
Deliverable 9.3

© OFELIA consortium 2010-2013

EXOTIC

Editor: Stefano Salsano

Work Package (leader) WP9 (Stefano Salsano

Deliverable nature: Report (

Dissemination level:

(Confidentiality)

Public (PU)

Contractual delivery

date:

30/09/2013

Actual delivery date: 05/11/2013

Version: 1.0

Total number of pages: 46

Keywords: OFELIA, FP7,

OpenFlow in Europe – Linking Infrastructure and Applications

OFELIA

ICT-258365

Deliverable 9.3

EXOTIC final evaluation and overall report

Stefano Salsano (CNIT/University of Rome Tor Vergata)

Stefano Salsano, CNIT/University of Rome Tor Vergata

(R)

Public (PU)

30/09/2013

2013

OFELIA, FP7, Information Centric Networking, OpenFlow

Linking Infrastructure and Applications - OFELIA

Page 1 of (46)

CNIT/University of Rome Tor Vergata)

Information Centric Networking, OpenFlow

OFELIA – OpenFlow in Europe – Linking Infrastructure and Applications Deliverable 9.3

Page 2 of (46) © OFELIA consortium 2010-2013

Disclaimer

This document contains material, which is the copyright of certain OFELIA consortium parties, and may not

be reproduced or copied without permission.

In case of Public (PU):

All OFELIA consortium parties have agreed to full publication of this document.

In case of Restricted to Programme (PP):

All OFELIA consortium parties have agreed to make this document available on request to other framework

programme participants.

In case of Restricted to Group (RE):

All OFELIA consortium parties have agreed to full publication of this document. However this document is

written for being used by <organisation / other project / company etc.> as <a contribution to

standardisation / material for consideration in product development etc.>.

In case of Consortium confidential (CO):

The information contained in this document is the proprietary confidential information of the OFELIA

consortium and may not be disclosed except in accordance with the consortium agreement.

The commercial use of any information contained in this document may require a license from the

proprietor of that information.

Neither the OFELIA consortium as a whole, nor a certain party of the OFELIA consortium warrant that the

information contained in this document is capable of use, nor that use of the information is free from risk,

and accepts no liability for loss or damage suffered by any person using this information.

Deliverable 9.3 OpenFlow in Europe – Linking Infrastructure and Applications - OFELIA

© OFELIA consortium 2010-2013 Page 3 of (46)

Imprint

[Project title] OpenFlow in Europe – Linking Infrastructure and Applications

[short title] OFELIA

[Number and title of work package] WP9 – Support of Content centric networking functionality

[Document title] D9.3 - EXOTIC final evaluation and overall report

[Editor] Stefano Salsano (CNIT/University of Rome Tor Vergata)

[Work package leader] Stefano Salsano (CNIT/University of Rome Tor Vergata)

[Task leader] Stefano Salsano (CNIT/University of Rome Tor Vergata)

[PM (estimated)] 8

[PM (consumed)] 13

Copyright notice

© 2010-2013 Participants in project OFELIA

Optionally list of organizations jointly holding the Copyright on this document

OFELIA – OpenFlow in Europe – Linking Infrastructure and Applications Deliverable 9.3

Page 4 of (46) © OFELIA consortium 2010-2013

Executive summary

OFELIA WP9 is concerned with the design, implementation and validation of a solution for supporting

Information Centric Networking using Software Defined Networking. In particular, the solution has been

implemented and demonstrated on the OFELIA testbed.

Information Centric Networking (ICN) has been proposed as a new networking paradigm in which the

network provides users with content instead of communication channels between hosts. The Software

Defined Networking (SDN) approach promises to enable the continuous evolution of networking

architectures. In this light, an SDN enabled network could support ICN functionality without the need to re-

deploy new ICN capable equipment.

In our first deliverable (D9.1), we described two proposed solutions: 1) a long term solution based on SDN

concepts without taking into account specific limitations of SDN standards and equipment and 2) a short

term solution based on OpenFlow 1.0 equipment, taking into account the features that are currently

available on the OFELIA testbed.

In the second deliverable (D9.2), we described the operations used to setup and run the first experiment of

our short term solution, and the goals and planned topology of a larger scale demonstration.

This deliverable D9.3 first includes the description of the extended testbed scenario and of the

enhancements to the “short term” solution needed to manage these more complex topologies. These

topologies have been deployed across different islands of the OFELIA testbed. We introduced more

advanced caching strategies that improve the efficiency of ICN over SDN. According to the SDN philosophy

these strategy have been implemented in the OpenFlow controller. The deliverable reports on the web GUI

that controls the experiment and on the performance comparison among different caching strategies

obtained from the experiments over the OFELIA testbed.

Finally we include the specification and implementation details of an extensions to OpenFlow protocol that

allow to easily define and transport arbitrary information. This extension is useful for our “long term”

approach of extending OpenFlow to support ICN over SDN, as it drastically simplify the process of extending

the semantic of the OpenFlow protocol.

Deliverable 9.3 OpenFlow in Europe – Linking Infrastructure and Applications - OFELIA

© OFELIA consortium 2010-2013 Page 5 of (46)

List of authors

Organisation/Company Authors

CNIT Stefano Salsano, Luca Veltri, Stefano Brogi, Alessandra Agosta, Giacomo

Morabito, Nicola Blefari-Melazzi, Fabio Patriarca, Pier Luigi Ventre

Lancaster Univ. Matthew Broadbent

OFELIA – OpenFlow in Europe – Linking Infrastructure and Applications Deliverable 9.3

Page 6 of (46) © OFELIA consortium 2010-2013

Table of Contents

1 Introduction ... 9

2 Testbed scenarios ... 10

2.1 Extended testbed scenarios ... 11

2.2 Mapping the experiment topology into a realistic scenario. ... 13

3 Description of the Tag Based Forwarding solution .. 15

3.1 Description of the basic behavior .. 15

3.2 Dealing with limited resources for caching .. 15

4 Experimenting different ICN caching strategies ... 18

4.1 TBFF (TBF with Filter) caching strategy .. 18

4.2 Methodology for performance evaluation .. 19

4.3 Traffic patterns of ICN requests for our experiments .. 19

5 Experiment control GUI .. 21

6 Experiment results ... 24

7 OpenFlow extendible signaling channel .. 29

8 References .. 31

9 Appendix: detailed setup instructions for the experiment .. 32

Deliverable 9.3 OpenFlow in Europe – Linking Infrastructure and Applications - OFELIA

© OFELIA consortium 2010-2013 Page 7 of (46)

List of figures and/or list of tables

Figure 1- First ICN testbed in OFELIA ... 11

Figure 2- Initial target topology for ICN traffic engineering experiment .. 12

Figure 3- Deployed topology for ICN traffic engineering experiment ... 13

Figure 4- Mapping our experimental topology into a realistic scenario ... 14

Figure 5 – Methodology for evaluation of performance metrics .. 19

Figure 6 – ICN over SDN experiments home page .. 21

Figure 7 – Showing the flow tables of OpenFlow switches ... 22

Figure 8 – Showing the list of cached contents ... 22

Figure 9 – Performance analysis page ... 23

Figure 10 – Experiment 1, No-TBF ... 24

Figure 11 – Experiment 1, TBF enabled ... 25

Figure 12 – Experiment 2, basic TBF, maximum number of cached entries reached 26

Figure 13 – Experiment 2, advanced TBFF caching strategy ... 27

Figure 13 – TBF/TBFF under a dynamic request pattern ... 28

OFELIA – OpenFlow in Europe – Linking Infrastructure and Applications Deliverable 9.3

