, we have considered only two services: L2 
pseudo-wire tunnels and MPLS VPN overlay networks, which are key services in a Service provider network. 
However, the application can be easily extended to provide other functionalities. 
 
The implemented services require interconnecting two or multiple EPs that can be controlled by the same 
ICONA cluster or by different ones. The SM computes the overall metrics and chooses the best path between 
two EPs. There are two cases: 

• If they belong to the same cluster, it directly asks ONOS to install an OpenFlow 1.3 [18] MPLS-based 
flow path in the physical devices.  
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• If they belong to two different clusters, the SM follows this procedure: 
o It contacts all the involved clusters (e.g. the ones that are crossed by this service request) 

asking to reserve the local portion of the path. 
o As soon as all the clusters have replied to the reservation event (if at least one does has a 

negative reply, the SM releases the path and computes an alternative ones), it requests to 
switch from the reservation status to the installation. Each ICONA cluster master then contacts 
the local ONOS asking to install the flow path in the physical devices. 

o If the second step is successful too, the SM ends the procedure, otherwise it asks all the 
clusters to release the resources, computes an alternative route and restarts the procedure. 

 
Finally, the SM updates all the ICONA clusters with the new installed service and the relevant information. 
While this path installation procedure is slower than the original implemented by ONOS (around three times), 
ICONA cannot assume a strong consistency between the remote databases. In the aforementioned ISP 
scenarios, the amount of time required for a service installation is not a relevant metric, but the procedure has 
to be robust enough to tolerate substantial delays.  

5.3.3 Backup Manager  

If a failure happens within the same cluster, ONOS takes care of rerouting all the paths involved in the failure. 
After receiving a PORT_STATUS or LINK_DOWN OpenFlow message, ONOS detects all the flows crossing the 

failed element and computes an alternative path to the destination. Finally, it installs the new flows in the 
network and removes the old ones. 
 
If instead the failure happens between two different clusters (e.g. it involves an IL or one of the two nodes that 
sits at the edge of the IL) then the ICONA's module named Backup Manager (BM) will handle the failure. In 
particular: 

• For each IL, a backup link (BIL) completely decoupled from the primary one, is computed and pre-
installed in the data plane. The BIL is a virtual link selected among all the available paths between the 
source and destination ICONA clusters, taking into account composite metrics, such as the delay, 
available bandwidth and numbers of flows. 

• When the failure happens, all the traffic crossing the IL is rerouted to the BIL by each ICONA edge 
cluster, without the need to wait for remote instances to share any information.  

• When the rerouting is completed, the new path is notified to all the remote clusters, in order to share 
the same network status.  

 
The amount of time required for the rerouting is particularly relevant in an ISP network because it is most 
directly related to SLAs guaranteed by network operators. 

5.4 Evaluation  

 
The purpose of the experimental tests described in this section is to compare ICONA with a standard ONOS 
setup, and evaluate the performances of the two solutions in an emulated environment. 
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The control plane is always composed of 8 virtual machines, each with four Intel Core i7-2600 CPUs @ 
3.40GHz and 8GB of RAM. While for the ONOS tests all the instances belong to the same cluster, with ICONA 
we have created 2, 4 and 8 clusters, respectively with 4, 2 and 1 instances each.  
The data plane is emulated by Mininet [65] and Netem [56]: the former creates and manages the OpenFlow 1.3 
[18] network, while the latter emulates the properties of wide area networks, such as variable delay, throughput 
and packet loss. In particular, we have created multiple data plane topologies, emulating grid networks and the 
GÉANT facility using Mininet. Mininet allows specifying some useful parameters that can be associated to links 
and switches, such as bandwidth, delay and packet loss. In addition to the data plane impairments, we have 
also set the control plane characteristics using Netem. This tool has been used to set bandwidth, delay and 
packet loss in the interfaces of the 8 VMs running the control plane and interconnecting it with the data plane. 
Both solutions (ONOS and ICONA) have been tested with both a regular (grid) topology and with the topology 
of the GÉANT [1] pan-European network.  
It is important to highlight that the current ONOS release (Avocet 1.0.1) is focusing on functions and 
correctness, while Blackbird, to be released in March, will dramatically improve the internal performance. For 
these reasons, the results presented in this section should not be considered as benchmark. 
 

5.4.1 Reaction to Network Events  

5.4.1.1 Grid networks  

The first performance metric is the overall latency of the system for updating the network state in response to 
events; examples include rerouting traffic in response to link failure or moving traffic in response to congestion. 
To evaluate how the system performs when the forwarding plane scales-out, we have selected some standard 
grid topologies, with a fixed link delay of 5ms (one-way) and then we have been comparing the latency needed 
to reroute a certain number of installed paths when an inter-cluster link fails for both ONOS and ICONA with 
various clustering settings. 
 
We define as overall latency the amount of time that both ONOS and ICONA require to react to the failure as 
the sum of: 

• The amount of time for the OpenFlow messages (PORT_STATUS and FLOW_MOD) to traverse the 

control network,  
• The alternative path computation,  
• The installation of new flows in the network devices and  
• The deletion of the pre-existing flows.  

In particular, we have been running several simulations by installing one thousand paths in the network and 
then by making fail an inter-cluster link with at least one hundred pseudo-wires running.  
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Figure 32 - Average, maximum and minimum latency to reroute 100 paths in case of link failure for ONOS and 
ICONA (2, 4 and 8 clusters) 

 
Figure 32 shows the latency (avg, min, max) required for the different solutions to execute the four tasks 
previously mentioned. Each test has been repeated 20 times. Despite the same mechanism used by ICONA to 
compute and install the new paths, the difference is mainly due to the following reasons:  

• Each ICONA cluster is closer to the devices, thus reducing the amount of time required for OpenFlow 
messages to cross the control channel and  

• The ICONA clusters are smaller, with fewer links and devices, thus decreasing the computation time 
and the overall numbers of flows to be installed and removed from the data plane. 

 

5.4.1.2 GÉANT network 

The same metrics have been evaluated on the GÉANT topology (see Figure1).  
Circuits have various one-way delays (from 10 to 50ms) and throughputs (from 1 to 100Gbps).  
 

Table 4 - GÉANT network: average, maximum and minimum latency to reroute 100 paths in case of link failure 
for ONOS and ICONA (2, 4 and 8 clusters) 

Control Plane Average Latency [ms] Minimum Latency [ms] Maximum Latency [ms] 

ONOS 297 284 308 

ICONA 2 Clusters 272 261 296 

ICONA 4 Clusters 246 232 257 

ICONA 8 Clusters 221 199 243 
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Table 4 depicts similar results as the previous test. ONOS has been compared with three different ICONA 
deployments, with 2, 4 and 8 clusters, respectively with 4, 2 and 1 instances each. While having the same 
number of VMs running the control plane software, their geographical distribution improves the overall 
performance of the system. 
While the network is smaller than the 10*10 grid topology, with 41 switches and 58 bi-directional links, the 
higher delay in the data plane requires an additional amount of time to reconverge. 
 

5.4.2 Startup Convergence Interval  

This second experiment measures the overall amount of time required for both solutions to re-converge after a 
complete disconnection between the control and data planes. The tests have been performed over the GÉANT 
topology, and replicated 20 times. Table 5 shows the average, maximum and minimum values in seconds. 
 

Table 5 - Amount of time required to obtain the network convergence after disconnection for ONOS and ICONA 

Control Plane Average Latency [s] Minimum Latency [s] Maximum Latency [s] 

ONOS 6,98 6,95 7,06 

ICONA 4 Clusters 6,96 6,88 7,02 

 
 

The result shows that ICONA and ONOS require comparable time intervals to return to a stable state, in case 
of a complete shutdown or a failure of the control plane. 
 

5.5 Integration of ICONA and OSHI 

Conceptually the ICONA and OSHI solutions can interwork, as ICONA is using ONOS; which in turn is using 
OpenFlow to control the network devices and an OSHI node is just a specific network device.  

On the other hand, some details needs to be fixed for having a running interoperability, considering that ONOS 
by default is configured to operate on a pure layer 2 network, while we introduce the Hybrid IP/SDN networking. 

1) Within the ONOS controller the “automatic layer 2 forwarding” of packets needs to be disabled (the 
module is called iForwarding). 

2) The handling of ARP within ONOS needs to be disabled as well (in particular the ProxyArp module and 
the HostLocationProvider module, we do not need them) 

3) For the IP VLL service, the implementation of MPLS tunnels in ONOS (provided by DREAMER) does 
not support the second MPLS path based on MPLS multicast Ethertype which we use to carry ARP 
packets in the VLLs. Either static ARP is added at the VLL end-point or the support for the second 
MPLS path based on MPLS multicast Ethertype should be added 
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4) For the PW service, the implementation of MPLS tunnels in ONOS (provided by DREAMER) does not 
support hop-by-hop MAC rewriting. The functionality of the PW should be preserved, but the customer 
edge virtual MAC of the GRE endpoint will be exposed in the core.  

 

All these features require that ICONA diverge from ONOS, because OSHI behavior can only be obtained with 
modifications inside the core modules of ONOS. In order to maintain ICONA as general as possible, thus 
allowing other researchers to use and contribute to it, we choose not to fully integrate the OSHI data plane in 
the main ICONA software release, but we are planning a joint demo that will be probably hosted at the next 
ONS conference (June 2015), in which we will show how ICONA and OSHI can smoothly interoperate. This 
code base will then be uploaded to GitHub in a separate branch.  
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6 Future work 

6.1 OSHI: gap analysis, ongoing and future work 

Let us consider solution for PW encapsulation described in section 3.3.4, based on GRE tunneling performed 
by the ACE. It has been designed as a replacement of the more efficient Ethernet over MPLS (EoMPLS) 
encapsulation described in [35], which cannot be realized by the current version of Open vSwitch. The GRE 
tunneling introduces a transport and a processing overhead. The transport overhead is 20 (IP header) + 16 
(GRE header) bytes for each packet. The processing overhead depends on the implementation architecture, 
our solution (shown in Figure 11) was not meant to be highly efficient, but only to demonstrate the feasibility of 
the approach with a working component. We do not plan to improve the efficiency of the solution, rather we 
believe that native Ethernet over MPLS (EoMPLS) encapsulation should be provided by open source switches 
and we are considering to extend the Open vSwitch or other open source switches to support EoMPLS. 