Page 8 of (46) © OFELIA consortium 2010-2013

Abbreviations

CONET COntent NETwork

ICN Information Centric Networks

NDN Named Data Networking

OF OpenFlow

TBF Tag Based Forwarding

TBFF Tag Based Forwarding – Filter

Deliverable 9.3 OpenFlow in Europe – Linking Infrastructure and Applications - OFELIA

© OFELIA consortium 2010-2013 Page 9 of (46)

1 Introduction

In our deliverable D9.1 [1], we proposed and discussed solutions to support ICN using SDN concepts. We

focused on an ICN framework called CONET, which grounds its roots in the CCN/NDN architecture. We

addressed the problem in two complementary ways. First we discussed a general and “long term” solution

based on SDN concepts. This “long term” solution does not take into account specific limitations of current

SDN standards and equipment. Then we focused on a “short term” solution to support ICN functionality

over the OFELIA large scale SDN testbed, based on OpenFlow. The current OFELIA testbed is based upon

OpenFlow 1.0 equipment. Therefore, we designed the experiment to use only those features that are

currently available.

In our deliverable D9.2 [2] we planned the performance evaluation of the proposed “short term” solution in

more complex scenarios. We have identified our general methodology for experimentation and

performance evaluation and defined the performance metrics of interest.

In this deliverable D9.3 we report on the extensions of the solution to work on more complex scenarios,

which required several enhancements in our logic implemented in the OpenFlow controllers. We also

report on the performance evaluation on a multi-site experiment over the OFELIA testbed.

We refer the reader to the deliverable D9.1 [1] for all the details of the solution. We also assume

background knowledge in the principles of ICN and SDN. On the other hand, we preferred to include in this

document the most relevant information coming from D9.2 [2], in order to reduce the number of

documents that gives the full vision of our work. An overview of our solution can also be found in the

journal paper [4].

The content of this document is as follows. In section 2 we present the extended testbed scenario based on

a multi-island OFELIA experiment. In section 3 we describe the basic solution for ICN support using

OFELIA/OpenFlow, focusing on the extensions we have designed and implemented with respect to the

simple experiment described in D9.1. Section 4 provides the definition of advanced caching strategy that

we have designed exploiting the SDN/OpenFlow approach. Section 5 introduces the GUI used to control the

experiment. Section 6 provides the results of the experiment. Finally in section 8 we report our work on the

design and implementation of a flexible extension mechanism for the OpenFlow protocol. An appendix

reports the complete instructions to replicate the experiments.

OFELIA – OpenFlow in Europe – Linking Infrastructure and Applications Deliverable 9.3

Page 10 of (46) © OFELIA consortium 2010-2013

2 Testbed scenarios

Figure 1, which describes the first simple ICN over SDN scenario implemented in the OFELIA testbed, can

also be used as reference for the description of the architectural elements. In our scenarios we have a set

of “Content Clients” making requests to download a set of “contents” using an ICN approach. This means

that the ICN applications in the Content Clients will make requests to download a certain content identified

by its “content name”. According to the ICN paradigm, these requests will be served by the origin Content

Server, or by a node in the path, which may have cached the content beforehand. The application running

on the Content Client is based on the CCNx implementation [3]. In our experiments, the requests are

initially served by the Content Servers. While the content data is provided back to the Content Client, the

OpenFlow Controller can instruct the OpenFlow switches to forward a copy of the packets to the Cache

Server. The Cache Server will inform the OpenFlow Controller when the “chunks” of the contents become

available in its cache. The Controller can instruct the OpenFlow Switches to direct further requests for

cached content to the Cache Server, rather than the Content Server. For the above procedure to work

correctly over an OpenFlow 1.0 testbed, flows are identified by a “tag”. In this case, each flow represents

the delivery of a different content chunk. This is carried in the source and destination port fields of UDP

packets. Therefore a mapping functionality from ICN content name to the 4 bytes tag is implemented at the

border of the SDN network, in our case in the Content Client itself. Moreover, regular UDP packets and UDP

packets carrying ICN requests/ICN content are identified using a different set of IP addresses.

A key element for the running of our experiments is the management server that is shown in Figure 1. This

server provides the overall control of the experiment, offers a GUI to the experimenter, and collects the

results by monitoring the interfaces. It interacts with the OpenFlow Controller over a Northbound API

based on the HTTP REST approach.

Under the control of the management server, the OpenFlow Controller can activate “Tag based forwarding”

in the OpenFlow switches. This means routing ICN packets based on their tag. In this case, the different

strategies for cache management that will be described in this document can also be controlled.

Alternatively, the Controller may simply instruct the switches to use default layer 2 forwarding based on

MAC address learning.

Deliverable 9.3 OpenFlow in Europe – Linking Infrastructure and Applications - OFELIA

© OFELIA consortium 2010-2013 Page 11 of (46)

OpenFlow
SW 1

Content
Client/BN

Content
Server/BN

OpenFlow
Controller
Floodlight

Cache Server
JSON

OpenFlow
SW 2

OpenFlow

VLAN 16
eth1 VLAN 16

eth2

VLAN 16
eth2

eth0

eth0

10.216.12.83

10.216.12.84

10.216.12.86
eth0

192.168.1.23 CONET-C

192.168.1.17 PLAIN IP
192.168.1.8 CONET-S

192.168.1.9 PLAIN IP

March VM

server

Rodoreda VM server

10.216.12.88

Icinga
mgt

server

10.216.12.96

M

Northbound
interface

Figure 1- First ICN testbed in OFELIA

The setup for the simple demo reported in D9.1 is shown in Figure 1. The main results that were obtained

from this simple experiment are: i) verification of the functionality of the system and ii) measurement of

the load shift from the Content Server interface toward the Cache Server interface when the ICN TBF

mechanism is activated.

2.1 Extended testbed scenarios

After developing the basic experiment described in deliverable D9.1, we have generalized our ICN/SDN

solution to work over more complex topologies. These topologies allows us to experiment ICN

routing/caching strategies that can be driven by the OpenFlow Controller. A target topology for the

experiments was proposed in deliverable D9.2 and is reported on Figure 2. Such a relatively large topology

can be built using inter-island federation of OpenFlow resources, and is made possible by the recent

versions of the OFELIA Control Framework. In Figure 2 we have 5 federated islands: Trento (1), Barcelona

(2), Catania (3), Zurich (4) and Berlin (5).