Assuming that a switch supports EoMPLS, a second important gap to be filled is the lack of support for such 
tunneling operations in the OpenFlow protocol. Note that the lack of encapsulation support in OpenFlow does 
not only concern EoMPLS, but also other tunneling solutions like GRE, VXLAN, Ethernet in Ethernet. In fact, 
while it is possible to some extent with OpenFlow to control GRE and VXLAN packets already tunneled (and 
specific matches have been introduced in OF 1.4 for VXLAN), it is not possible to control the encapsulation (i.e. 
pushing the GRE, VXLAN or simply an additional Ethernet headers) and decapsulation (i.e. popping the 
header) operations. Currently, external tools are needed to manage the tunnel end-points (e.g. using the switch 
CLIs - Command Line Interfaces), with added complexity in the development, debug and operations. Having 
the possibility to configure the tunneling end-points on a OF capable switch from the SDN controller by means 
of the OpenFlow protocol would be a great simplification in the management of SDN based services.  

We observe that the described OSHI solution represents an open starting point to design and implement 
additional “core” functionality and user oriented services following the SDN paradigm. As for the core 
functionality we are now considering protection/restoration and traffic engineering mechanism. For traffic 
engineering we have already implemented a flow assignment heuristic for optimal mapping of PWs with 
required capacity on the core OSHI links. As for additional services, we are considering the realization of the 
Layer 3 VPNs on top of the PW service. Following the same approach used for the VSS service, the idea is to 
deploy virtual router instances within the OSHI nodes that can exchange routing information with routers in the 
CE nodes. Finally, we mention our ongoing work on an Open Source implementation of Segment Routing [33] 
on top of OSHI. All these ongoing efforts are reported on the OSHI web page [26], including links to preliminary 
results and source code. 
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6.2 ICONA: future work 

A preliminary release of ICONA is available under permissive open source license (Apache 2.0) and we are 
collaborating with ON.Lab to evaluate the opportunity to include some of the ideas developed therein as part of 
the official release of ONOS. Future improvements of ICONA will focus on solutions to improve the path 
installation procedure and on combining clustering design techniques with ICONA deployment in order to 
guarantee the best tradeoff between performances and replication of clusters in different network locations.  
 
Moreover, while this first prototype already implements the core functionalities of the envisioned architecture, it 
still misses some key features, such as: 

• A more advanced routing algorithm, evolving the Shortest Path First one, that takes in account 
advanced metrics between remote data plane clusters 

• The service portfolio needs to be extended to support customer’s requests and use cases 
• The current communication channel, based on JMS Hazelcast, can be further investigated, and maybe 

replaced with another mechanism 
 
However, taking in account that all the software is based on a well-known open source control plane (ONOS), 
we would like not only to extend the work done in other projects, but also to share our results with the 
community, waiting for interested researchers to test and contribute to ICONA.  
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7 Project impact 

The highlights of DREAMER impact are reported in the following bullet list. 

o The OSHI nodes source code has been released and we have already received some expression of 
interest and feedback by other researchers that are using it. In particular we have opened a public 
mailing list about OSHI, it currently has 17 subscriber, of which 11 are people external to the project. 4 
people external to the project have posted questions and feedback so far. 

o The Topology 3D tool is re-usable for designing and executing SDN experiment over Mininet emulator 
and over different testbeds.  

o The project has contributed to the design and development of the ONOS controller. The MPLS intent 
has been developed: now it is possible to created MPLS label switched path using ONOS. 

o The ICONA application for the coordination of distributed clusters of ONOS controller will contribute to 
the realization of such coordination in future releases of ONOS controller. 

o The project has contributed to the progress of the Open vSwitch Open Source project. In particular it 
has provided a feedback on the support of multiple nested MPLS labels. The OVS version that was 
officially released was not able to properly handle MPLS label stacking. Thanks to our problem reports 
and following some iterations on the ovs-discuss mailing list, the issue has been fixed by the core OVS 
development team. 

o The project has published 2 papers, one demo paper and a poster to refereed conferences, submitted 
one more conference paper and a journal paper, and has given 3 presentations to public events (see 
sections 7.1 and 7.2 for the details). The project will showcase a demo at the 1st IEEE Conference on 
Network Softwarization (Netsoft 2015), London, UK, 13-17 April 2015. The project is preparing a demo 
between ON.LAB-Internet2 and GÉANT-DREAMER testbeds to be shown at ONS 2015 (15-18 June 
2015, Santa Clara US). 

o The DREAMER project has organized the Workshop “Software Defined Networking and its 
applications: where are we now?” (http://netgroup.uniroma2.it/twiki/bin/view/DREAMER/SdnWorkshop), 
held in Rome, June 9th 2014, which saw the participation of 60 people from academia and industry. 
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7.1 Scientific papers, demo, posters 

• S. Salsano, P. L. Ventre, L. Prete, G. Siracusano, M. Gerola, E. Salvadori, 
“Open Source Hybrid IP/SDN networking (and its emulatio n on Mininet and on distributed SDN testbeds) ”, 
3rd European Workshop on Software Defined Networks, EWSDN 2014, 1-3 September 2014, Budapest, Hungary 
http://arxiv.org/abs/1404.4806 

• S. Salsano, N. Blefari-Melazzi, F. Lo Presti, G. Siracusano, P. L. Ventre, 
“Generalized Virtual Networking: an enabler for Servic e Centric Networking and Network Function 
Virtualization ”, 16th International Telecommunications Network Strategy and Planning Symposium, Networks 
2014, 17-19 September 2014 
http://arxiv.org/abs/1409.5257 

• Mauro Campanella, Luca Prete, Pier Luigi Ventre, Matteo Gerola, Elio Salvadori, Michele Santuari, Stefano 
Salsano, Giuseppe Siracusano 
"Bridging OpenFlow/SDN with IP/MPLS ", poster presentation at TNC2014, 19 - 22 May 2014, Dublin, Ireland 
http://netgroup.uniroma2.it/Stefano_Salsano/papers/DREAMER-tnc2014-poster.pdf 

• M. Gerola, M. Santuari, E. Salvadori, S. Salsano, P. L. Ventre, M. Campanella, F. Lombardo, G. Siracusano,  
"ICONA: Inter Cluster ONOS Network Application ", demo paper accepted to 1st IEEE Conference on Network 
Softwarization (Netsoft 2015), London, UK, 13-17 April 2015 
http://netgroup.uniroma2.it/Stefano_Salsano/papers/ icona_netsoft2015_demo.pdf 

• M. Gerola, M. Santuari, E. Salvadori, S. Salsano, M. Campanella, P. L. Ventre, A. Al-Shabibi, W. Snow, 
"ICONA: Inter Cluster ONOS Network Application ", submitted to SOSR 2015 - ACM Sigcomm Symposium on 
SDN Research, Co-located with Open Networking Summit 2015 
http://arxiv.org/abs/1503.07798 

• S. Salsano, P. L. Ventre, F. Lombardo, G. Siracusano, M. Gerola, E. Salvadori, M. Santuari, M. Campanella, 
"OSHI - Open Source Hybrid IP/SDN networking and Mantoo - a set of management tools for controlling 
SDN/NFV experiments ", to be submitted to IEEE Transactions on Network and Service Management 

7.2 Presentations, posters, videos 

• Presentation of "Open Source Hybrid IP/SDN networking (and its emulati on on Mininet and on distributed 
SDN testbeds) " (see full paper info above) at EWSDN 2014  
http://netgroup.uniroma2.it/Stefano_Salsano/papers/salsano-oshi-ewsdn-2014-pptx.pdf 

• Stefano Salsano, Pier Luigi Ventre (speaker), Luca Prete, Giuseppe Siracusano, Matteo Gerola, Elio Salvadori, 
"OSHI - Open Source Hybrid IP/SDN networking (and its em ulation on Mininet and on distributed SDN 
testbeds) ", talk given at GTTI 2014 Annual Meeting, June 19, 2014, Palermo, Italy. Selected as winner of 
"Premio Carassa 2014"  for the best paper on the "Networking" topic co-authored and presented by a young 
researcher. 
http://netgroup.uniroma2.it/twiki/pub/DREAMER/WebHome/oshi-gtti14-v11ss-external-video.pdf 

• Pier Luigi Ventre, Stefano Salsano, Giuseppe Siracusano, Francesco Lombardo, 
"OSHI video demo June 2014 " (oshi-v5.wmv file (80 MB))  
https://www.dropbox.com/s/5ahmuiqlcr3wnue/oshi-v5.wmv 

• Stefano Salsano, 
"The DREAMER project ", presentation in the session "Looking ahead to network services", GEANT Symposium, 
Tuesday 24th Feb, Athens, Greece 
http://netgroup.uniroma2.it/twiki/pub/DREAMER/WebHome/dreamer-gn3plus-symposium-v08ss.pdf 
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• "DREAMER video demo February 2015 " @ GEANT Symposium 
https://www.dropbox.com/s/kyolyns4bqyrkxx/dreamer-gn3plus-symposium-2015-v02.mp4?dl=0 
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8 Conclusions 

The DREAMER project focused on introducing and exploiting Software Defined Networking (SDN) capability in 
carrier grade IP backbones . The objective of the DREAMER proposal was to investigate how a network 
based on an OpenFlow/SDN control plane can provide the same functionalities of an IP/MPLS control plane, 
offering a carrier grade approach to resiliency and fault management. DREAMER considered the operational 
requirements coming from the GARR National Research and Education Network (NREN) to drive the design of 
the solutions.  

The DREAMER project had two main dimensions: scientific and experimental. The scientific dimension  
considered a resilient SDN system  able to smoothly operate in case of link and node failures, by providing 
resiliency to the controller element and by promptly restoring paths in the data plane. The experimental 
dimension  implemented and validated the designed modules over the testbed facilities provided by GÉANT.  

The project has contributed in three main areas of OpenFlow/SDN research: data plane , control plane  and 
experimental tools .  

As for the Data Plane, IP and SDN hybrid networking has been considered, by designing the “OSHI” solution 
(Open Source Hybrid IP / SDN networking ) and implementing it over Linux OS. An OSHI node combines 
traditional IP forwarding/routing (with OSPF) and SDN forwarding implemented by means of Open vSwitch in a 
hybrid IP/SDN node. No open source solutions for such a hybrid node were available. Using the OSHI solution, 
DREAMER demonstrated services like Layer 2 Pseudo Wires (PW) and Layer 2 Virtual Switches over an IP 
backbone. 

As for the Control Plane, the project exploited and contributed to the development of ONOS Open Source 
controller. Thanks to an official agreement of the partners with ON.LAB (a research lab on SDN based in San 
Francisco), the DREAMER project partners were able to work on the ONOS source code before it was released 
to the general public. The contribution of the project is a solution to distribute the control of a geographical scale 
SDN network among a set of clusters of ONOS controllers. The solution is called “ICONA” (Inter Cluster ONos 
Application ). ONOS features provide data plane resilience, as well as control plane resilience for a single 
cluster of controllers in the same data center. 