OFELIA – OpenFlow in Europe – Linking Infrastructure and Applications Deliverable 9.3

Page 12 of (46) © OFELIA consortium 2010-2013

:01

:02

:03

CS11

S11

C11

CS12
S12

C12

CS13

S13 C13

:06

:07:08

:09 80:00
5b:80

S22
C22

C23

S23

CS21

CS31 C31
S31

CS41

C41

S41

:02

:03

:05

:04

:01

:03

:02

:02

:03
:01

:02

:03
CS51

C51

S51

:01

:01

Trento

island (1)

Barcelona

island (2)

Catania

island (3)

Zurich

island (3)

Berlin

island (3)

Figure 2- Initial target topology for ICN traffic e ngineering experiment

For practical reasons, related to the ease of performing the experiments and to the inter-island topology

that has been deployed in the OFELIA testbed, we have scaled down the experiment to the topology

described in Figure 3. In this topology we have 4 federated islands Trento (1), Barcelona (2), Zurich (3) and

Gent (4). The Gent island provides inter-island connectivity with an “hub-and-spoke” topology.

Deliverable 9.3

© OFELIA consortium 2010-2013

Figure 3- Deployed topology for ICN traffic engineering experime

2.2 Mapping the experiment topology into a realistic scenario.

Let us discuss how the realized experimental topology can be mapped into a realistic scenario. We

from the assumption that a large scale ICN capable network is deployed, composed of ICN nodes offering

ICN based distribution of content to ICN clients and ICN servers

between client and server for clarity, but

server. As shown in Figure 4, a set of ICN

a provider network based on SDN.

domain that operates using SDN mechanism

OpenFlow controller are represented. In our experiments we restrict our attention to the SDN domain,

including the edge nodes. The ICN clients and ICN server in our experiments

An ICN client in the testbed therefore represents all the clients whose requests flow across the edge node

and enters the SDN domain. Likewise, an ICN server in the testbed r

servers that inject information through the edge node. An ICN client or ICN server represent a potentially

large set of ICN clients and ICN servers respectively.

OpenFlow in Europe – Linking Infrastructure and Applications

Deployed topology for ICN traffic engineering experiment

Mapping the experiment topology into a realistic scenario.

Let us discuss how the realized experimental topology can be mapped into a realistic scenario. We

from the assumption that a large scale ICN capable network is deployed, composed of ICN nodes offering

ICN based distribution of content to ICN clients and ICN servers (end-nodes). We keep this distinction

between client and server for clarity, but obviously any end-node can be at the same time both client and

, a set of ICN “edge” nodes can be interconnected by means of a data center or

. These nodes are called “edge” as they operate at the border of

domain that operates using SDN mechanisms. Within the SDN domain, a set of OpenFlow switches and an

low controller are represented. In our experiments we restrict our attention to the SDN domain,

The ICN clients and ICN server in our experiments are located

An ICN client in the testbed therefore represents all the clients whose requests flow across the edge node

and enters the SDN domain. Likewise, an ICN server in the testbed represents all the data coming from

servers that inject information through the edge node. An ICN client or ICN server represent a potentially

large set of ICN clients and ICN servers respectively.

Linking Infrastructure and Applications - OFELIA

Page 13 of (46)

Let us discuss how the realized experimental topology can be mapped into a realistic scenario. We start

from the assumption that a large scale ICN capable network is deployed, composed of ICN nodes offering

. We keep this distinction

node can be at the same time both client and

nodes can be interconnected by means of a data center or

operate at the border of the

. Within the SDN domain, a set of OpenFlow switches and an

low controller are represented. In our experiments we restrict our attention to the SDN domain,

are located on the edge nodes.

An ICN client in the testbed therefore represents all the clients whose requests flow across the edge node

epresents all the data coming from

servers that inject information through the edge node. An ICN client or ICN server represent a potentially

OFELIA – OpenFlow in Europe – Linking Infrastructure and Applications Deliverable 9.3

Page 14 of (46) © OFELIA consortium 2010-2013

ICN servers

ICN server

in the experiment

ICN

nodes ICN

nodes
ICN

clients

SDN domain

(a data center or a provider network)

<=> OFELIA testbed

ICN capable network

Edge ICN

nodes

Edge ICN

nodes

ICN client

in the experiment OpenFlow

Switches

OF controller

Figure 4- Mapping our experimental topology into a realistic scenario

Deliverable 9.3 OpenFlow in Europe – Linking Infrastructure and Applications - OFELIA

© OFELIA consortium 2010-2013 Page 15 of (46)

3 Description of the Tag Based Forwarding solution

3.1 Description of the basic behavior

The Tag Based Forwarding mechanism can be seen as split into two phases. In the first phase the default

paths towards ICN servers (for ICN interest packets) and towards ICN clients (for ICN data packets) are

installed in the switches. Also the duplication rules for ICN data packets towards the Cache Servers are

setup in this first phase. In the second phase the specific redirection rules for the interest packets related to

the content chunks that are stored in the Cache Server are established.

In our solution the first phase is driven by packets coming from ICN client and ICN servers, and the default

paths are discovered with a mechanism identical to the “auto-learning” of Ethernet switches. This is

obviously done under the direction of the OpenFlow controller. A TBF enabled switch reports to the

controller packets received with IP address belonging to an ICN server or an ICN client when no rules are

present, then they are instructed by the OpenFlow controller to set the default path toward ICN servers

(which will be followed by the Interest packets) and toward ICN clients (which will be followed by the ICN

Data packets). Though this first phase is not preconfigured (it is driven by the received packets), for

simplicity we refer to the resulting set of entries as “static TBF rules”. The static TBF rules will not expire, as

we assume that ICN clients and servers are static (they represent ingress/egress points in a SDN enabled

data center or provider network offering ICN services).

When the data packets cross the TBF capable switches, they are duplicated by the TBF capable switches

and sent towards the Cache Servers. The Cache Server reconstructs the chunks and when a full chunk is

available, stores it and notifies the controller. The controller will install a rule in the switch to redirect

future interests towards the Cache Server. We refer to this second set of entries as “dynamic TBF rules”.

These dynamic rules will be variable in time, as they reflect the content that is cached in the Cache Server.

To implement the above-described scenario, we have the need to differentiate among ICN interest and

data packets arriving to the switches, only using OpenFlow 1.0 capabilities. The idea for doing it efficiently

is to associate a set of contiguous IP addresses to ICN clients and another set to ICN servers. This approach

also allows differentiation between ICN packets and regular IP packets: the ICN client and server addresses

are additional addresses that are used only for ICN communications. If a device needs to play the role of

ICN client or ICN server, it will respectively have an ICN client or ICN server address on its interface in

additions to the regular IP address. The Interest packets flow from ICN clients towards ICN servers. Their IP

source address is an ICN client address, whilst their IP destination address is an ICN server address.

Likewise, the ICN Data packets flow from ICN servers towards ICN clients. Their IP source address is an ICN

server address, whilst their IP destination address is an ICN client address.

3.2 Dealing with limited resources for caching

In general, when caching mechanisms are used, proper cache management strategies need to be devised to

cope with the limited amount of caching resources. The ultimate goal of such strategies is to maximize the

advantages arising from the use of the cache: for example the probability of finding content in the cache

(cache hit ratio) should be maximized.

A peculiar aspect of our cache management strategy is that it needs to be coordinated among three

elements: the Cache Server, the OpenFlow switch and the Controller.

OFELIA – OpenFlow in Europe – Linking Infrastructure and Applications Deliverable 9.3

Page 16 of (46) © OFELIA consortium 2010-2013

In our specific scenario, during the operation of the TBF mechanism the Cache Server could fill up its local

storage space, or the number of possible entries in the switch flow table can be exhausted. Therefore we

potentially have to cope with two bottlenecks (storage space and flow table entries).

In the scenario that we deployed on the OFELIA testbed the limited resource is the number of flow table

entries, which can be easily depleted by the dynamic TBF rules for the interest forwarding towards Cache

Servers. In theory we have one entry per cached chunk in a switch. The goal of this entry is to redirect an

interest request belonging to a given chunk to the Cache Server. For this entry, the ingress port does not

care and it is “wildcarded” in the OpenFlow terminology. In practice, the FlowVisor [5] module takes care of

“slicing” the switches among a set of independent experiments. If an experiment topology is composed by

a subset of the switch ports, a request to set an entry that refers to “all ports” is translated by Flowvisor

into a set of entries that refer to the specific ports under the control of the given slice. This will multiply the

number of entries by a factor that depends on the number of ports used by a switch in our topology.

We performed an experiment adding more and more dynamic TBF rules until we got a “Table full” error

from the OpenFlow switches. The results are reported in Table 1. It shows that the maximum number of

entries is 1518 and this corresponds to a different maximum number of cached items, depending on the

number of switch ports that we have used in our slice.

DATAPATH Entries Ports Cached Items Switch Model

02:08:02:08:00:00:00:03 (CN-03) 1518 2 755 AX-3640-24T2XW-L

00:10:00:00:00:00:00:01 (i2C-01) 1518 3 503 AX-3640-24T2XW-L

02:00:00:00:00:00:00:01 (ETH-01) 1518 2 755 AX-3640-24T2XW-L

Table 1 – Maximum number of entries in the switch flow table for a slice.

Taking into account the results of the experiment, we assumed that the Cache Server storage space is large

enough to contain a number of chunks corresponding to the maximum number of entries in the flow table.

In other words we focused on the scenario in which the logical bottleneck of the system is the number of

flow table entries in the switch.

We have designed a simple strategy to be deployed in our testbed. The idea is to let entries expire in the

flow table if they are not used after a time-out, using standard built-in OpenFlow mechanisms. Thanks to

these, the expiration of a flow entry causes a notification to be sent back to the controller.

If the same chunk is requested again at a later time, the switch will simply forward the interest packet to

the origin server and when the data packets are sent back, the Cache Server can cache the chunk again.

In order to remove the chunk from the Cache Server local storage, different options are possible: 1) the

Controller can instruct the Cache Server to delete the corresponding chunk in the Cache Server storage (in

this case a new message between the Controller and the Cache Server); 2) the Cache Server could

independently implement an expiration mechanism, with a timeout greater than the switch timeout for

flow entries, in order to delete chunks that have not been requested for a given time. The second solution

is preferable, as it does not require an explicit message from the controller.

The procedure could be extended In order to consider the case in which the cache storage space is a

limiting factor (this is still for further study and has not been realized). In the simplest solution, the Cache

Deliverable 9.3 OpenFlow in Europe – Linking Infrastructure and Applications - OFELIA

© OFELIA consortium 2010-2013 Page 17 of (46)

Server can simply stop caching new chunks when the cache storage space is full. A more complex approach

could be to make room in the cache storage by deleting the Least Recently Used chunk (LRU preemptive

strategy), but this requires coordination with the controller, as the controller should be informed of the

deletion in order to remove the entry in the flow table.

OFELIA – OpenFlow in Europe – Linking Infrastructure and Applications Deliverable 9.3

Page 18 of (46) © OFELIA consortium 2010-2013

4 Experimenting different ICN caching strategies

In the scenario described in Figure 3, we run 3 ICN clients, 3 ICN servers and 3 Cache Servers, deployed on 6

different VM hosting servers (two for each of the 3 testbed islands in Trento, Barcelona and Zurich).

In the topology used for our scenario, we control 7 OpenFlow switches. 3 switches have an associated

Cache Server. We refer to this set of switches as “ICN Tag-Based-Forwarding capable” or simply TBF-

capable. A TBF capable switch is able, under the direction of the controller, to duplicate the ICN data

packets towards the Cache Server and to redirect ICN interest packets toward a Cache Server. The

remaining switches that are not “TBF capable” will be used as simple layer 2 switches in our scenario. It is

our decision to make a switch TBF capable or not, because it is the controller that provides the forwarding

logic for the OpenFlow switches.

In the implemented scenario an OpenFlow switch can be associated with a single Cache Server. This

assumption is related to the hypothesis that in the long term the Cache Server will be co-located with the

OpenFlow switch or even integrated within the switch itself. In this case there is no need to redirect to an

external remote Cache Server.

In this section we define a more advanced caching strategy on top of the TBF mechanism described in the

above solution and provide a comparison between the basic and the advanced strategy.

4.1 TBFF (TBF with Filter) caching strategy

The “basic” ICN Tag Based Forwarding mechanism foresees that all content that flows across a TBF capable

switch is copied to the associated Cache Server and that for each cached chunk the interest requests are

redirected toward the Cache Server. This default strategy implies that the content coming from a server is

“local” with respect to the TBF capable OpenFlow switch at which they are cached. A local server could be a

server located in the same POP. In our testbed we can identify as local the server located in the same

testbed island. Caching only local content reduces the local server load, but it does not reduce the load on

the WAN links that interconnect the POPs (or testbed islands). If cache resources are limited, using the

cache resources for caching this local contents is less efficient than caching the “remote” contents coming

from remote servers. Starting from this assumption, we have designed and implemented a mechanism to

selectively cache content coming from remote servers. This new caching logic is implemented with and

driven by the OpenFlow controller. We refer to this mechanism as TBFF: Tag Based Forwarding – Filter. In

fact, the controller is able to instruct the OpenFlow switches to filter the ICN data packets, replicating

towards the Cache Server only those that are coming from remote servers. The filtering mechanism is

based on the classification of source IP addresses in ICN data packets coming from ICN servers.

In our testbed, we first verified the correctness of the implementation. To begin with, we published a set of

contents in ICN servers located in different islands. Then we setup a script in an ICN client to periodically

request a set of contents located in local ICN server (i.e. in the same testbed island of the client) and in

remote ICN servers (i.e. in different testbed islands). At the beginning of the experiment, the ICN interest

packets flow towards all the ICN servers and the ICN data packets return using the inter-islands links. After

a short while, we could see that all inter-island traffic has disappeared and that the only server that

continued to receive interest packets and forward data packets was the server located in the same island of

the requesting client.

Deliverable 9.3 OpenFlow in Europe – Linking Infrastructure and Applications - OFELIA

© OFELIA consortium 2010-2013 Page 19 of (46)

We also setup a second more complex experiment to show the effectiveness of the TBFF strategy in saving

the WAN links in presence of limited caching resources. We assumed a time dependent pattern of requests

coming from the ICN client. The client starts requesting a set of contents and then changes this set: some

contents are not requested anymore and new contents enter the “active set” of requested contents. It is

important to note that the ICN client in our experiment represents an ingress node in our SDN based

content distribution network. The requests coming from our ICN client represent the aggregate set of

requests coming from the downstream ICN clients that are connected to this ingress node. We can design

the request pattern so that the active set of requested content exceeds the resources available for caching.