As for the experimental tools, the project has developed the “Topology 3D ” tool (Topology Designer, 
Deployer & Director ) that provides an easy design, deployment and control of the SDN experiments. It 
consists in a web front end that allows to graphically design a network topology (made of L3 routers, L2 
switches, end devices) and to configure the set of services to be provided on top. Then the topology can be 
automatically deployed as an overlay network over a distributed testbed (e.g. the GÉANT testbed) or within a 
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Mininet emulator. Finally, the web front end allows to access the shell interface on each node of the deployed 
topology. 

DREAMER has implemented prototypes of the proposed solutions based on Open Source tools and has 
contributed to the development of some of these tools. Therefore DREAMER is having an impact towards the 
availability of a truly open ecosystem for carrier grade backbone IP networks  based on the SDN 
paradigm . See also section 8.2 for a discussion on taking DREAMER results to the real world. 

Finally, we would like to highlight impact and future fostered by the DREAMER project. 

o The hybrid IP/SDN approach is of interest for the GÉANT evolution. The definition of provided services 
(Pseudo Wires, Virtual Layer 2 Switches) and the SDN architecture to control such services proposed 
by DREAMER is of interest of the GÉANT community. It naturally fits in the “Future Network Services” 
topic that will be addressed by the GÉANT community in the short term future. 

o The research will continue in GN4 year 1 in the JRA2 activity. 

o The Topology 3D tool could be easily extended to support the GTS (GÉANT Testbed Service), in 
particular it could be used to produce a testbed description in the DSL format starting from a graphical 
representation. 

o The DREAMER project has identified limitation in the OpenFlow protocol and in the OpenFlow capable 
open source switches (e.g. Open vSwitch) as far as the support of Ethernet over MPLS encapsulation. 
These limitations have been circumvented with workaround in the DREAMER project. The 
development of cleaner and more efficient solutions, which could also be improved with extensions to 
the OpenFlow protocol is of great interest for a continuation of the project. 

o Further services and applications on top of the already developed solutions can be investigated. We 
are already focusing on a SDN based segment routing solution exploiting the DREAMER results (OSHI 
Open Source nodes and network architecture). 

 

8.1 Comparison of final results with requirements 

The text within frames is extracted from section 2 (Requirement analysis) 

The functionalities that DREAMER has to provide, with carrier grade characteristics are: 

• virtual point to point circuit creation at layer 2 (emulation of Ethernet circuits), with and without 
automatic resiliency 

DREAMER has designed and implemented the IP VLL and Layer 2 PW services in the OSHI nodes. Both 
services have been realized with SDN Based Paths using MPLS labels. The ONOS controller has been 
modified to support the creation of MPLS paths, this is meant to be the “carrier grade” implementation at the 
control plane level, as it relies on all the scalability and resilience characteristics of ONOS. An implementation 
based on Ryu controller is also available, which is useful for fast prototyping and proof of concepts. 
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• a VPN functionality similar to the one that can be created with MPLS (the BGP/MPLS solution uses 
BGP to distribute VPN routing information across the provider's backbone and MPLS to forward VPN 
traffic from one VPN site to another) 

DREAMER has implemented a Layer 2 virtual switch service using OSHI nodes, called VSS (Virtual Switch 
Service). This service corresponds to the VPLS (Virtual Private LAN Service) service [37], but uses an SDN 
approach for the service establishment. The OSHI node architecture that has been designed and implemented 
makes it relatively easy to implement also a Layer 3 VPN like the BGP/MPLS, because a separate Linux 
network namespace is used in the Provider Edge nodes to process the packets of a given customer.  

• traffic engineering of flows (implementation of specific algorithms is out of scope for DREAMER project) 

The use of Traffic Engineering algorithms in the selection of paths performed by the controller can be decided 
by the controller itself (or by the “application” running on top of the controller). This was not considered among 
the high priority tasks in the requirement analysis. DREAMER has started some exploratory work on this using 
the control plane implementation based on the Ryu controller. For traffic engineering we have implemented a 
flow assignment heuristic for optimal mapping of PWs with required capacity on the core OSHI links. The 
optimality criteria was related to the equalization of maximum link load.  

Given the multi-domain nature of the European NREN and the need to provide virtual private networks that 
span more than one NREN, the DREAMER architecture and functionalities it should be possible to extend it 
toward multi-domain stitching of virtual circuit at layer 2 and at layer 3, either manually or automatically. 

The ICONA inter cluster solution from an algorithmic point of view lends itself also to be revisited as inter-
domain solution (no work in this direction has been performed during the DREAMER project timeframe). 

Two architectural aspects, will be specifically targeted:  

i) the control plane controller resilience and its distribution;  

The ONOS controller is designed to address resilience. It provides resilience with respect to controller failures 
by having a local cluster of controller and a shared data base. The ICONA solution has targeted the distribution 
of the control plane across a set of controller clusters that can be placed in remote geographical locations. Only 
single-domain scenarios have been considered. 

ii) the data plane resilience, with carrier grade fast restoration mechanism. 

The ONOS controller is able to enforce mechanism for data plane resilience, including fast restoration. The 
performance of some mechanisms depend on the delay between the controller and the controlled network 
devices. Therefore the ICONA multi-cluster solution is able to reduce this delay by distributing the control 
among a set of clusters placed in remote locations. 
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8.2 Taking DREAMER to the real world 

The work done on the OSHI architecture with the development of the Open Source OSHI node is already 
usable for performing experiments and emulations of Hybrid IP/SDN networking on single nodes (using 
Mininet) or on a distributed testbed. It does not target line speed performance implementation in real Provider 
Edge or Core Routers node. In this respect the Mantoo tools represent the natural complement, helping the 
experimenters to setup and manage complex emulated hybrid IP/SDN networks. 