Therefore only a subset of the active sets of contents will be cached. The cache hit probability will depend

on the fraction of the active set that it is possible to cache.

Thanks to our entry expiration mechanisms, the contents that are cached in the Cache Server tend to

follow the active set of requested content. In fact, unused entries will expire, making room for new entries

for new contents. In the basic TBF case, the limited cache resources will be used randomly for local and

remote content. This is in comparison to the advanced TBFF case, where the cache resources will be used

only for remote content. For a given request pattern exceeding the available caching resources, composed

of a mix of local and remote requests, we can measure the inter-island bandwidth usage and compare the

TBF and TBFF solutions.

4.2 Methodology for performance evaluation

The overall methodology for the performance evaluation of the proposed solutions starts with the

generation of synthetic ICN traffic using a set of ICN client and server applications. This synthetic ICN traffic

will be processed inside the ICN/SDN network. From this, we will gather performance metrics. These are

used to evaluate different strategies for controlling resources. This process is graphically represented in

Figure 5.

Scripts for

synthetic

generation of

ICN traffic

between clients

and server

Test of different

control logic in

OpenFlow

controllers

Evaluation of

performance

metrics

Figure 5 – Methodology for evaluation of performance metrics

We will take as reference a solution that does not use in-network caching and only uses shortest path

routing between ICN client and ICN servers (NO-TBF). Then we will introduce the in-network caching

capability provided by Cache Servers, with the basic TBF mechanism. Finally we will enhance the solution by

using a strategy to selectively cache content on a Cache server in order to maximize the gain obtained by

caching (TBFF).

4.3 Traffic patterns of ICN requests for our experiments

OFELIA – OpenFlow in Europe – Linking Infrastructure and Applications Deliverable 9.3

Page 20 of (46) © OFELIA consortium 2010-2013

The effectiveness of the Tag based forwarding scenario depends on the pattern of the requests and on the

capacity of caching the content in the local caches. The cache hit ratio is defined as the ratio between

content requests that can be served by a cache and total number of requests. As for the request pattern, if

all clients request the same content, the cache hit ratio will be close to 1 even with a minimal cache

capacity. If all clients request different contents the hit ratio will be 0 for any size of the cache and

whatever caching strategy is used. We do not focus on the dependency between the traffic pattern and the

cache effectiveness, which requires some knowledge or assumptions about the statistical distribution of

the requests and a probabilistic analysis. We made very simple assumptions on the traffic pattern by

defining some deterministic traffic patterns and studied the performance of the system under these

deterministic patterns. Our results could be used as input to more sophisticated models involving

probabilistic characterization of traffic patterns, but this is for further study and we leave it out of the scope

of the present analysis.

We considered two types of traffic patterns as input for our experiments, a “static” pattern and a

“dynamic” pattern. The static pattern type foresees a continuous repetition of a set of content requests,

which is only characterized by the number (N) of contents in the set. In dynamic pattern types, the “active

set” of content requests changes over time, and can also be characterized by the number (NA) of different

contents in the active set.

In the static pattern, from a given ICN client (we recall that an ICN client represents a potentially large set of

ICN clients) we request a set of N different content objects, each one composed by M chunks (the size of

each object will be M*chunk_size). Note that our basic unit of storage is the chunk. Therefore each client

will periodically generate requests for N*M different content chunks. Let us call cycle time Tc [s] the

duration of the period. According to the TBF logic, the chunks will be stored in the Cache Server and the

following requests will be forwarded to it. If we assume that the expiration time-out To [s] of the entries in

the switch is longer than the cycle time Tc, the entries in the switch flow table will not expire in our

experiment.

If in the dynamic pattern the client periodically (with cycle time Tc [s]) requests a set of NA different

contents, then after a duration Ta [s] (with Ta > Tc) it will request a different set of NA contents.

Deliverable 9.3 OpenFlow in Europe – Linking Infrastructure and Applications - OFELIA

© OFELIA consortium 2010-2013 Page 21 of (46)

5 Experiment control GUI

In this section we provide a short report about the GUIs for controlling the experiments.

The main web page for controlling the experiments is reported in Figure 6. This page provides the capability

to select the three different modes of operations for the ICN packets: No TBF (corresponding to a regular

learning switch), TBF (Tag Based Forwarding), TBFF (TBF with filter). It also displays the current mode.

Figure 6 – ICN over SDN experiments home page

From the main page, it is possible to display the flow tables in the OpenFlow switches (Figure 7). Each entry

reports the OpenFlow “match” and “action” in a human readable format. Two types of visualization are

offered, a raw visualization that reports all entries listed by the controller and a “compact” visualization

that summarizes the entries that have been duplicated by FlowVisor into a single entry. For both

visualization types, the flow table entries are divided into the subset of entries related to TBF mechanisms

and the subset of entries related to regular IP traffic managed by a classical OpenFlow “learning switch”

logic.

OFELIA – OpenFlow in Europe – Linking Infrastructure and Applications Deliverable 9.3

Page 22 of (46) © OFELIA consortium 2010-2013

Figure 7 – Showing the flow tables of OpenFlow switches

From the main page, it is also possible to display the list of cached items seen by the controller (Figure 8).

Figure 8 – Showing the list of cached contents

Deliverable 9.3 OpenFlow in Europe – Linking Infrastructure and Applications - OFELIA

© OFELIA consortium 2010-2013 Page 23 of (46)

The performance analysis page is shown in Figure 9. This page is automatically refreshed every 10 seconds,

allowing to monitor in real time the relevant set of parameters of the ICN over SDN solution. It monitors

the Incoming and Outgoing traffic on the experimental network interfaces of all ICN client, ICN servers and

Cache Server of an experimental slice. It also monitors the number of cached items in each Cache Server,

and the total number of cached items on all Cache Servers.

Figure 9 – Performance analysis page

OFELIA – OpenFlow in Europe – Linking Infrastructure and Applications Deliverable 9.3

Page 24 of (46) © OFELIA consortium 2010-2013

6 Experiment results

In this section we present some experimental results.

In the first experiment we compare No-TBF with TBF, in a scenario where the cache resources are able to

cache all the set of requested contents. We defined a static request pattern for the ICN clients, periodically

requesting N contents to the ICN servers. In particular, each client request content from a remote server. If

No-TBF is used, the requests and the data keep flowing on the inter-islands links. In Figure 10 it is possible

to see the load on the ICN servers interfaces, while the Cache servers are unloaded (note that the scale of

the graph is dynamically adapted and that for Cache Server the scale is set to bit/sec, wile for the ICN server

it is set in the order of 10kbit/s).

Figure 10 – Experiment 1, No-TBF

When TBF is activated, the number of cached items increases, the load on remote servers decreases as well

as the inter-island. After the duration of a cycle of requests, all contents are cached in the Cache Servers

and the load on remote servers as well as the inter-island traffic becomes null. In Figure 11 the start time

for the clients to start performing their requests is marked by the vertical red line. Initially, the set of N

different contents are requested and provided by the ICN servers. During the data transfer, the packets are

copied to the Cache servers, that cache the content and notify the controller (the number of cached items

increases). When the first round of requests ends, the clients start requesting again the same set of

content. From now on the contents will be served by the Cache servers: the load of the ICN servers and on

the inter-island links goes to zero, while the number of cahed items remains constant.

Deliverable 9.3 OpenFlow in Europe – Linking Infrastructure and Applications - OFELIA

© OFELIA consortium 2010-2013 Page 25 of (46)

Figure 11 – Experiment 1, TBF enabled

In the second experiment we compare the basic TBF with the advanced caching strategy TBFF for a static

pattern of requests, exceeding the flow table entries capacity. We assume that an ICN client located in

CreateNet island is periodically making a set of requests to three different servers, one located in CreateNet

islands, and the other two in the remote islands (i2Cat and ETHZ). In Figure 12, we report the “steady state”

of the experiment, after the first cycle of requests has been performed and the maximum number of

entries in the switch flow table is reached (it can be seen that the number of cached items in the cache is

slightly more than 1K. The client continues to request the set of contents. The first part of this set is served

by the local cache server in CreateNet, and the load on the three ICN server is null. Then, for the final part

of the content set, we see traffic in all the three ICN server interfaces, due to the content requests that

were not redirected to the Cache Server. The traffic coming from ICN servers in ETHZ and i2Cat is crossing

the inter-island links. In this phase the traffic in the Cache Server becomes incoming rather than outgoing.

The reason is that the OpenFlow switch copies the data packets coming from the ICN servers to the Cache

Server.

OFELIA – OpenFlow in Europe – Linking Infrastructure and Applications

Page 26 of (46)

Figure 12 – Experiment 2,

We repeated the experiment with the “advanced” TBFF strategy, to verify that we are able to make a

better use of caching resources. According to the TBFF strategy, the contents coming from the local ICN

server in CreateNet are not cached in the CreateNet Cache Server. The steady state of the experiment is

reported in Figure 13. The ICN client in CreateNet

cached items in the cache is now around 700, below the limit imposed by the maximum number of entries

in the OpenFlow switch flow table. It can be seen that the local ICN server in CreateNet is still l

contents that it provides has not been cached. On the other hand, the load on the remote ICN servers in

ETHZ and i2Cat island has been reduced to zero (note the different scale of the graphs, we are only seeing

some background traffic in the remote ICN servers).

Linking Infrastructure and Applications

© OFELIA consortium 2010

Experiment 2, basic TBF, maximum number of cached entries reached

We repeated the experiment with the “advanced” TBFF strategy, to verify that we are able to make a

better use of caching resources. According to the TBFF strategy, the contents coming from the local ICN

are not cached in the CreateNet Cache Server. The steady state of the experiment is

. The ICN client in CreateNet is using the same request patterns, but the number of

cached items in the cache is now around 700, below the limit imposed by the maximum number of entries

It can be seen that the local ICN server in CreateNet is still l

contents that it provides has not been cached. On the other hand, the load on the remote ICN servers in

ETHZ and i2Cat island has been reduced to zero (note the different scale of the graphs, we are only seeing

remote ICN servers).

Deliverable 9.3

© OFELIA consortium 2010-2013

number of cached entries reached

We repeated the experiment with the “advanced” TBFF strategy, to verify that we are able to make a

better use of caching resources. According to the TBFF strategy, the contents coming from the local ICN

are not cached in the CreateNet Cache Server. The steady state of the experiment is

is using the same request patterns, but the number of

cached items in the cache is now around 700, below the limit imposed by the maximum number of entries

It can be seen that the local ICN server in CreateNet is still loaded, as the

contents that it provides has not been cached. On the other hand, the load on the remote ICN servers in

ETHZ and i2Cat island has been reduced to zero (note the different scale of the graphs, we are only seeing

Deliverable 9.3 OpenFlow in Europe – Linking Infrastructure and Applications - OFELIA

© OFELIA consortium 2010-2013 Page 27 of (46)

Figure 13 – Experiment 2, advanced TBFF caching strategy

Finally, we report a third experiment to validate the defined mechanisms using a dynamic request pattern.

This experiment will show the entry expiration mechanism implemented in the OpenFlow switches to make

room to new entries when the old ones are not used. We defined a dynamic request pattern so that the

cache resources are not enough to cache all the contents, but are capable to cache the contents in the

“active” set of requests. Therefore we need to make room to new contents and remove the entries related

to “old” unused contents. Figure 14 reports the results of this third experiment. The ICN client in CreateNet

island start performing a set of requests towards the ICN server in ETHZ island (vertical red lines at time T1).

The requests are initially served by the remote ICN server, in the mean time they are cached by the local

Cache Server as it can be seen from the increasing number of cached items. The ICN client repeats the

same set of requests for three times, now the requests are server by the Cache Server and the ICN server

load goes to zero. Then at time T2 (second vertical red lines) the client starts requesting a different set of

requests, i.e. the active set of requests is changing. The new contents are requested to the remote ICN

server, as they are not in the Cache Server. The Cache Server starts caching the new contents and the

cached item number increases. After a short while, the entries related to the old contents start to expire,

reducing the number of cached items. After a transient phase, the number of cached items is the same as

before (because in our request pattern the second active set has an identical size to the first active set). The

requests are now forwarded to the local cache server and the load on the remote server goes again to zero

as desired.

OFELIA – OpenFlow in Europe – Linking Infrastructure and Applications Deliverable 9.3

Page 28 of (46) © OFELIA consortium 2010-2013

Figure 14 – TBF/TBFF under a dynamic request pattern

Deliverable 9.3 OpenFlow in Europe – Linking Infrastructure and Applications - OFELIA

© OFELIA consortium 2010-2013 Page 29 of (46)

7 OpenFlow extendible signaling channel

Software Defined Networking and the OpenFlow protocol have been conceived and designed in order to

foster innovation. The experimentation of new disruptive ideas is facilitated by the “openness” of the

switch and by its capability to modify the behavior with matches and actions.

On the other hand, the OpenFlow protocol itself is difficult to modify, both at a design level and at an

implementation level. In fact, OpenFlow is a binary protocol and in order to define new messages, a rather

complex definition is needed. Typical implementations in switches aim at efficiency and do not facilitate the

addition of new features.

The extension mechanism that was included in the definition of the OpenFlow protocol is based on the so

called “vendor message” (since renamed experimenter message). This message provides the means to

extend the protocol with new features. We relied on this message and defined a generic container that can

carry textual messages (we will use JSON encoding) of arbitrary semantic meaning between the Controller

and the OpenFlow switches (and vice versa).

We have implemented this for Open vSwitch and for the Floodlight controller. Using this proposed generic

signaling channel between the controller and the switches drastically simplifies the introduction of new

messages. For this reason, the proposed generic signaling channel is a useful tool for the implementation of

the “long term” solution for the integration of ICN and SDN.