The work done on ICONA architecture will be pushed to the mainstream of the ONOS controller. The setup of 
MPLS paths has already been integrated in the ONOS mainstream and represent a notable contribution 
developed by DREAMER. The ICONA results will be discussed within the ONOS community, as the 
DREAMER partners intend to push these results and to contribute to their integration into ONOS. 

The contribution, whether or not is fully or partially accepted is a positive contribution to the development of a 
commercial product that satisfies the requirements. If accepted, its further implementation developments and  
maintenance will also be undertaken by the ONOS community, possibly benefitting by some of the 
improvements described in section 6.2.  
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9 Appendix 

This section provides a brief description of the software released, and reports pointer to the released code. In 
particular, the Appendix includes the software of the Hybrid IP/SDN node (T 1.3), of the SDN mechanisms to 
support resilience (T 1.4), and of the deployment tools (T 1.5). Topology Deployer and Mantoo have been 
developed as components parts of the T 1.5. 

All the code released for this milestone is using the “liberal” Open Source license Apache 2.0 [64] and links to 
public git repositories are given in this appendix. 

Appendix A reports a brief description of the Hybrid IP/SDN node (OSHI) and the related project (Dreamer-
Setup-Scripts). The appendix ends with pointers to the released code, links for the how-to documents and for 
ready-to-go Virtual Machine, already configured with all the OSHI software, where the experimenter can run 
OSHI networks in the Mininet [65] emulation environment. 

Appendix B includes the DREAMER Network Operating System (ONOS and ICONA) installation and 
configuration procedures. The guide will help the user in the whole process of setting up the hardware, install 
the required software packages and configure them to have a running environment. Finally, the latest sub-
chapter introduces the console interface, through which the operator can interact with ICONA, to control and 
monitor the underlined SDN network. 

Appendix C describes the Mantoo project, a set of Open Source management tools for the emulation of the 
DREAMER solutions over the Mininet emulator and over distributed testbeds. The section ends with pointers to 
the released code, and a link for the how-to document, which explains how to perform an experiment with the 
Mantoo suite. 

Appendix D illustrates the Topology Deployer project, which helps the experimenter and relieves him/her from 
an huge configuration effort in the deployment of an arbitrary layer 2 topology between a set of virtual machines. 
Moreover the section provides the hyperlinks of the released code and the pointer to a brief how-to document. 
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9.1 Appendix A: OSHI 

The data plane architecture founds its operation on an Hybrid IP/SDN node, called Open Source Hybrid 
IP/SDN (OSHI). OSHI node combines an OFCS, an IP forwarding engine (IP FE) and an IP routing daemon. 
The prototype is fully based on Open Source components, in our current implementation, the OFCS component 
is realized using OVS, the IP FE is the IP networking of the Linux kernel and finally Quagga acts as the routing 
daemon (in particular for our experiments, we have activated the OSPF daemon). We have developed two 
design for the OSHI architecture: 

i) VLAN based approach uses VLAN tags to realize SBP and to support the coexistence between IP 
based forwarding and SBP forwarding; 

ii) MPLS based approach leverages the MPLS labels to realize the same functionalities; 

The project related to the OSHI node is Dreamer-Setup-Scripts. The code of the project can be downloaded 
from our public git repository [66]. The last version released is the v1.0.5-beta. It includes the scripts to install 
and configure all the OSHI dependencies, and transforms a VM in an Hybrid node. In particular it provides the 
following scripts: 

• OSHI nodes setup and configuration bash scripts; 

• End-point node (CE and Controllers) setup and configuration bash scripts; 

• IP-router setup and configuration bash scripts; 

The aforementioned project contains also the Management Scripts, which have been used to automate and 
facilitate the setup, the configuration process and finally the deployment of an experiment both on GOFF and 
OFELIA facilities. We use a management server to coordinate the needed operations, communicating with the 
rest of the experiment machines through the testbed management network. It uses the Management Scripts 
project, based on DSH, for distributing and executing remote scripts and commands. 

As for instructions, the project does not have a real README file, but we have produced with the same 
purposes a set of slides that tells our experience over the OFELIA/GOFF SDN testbeds, finally describes the 
Dreamer-Setup-Scripts project and provides the how-to for the experiments. The slides can be downloaded 
from [67] and the last version released is the 0.4. 

The OSHI VM can be downloaded from [68], it has been configured with all the OSHI software dependencies, 
and through this the experimenter can run OSHI networks in the Mininet emulation environment. 
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9.2 Appendix B: ICONA software 

The code prototype is publicly available on GitHub [52] and integrates ONOS and ICONA application. ONOS 
and ICONA installation and configuration procedure is presented in the next section. The ICONA usage guide 
is described in the last section. 

9.2.1 Installation procedure 

9.2.1.1 Requirements 

The minimum requirement for ONOS is a VM based on Ubuntu Server 14.04 LTS 64-bit and at least with 2GB 
of RAM and 2 processor. The DREAMER control plane has been tested with 4GB of RAM and 2 vCPU. 