The definition of the Vendor extension message on OpenFlow 1.0 is the following

/* Vendor extension. */

struct ofp_vendor_header {

struct ofp_header header; /* Type OFPT_VENDOR. */

uint32_t vendor; /* Vendor ID:

 * - MSB 0: low-order bytes are IEEE OUI.

 * - MSB != 0: defined by OpenFlow

 * consortium. */

/* Vendor-defined arbitrary additional data. */

};

OFP_ASSERT(sizeof(struct ofp_vendor_header) == 12);

In the Open vSwitch implementation, we define the field values in our message as follows:

uint32_t vendor = 0xAABBCCDD

the first 4 bytes in the vendor-defined arbitrary area represent a message code, and we have defined it as

follows:

public static final int GEN_OPEN_MSG = 10

In the Floodlight implementation, we define a new class for our “vendor” extension:

public class OFExperimVendorData implements OFVendorData {

 public static final int EXP_VENDOR_ID = 0xAABBCCDD;

OFELIA – OpenFlow in Europe – Linking Infrastructure and Applications Deliverable 9.3

Page 30 of (46) © OFELIA consortium 2010-2013

We set the message code for our open messages as follows:

 /**

 * The data type value for an OpenMsg

 */

 public static final int EXPERIM_ANY_MSG = 10;

We have also added a new method to the class that represent an OpenFlow switch in Floodlight:

 public int sendOpenMsg(String message) {

Creating a new message and sending it to the OpenFlow switch is now easy as shown in the code snipped

below:

 JSONObject json_message= new JSONObject();

 json_message.put("type", "HelloRequest");

 ((OFSwitchImpl)iofSwitch).sendOpenMsg(json_message.toString());

Deliverable 9.3 OpenFlow in Europe – Linking Infrastructure and Applications - OFELIA

© OFELIA consortium 2010-2013 Page 31 of (46)

8 References

[1] S. Salsano (editor) “EXOTIC final architecture and design”, Deliverable D9.1, Project FP7 258365

“OFELIA”

[2] S. Salsano (editor) “EXOTIC evaluation plan and methodology”, Deliverable D9.2, Project FP7 258365

“OFELIA”

[3] CCNx project web site: www.ccnx.org

[4] S. Salsano, N. Blefari-Melazzi, A. Detti, G. Morabito, L. Veltri, “Information Centric Networking over

SDN and OpenFlow: Architectural Aspects and Experiments on the OFELIA Testbed”, Computer

Networks, Volume 57, Issue 16, 13 November 2013, Pages 3207-3221, ISSN 1389-1286

[5] FlowVisor Home Page - http://onlab.us/flowvisor.html

[6] “Tobi Oetiker's MRTG - The Multi Router Traffic Grapher” http://oss.oetiker.ch/rrdtool/

[7] “About RRD” http://oss.oetiker.ch/rrdtool/

[8] “Floodlight REST API”, http://www.openflowhub.org/display/floodlightcontroller/Floodlight+REST+API

OFELIA – OpenFlow in Europe – Linking Infrastructure and Applications Deliverable 9.3

Page 32 of (46) © OFELIA consortium 2010-2013

9 Appendix: detailed setup instructions for the experiment

####### OFELIA ICN over SDN testbed #########

this file is publicy available on dropbox at URL:
https://www.dropbox.com/s/u0a6v1umzos69g2/alien-ofe lia-testbed.txt

Addresses for the demo in slices alien-ofeli a-2/ basic-slice ######

+-- -----------------------+
host	control IP	experim. IP	exp. VLAN	server
controller	10.216.33.93			vm2
server1	10.216.33.57	192.168.1. 8	eth1.200	vm2
cacheser1	10.216.33.58		eth1	vm2
client1	10.216.33.56	192.168.1. 23	eth1.200	vm1
management	10.216.33.91			vm1
+-- -----------------------+

NB the controller and the openflow resources are in slice alien-ofelia-2
server cacheser client1 management are is in basic- slice

Topology

+---+ +----+ +- ---+ +---+
|vm2|-eth1<--->port12-|sw02|-port 25<--->port 25-|s w01|-port 12<--->eth1-|vm1|
+---+ +----+ +- ---+ +---+

this part is optional but it has been added to the flowspace
 | port 26 of switch 2
 ^
 | port 25
+---+ +----+
|vm3|-eth1<--->port12-|sw03|
+---+ +----+

Addresses for the demo in slice multisite1 ######

management 10.216.33.91 (in slice basic-slice)
multisitecontroller 10.216.33.109

vm3client1 10.216.33.113 192.168.0.1
vm3cache1 10.216.33.114 192.168.128.1
vm1server1 10.216.33.102 192.168.64.1
et2client1 10.216.9.21 192.168.0.2
et2cache1 10.216.9.31 192.168.128.2
et3server1 10.216.10.45 192.168.64.2
verclient1 10.216.12.179 192.168.0.3
vercache1 10.216.12.202 192.168.128.3
rodserver1 10.216.12.242 192.168.64.3

°°° °°°°°°°°°°
Installing the client on the ofelia testbed
°°° °°°°°°°°°°

apt-get install vlan

edit /etc/rc.local adding
sh /root/vlan_conf.sh
(before exit 0 !!)

vim /etc/rc.local

(previously the script was in other folders such as
sh /ofelia/users/stefanosalsano2/vlan_conf.sh)

vim vlan_conf.sh

Deliverable 9.3 OpenFlow in Europe – Linking Infrastructure and Applications - OFELIA

© OFELIA consortium 2010-2013 Page 33 of (46)

----------<start of file vlan_conf.sh>
#!/bin/bash
#uncomment following lines for all vm configuration
#cache server
#IP_ADDR="192.168.1.248"
#icn client
IP_ADDR="192.168.1.1"
#icn server
#IP_ADDR="192.168.1.8"
ETH="eth1"
VLAN="3001"

modprobe 8021q
vconfig add $ETH $VLAN
ip addr add $IP_ADDR/24 dev $ETH.$VLAN
ip link set $ETH up
ip link set $ETH.$VLAN up
----------<end of file vlan_conf.sh>

chmod +x vlan_conf.sh

--
apt-get update
apt-get install libpcap-dev

<--- DOWNLOAD FROM GIT REPOSITORY
cd /root
git clone https://github.com/StefanoSalsano/alien-o felia-conet-ccnx
cd alien-ofelia-conet-ccnx
--->

<--- DOWNLOAD FROM .tgz (DEPRECATED)
wget https://www.dropbox.com/s/5uqhwhexpkfowjm/ccnx 071-conet-20130510.tgz
tar zxvf ccnx071-conet-20130510.tgz
cd ccnx071-conet-20130510
--->

vim csrc/include/conet/conet.h

check these parameters and set them correctly
define CONET_IFNAME "eth1.16"
define CONET_VLAN_ID 200
check that IS_CLIENT is set