The software requirements are: 

• Java 8 JDK (Oracle Java recommended; OpenJDK is not as thoroughly tested): 

$ sudo apt-get install software-properties-common - y 

$ sudo add-apt-repository ppa:webupd8team/java -y  

$ sudo apt-get update  

$ sudo apt-get install oracle-java8-installer oracl e-java8-set-default –y 
$ export JAVA_HOME=/usr/lib/jvm/java-8-oracle 

• Apache Maven (3.0 and later) 
• Git 

• Apache Karaf (3.0.2 and later) binary: 

o wget http://mirrors.muzzy.it/apache/karaf/3.0.2/apa che-karaf-

3.0.2.tar.gz 

o mv apache-karaf-3.0.2.tar.gz ~/Application/ 

o cd ~/Application/ && tar –xf apache-karaf-3.0.2.tar .gz/ 

 

• Network devices compatible with OpenFlow 1.3 (like OSHI or Mininet 2.2.0 

[65]) 

9.2.1.2 Installation  

• Clone the repository into the home: 

git clone https://github.com/SmartInfrastructures/d reamer.git 

 

• Export the ONOS_ROOT environment variable: 
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$ export ONOS_ROOT=~/dreamer 

$ source $ONOS_ROOT/tools/dev/bash_profile 

 

• Build the DREAMER control plane: 

$ cd dreamer 

$ mvn clean install 

 

9.2.2 Configuration procedure 

Follow the next steps to configure ONOS and ICONA: 

• Karaf configuration: 

Open the ~/Application/etc/org.apache.karaf.feature s.cfg file (e.g., nano 

~/Application/etc/org.apache.karaf.features.cfg) 

Edit “featuresRepositories” and append “mvn:org.ono sproject/onos-

features/1.0.0/xml/features” 

Edit the “featuresBoot” to be equals to 

“featuresBoot=config,standard,region,package,kar,ss h,management,webconsol

e,onos-api,onos-core,onos-cli,onos-openflow,onos-ap p-mobility,onos-app-

tvue,onos-app-icona” 

 

• ICONA requires some additional configurations for the communication between clusters. In particular, 
ICONA leverages on the Intra and Inter Hazelcast channels. Two example files are provided in the 
repository under the ~/dreamer/conf/ . ONOS instead uses the hazelcast.xml under the 

~/dreamer/tools/package/etc/hazelcast.xml .  The configuration is spitted in two part, one 
related to a single local cluster (intra-cluster and ONOS) and the other one for the communication 
across different cluster (inter-cluster). These files should be modified for each ONOS instance 
according to the following instructions: 

o hazelcast.xml and hazelcast-icona-intra.xml  are configuration limited to the local 
cluster and as a consequence each instance inside a predefined cluster should have same 
configuration files containing the multicast IP address and the IP address of the Ethernet port 
used for the internal cluster communication respectively: 

<multicast enabled="true"> 

<multicast-group>MULTICAST IP (e.g., 224.2.2.1 </mu lticast-

group> 

<multicast-port>54327</multicast-port> 

</multicast> 

 

<interfaces enabled="true"> 

            <interface>IP ADDRESS OF ETHERNET PORT (e.g., 

10.216.160.*) </interface> 

</interfaces> 
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hazelcast.xml and hazelcast-icona-intra.xml should have different multicast IP 
addresses.  

o hazelcast-icona-inter.xml configures the communication with different clusters across 
geographical locations. As a consequence the multicast IP address should be equal across all 
the ONOS instances also belonging to different clusters. An IP address of interface permitting 
the communication with different clusters should be indicate as aforementioned. 

After the modification of files, run the following commands: 

$ cp ~/dreamer/tools/package/etc/hazelcast.xml ~/Ap plications/apache-

karaf-3.0.2/etc/ 

$ cp ~/dreamer/conf/hazelcast-icona-*.xml ~/Applica tions/apache-karaf-

3.0.2/conf/ 

• ONOS, and sub sequentially ICONA, requires network devices to point to multiple controller instances 
belonging to the same cluster. OpenFlow devices support natively multiple controllers per device. We 
tested our prototype against Open vSwitch, that can be configured adding the following command: 

$ sudo ovs-vsctl set-controller SWITCH-NAME tcp:CTL -IP:CTL-PORT 

tcp:CTL-IP:CTL-PORT 

9.2.3 Running procedure 

The ICONA application developed on top of ONOS permits to: 

1. Discovery, share and update the geographical topology. 

2. Install Ethernet pseudo wire exploiting the usage of MPLS-Label switched path between end-points. 

After the installation procedure, run this command in each VM to launch ONOS that will automatically load also 
ICONA on top of each instance: 

$ karaf clean 

It is possible to verify the expected behaviour of all the components retrieving the status of the modules with the 
command on the ONOS console: 

onos> bundle:list 

and it should show a line with the ICONA application started like:  

 139 | Active |  80 | 1.1.0.SNAPSHOT | onos-app-icon a 
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9.2.4 Accessing the ICONA Console 

ICONA exposes different information through the ONOS console e.g.,: 

• ONOS clusters interconnected through ICONA: 

onos> icona:clusters  
  id=DREAMER, lastSeen=01/29/2015 15:25:04 
  id=DREAMER-42, lastSeen=01/29/2015 15:28:04 
 
 

• Topology information shared across the inter-channel: 

onos> icona:topology  
  Clusters=2, InterLinks=2, EndPoints=4 
 
 

• Detailed information on the End-points or Interlink: 

onos> icona:endpoints  
  Cluster=DREAMER, SwId=of:000000000000000f, Port=2  
  Cluster=DREAMER, SwId=of:000000000000000b, Port=3  
  Cluster=DREAMER-42, SwId=of:0000000000000012, Por t=1 
  Cluster=DREAMER-42, SwId=of:0000000000000013, Por t=3 
 

ICONA provides the installation the so-called Ethernet pseudo-wire between end-points. The requests can be 
done to each ICONA instance through the ONOS console and that instance will then inform the local master 
that will take care of the request. If the path crosses multiple clusters, the master will manage the installation 
and at the end a MPLS label-switched path is installed across all the involved clusters. The command for the 
pseudo wire instantiation is the following: 

onos> icona:add-pseudowire-intent IngressEndPoint E gressEndPoint 
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9.3 Appendix C: Mantoo 

Mantoo [69] is a project meant to support SDN experiments over emulators and distributed testbeds. Mantoo is 
able to drive and help the experimenters in the three phases that compose an experiment: design, deployment 
and control. Mantoo includes an extensible web-based graphical topology designer providing different layered 
network “views” (e.g. physical interconnections, control relationships with SDN controllers, end-to-end service 
relationships among nodes). The framework is able to validate a topology against a configurable set of 
constraints and then to automatically deploy the topology over a Mininet emulator or a distributed SDN testbed, 
like Ofelia and the Géant OpenFlow Facility. Mantoo offers the ability to access nodes by opening consoles 
directly via the web GUI. Finally, Mantoo provides tools for evaluating the performance of the deployed solution 
[74]. 

Mantoo includes the Topology 3D, in fact it allows to design an OSHI network topology (both aspects of the 
data plane and of the control plane) and to plan also the services, which have to be guaranteed for the CEs. 
The topologies are exported in JSON format, and the project Dreamer-Topology-Parser-And-Validator [70] 
provides the parsing functionality needed by the Topology Deployer project. 

The code related to the Mantoo project can be downloaded from a public repository on github [69]. The latest 
version released is the v1.0-beta. Currently, it includes the support for the Mininet emulation environment. The 
repository includes a README file, where we explain how to install the components of the Mantoo project and 
deploy it on a server. A how-to is available at [73], providing a walkthrough on the core functionality of the 
project. 
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9.4 Appendix D: Topology Deployer 

In the current release of the Mantoo project is not possible to realize the deployment over distributed testbeds, 
the support will be added in the next releases, so the Topology Deployer project has a key role in the OSHI 
experiments over the distributed testbeds. It is composed by python modules that are able to automatically 
produce the configuration files necessary for emulating a given topology, composed of access and core OSHI 
nodes (OSHI-PE and OSHI-CR) and of CE routers. This includes the automatic configuration of IP addresses, 
of dynamic routing (OSPF daemons), and of VXLAN/OpenVPN tunnels in all nodes, therefore it relieves the 
experimenter from a huge configuration effort. 

The configuration files generated by the deployer have to been uploaded on a site reachable from the testbed 
or uploaded in each VMs belonging to the experiment. In order to realize the designed topology we have to 
provide for each machine the private configuration files and then run the config script (it is part of Dreamer-
Setup-Scripts project). The automatic deployment is realized through the Management Scripts (They also part 
of the project Dreamer-Setup-Scripts), that are able to download the configuration files for all the testbed 
machines at once and execute the config script. The complete procedure has been described in [67]. 

The code related to the Topology Deployer is collect under the repository called Dreamer-Testbed-Deployer, 
and it can be downloaded from our public git repository [71]. The last version released is the v1.1-beta. It 
includes scripts to automatically generate the configuration files for the Dreamer – Setup – Scripts project, in 
particular the code released contains: 

i) the automated generation of OSHI experiments configuration files (they include also the 
configuration of the CEs and OpenFlow controllers); 

ii) the automated generation of Plain IP router experiments configuration files (they include also the 
configuration of the End points); 

iii) the automated generation of the configuration of the layer 2 topology based on UDP tunnels 
(VXLAN or OpenVPN). 

As for instructions, the project has a README file, moreover we have realized also a how-to [72], that explains 
step by step how to run the project in order to generate the configuration files of a given topology. 
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Glossary 

ACE ACcess Encapsulator 

BIL Backup Inter cluster Link 

CE Customer Edge 

CLI Command Line Interface 

CR Core Router 

DSH Distributed SHell 

EoMPLS Ethernet over MPLS 

EP End Point 

GOFF GÉANT OpenFlow Facility 

ICONA Inter Cluster ONos Application 

IL Inter cluster Link 

IP FE IP Forwarding Engine 

IPoMPLS IP over MPLS 

JMS Java Messaging System 

LME Local Management Entity 

LSP Label Switched Path 

Mantoo Management tools 

MT Measurement Tools 

NIB Network Information Base 

NOS Network Operating System 

NREN National Research and Education Network 

OCF OFELIA Control Framework 

OF OpenFlow 

OFCS OpenFlow Capable Switch 

ONOS Open Networking Operating System 

OSHI Open Source Hybrid Ip/sdn 

OVS Open vSwitch 

PE Provider Edge 

PW Pseudo Wire 

PWE3 Pseudo Wire Emulation Edge  

SBP SDN Base Path 

SDN Software Defined Networking 

SM Service Manager 
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TM Topology Manager 

Topology 3D Topology and Service Design, Deploy, Direct 

VBP VSS Bridging Point 

VLL Virtual Leased Line 

VPLS Virtual Private Lan Service 

VSS Virtual Switch Service 

VTEP Virtual Tunnel End Point 
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