NEW VERSION
vim csrc/include/conet/conet.h
check these parameters and set them correctly
define CONET_VLAN_ID 200
check that IS_CLIENT is set

vim conet.conf
check these parameters and set them correctly
if_name = eth1.16

./mymake

if there is an error in /root/alien-ofelia-conet-cc nx/javasrc
cd /root/alien-ofelia-conet-ccnx/javasrc
make -d
if it complains that ../csrc/conf.mk is older than Makefile
just do touch ../csrc/conf.mk

if it exits without apparant reasons (may be compil ing javasrc folder)... it could be that memory is
over
check with top in a second shell if the memory goes 100% during compilation
check with swapon -s if you have swap space
follow instructions at http://www.thegeekstuff.com/ 2010/08/how-to-add-swap-space/ to add swap space
dd if=/dev/zero of=/root/myswapfile bs=1M count=1 024
chmod 600 /root/myswapfile
mkswap /root/myswapfile
swapon /root/myswapfile

when installing from .tgz there is a problem with s ymbolic links in ccnx071-conet/apps

cd ccnx071-conet/apps
I have manually deleted the file ccnx071-conet/apps /include
rm include

OFELIA – OpenFlow in Europe – Linking Infrastructure and Applications Deliverable 9.3

Page 34 of (46) © OFELIA consortium 2010-2013

ln -s ../csrc/generic.mk generic.mk
ln -s ../csrc/conf.mk conf.mk
ln -s ../csrc/subr.mk subr.mk

./mymake

if there are problems, please check also CCNx libra ry prerequisite at
https://www.ccnx.org/wiki/CCNx/InstallingCCNx

you may want to change .bashrc for root so that it changes dir to
/root/alien-ofelia-conet-ccnx

vim /root/.bashrc
add the following line:
cd /root/alien-ofelia-conet-ccnx

in order to simplify the startup of remote console we allowed su without password for any needed
username:
* first time on a new machine

groupadd nopw && usermod -a -G nopw username (repl ace with your username!!!)

then edit /etc/pam.d/su
vim /etc/pam.d/su

Uncomment this if you want wheel members to be ab le to
su without a password
auth sufficient pam_wheel.so trust
auth sufficient pam_wheel.so group=nopw root_ only trust

(no need to reboot!)

* adding a new user to a machine that has already b een configured
usermod -a -G nopw username (replace with your use rname!!!)

<--
(optional) running X applications
installl kate (graphical text editor): apt-get inst all kate
when asked about overridind your pam.d config file you can answer yes
but then check that /etc/pam.d/su includes the chan ge made above

ssh -X utente@remote_IP
$ xauth list $DISPLAY
$ xauth list
You'll get something like
somehost.somedomain:10 mit-magic-cookie-1 4d22408a7 1a55b41ccd1657d377923ae

Then, after having done su just copy'n-paste the ou tput of the above 'xauth list' onto 'xauth add'
$ su
xauth add somehost.somedomain:10 MIT-MAGIC-COOKIE -1 4d22408a71a55b41ccd1657d377923ae

kate &
-->

SNMP on the managed side:

apt-get install snmpd

(http://www.debianhelp.co.uk/snmp.htm)

in order to allow snmp monitoring on interfaces (fo r icn_server icn_client cache_server) modify
/etc/snmp/snmpd.conf as follows
#agentAddress udp:127.0.0.1:161
agentAddress udp:161

#rocommunity public localhost
#rocommunity public default -V systemonly
rocommunity public 10.216.0.0/16
/etc/init.d/snmpd restart

test with :

Deliverable 9.3 OpenFlow in Europe – Linking Infrastructure and Applications - OFELIA

© OFELIA consortium 2010-2013 Page 35 of (46)

#snmpwalk IP_ADDRESS -c public -v1
as this does not work:
#snmpwalk localhost -c public -v1

modify /etc/snmp/snmp.conf as follows
loaging them by commenting out the following line .
#mibs :

Install Nagios Plugin and nrpe Installation of NRPE (Nagios Remote Plugin Executor), follow
instruction on http://www.howtoforge.com/icinga-mon itoring-solution-installation-and-configuration-
on-centos-p2
Installing Nagios Plugin and nrpe in Ubuntu 192.168 .1.40

hint: cd /root before downloading with wget the Nag ios plugin and the nrpe

pay attention at this command: apt-get install open ssl libssl-dev (add a blank space between openssl
and libssl
./configure is missing before make all
you have to add user nagios with password nagios201 2 before launching make install-plugin

tar -zxvf nrpe-2.12.tar.gz
cd nrpe-2.12/
apt-get install openssl libssl-dev
./configure
make all

#adduser nagios

make install-plugin
make install-daemon
make install-daemon-config
apt-get install xinetd
make install-xinetd

°°° °°°°°°°°°°
Run the icn client
°°° °°°°°°°°°°
check if ccn is running
ps ax | grep ccn

kill -9 <pid of ccnd>

cd /root/alien-ofelia-conet-ccnx
./startclient_loop

°°° °°°°°°°°°°
Installing the icn server
°°° °°°°°°°°°°

repeat the same steps as above for the client
check for the correct eth interface !!

°°° °°°°°°°°°°
Run the icn server
°°° °°°°°°°°°°
check if ccn is running
ps ax | grep ccn

kill -9 <pid of ccnd>

cd /root/alien-ofelia-conet-ccnx
./singleserver

verify that the ccn is running
ps ax | grep ccn

°°° °°°°°°°°°°
Installing a cache server
°°° °°°°°°°°°°

you may want to change .bashrc for root so that it changes dir to
/root/alien-ofelia-conet-ccnx/cache_server/

vim /root/.bashrc
add the following line:

OFELIA – OpenFlow in Europe – Linking Infrastructure and Applications Deliverable 9.3

Page 36 of (46) © OFELIA consortium 2010-2013

cd /root/alien-ofelia-conet-ccnx/cache_server/

in order to simplify the startup of remote console we allowed su without password for any needed
username:
* first time on a new machine

groupadd nopw && usermod -a -G nopw username (re place with your username!!!)

then edit /etc/pam.d/su
vim /etc/pam.d/su

Uncomment this if you want wheel members to be ab le to
su without a password
auth sufficient pam_wheel.so trust
auth sufficient pam_wheel.so group=nopw root_ only trust

(no need to reboot!)

apt-get update

install and configure VLANs as for client
CAREFULLY CHECK VLAN IS, AP ADDRESS AND INTERFACE N AME TO BE USED

apt-get install vlan

edit /etc/rc.local adding
sh /root/vlan_conf.sh

vim /etc/rc.local

(previously the script was in other folders such as
sh /ofelia/users/stefanosalsano2/vlan_conf.sh)

vim vlan_conf.sh

----------<start of file vlan_conf.sh>
#!/bin/bash
#uncomment following lines for all vm configuration
#cache server
IP_ADDR="192.168.1.218"
#icn client
#IP_ADDR="192.168.1.1"
#icn server
#IP_ADDR="192.168.1.8"
ETH="eth1"
VLAN="16"

modprobe 8021q
vconfig add $ETH $VLAN
ip addr add $IP_ADDR/24 dev $ETH.$VLAN
ip link set $ETH up
ip link set $ETH.$VLAN up
----------<end of file vlan_conf.sh>

chmod +x vlan_conf.sh

apt-get install libpcap-dev

<--- DOWNLOAD FROM GIT REPOSITORY
cd /root
git clone https://github.com/StefanoSalsano/alien-o felia-conet-ccnx
cd alien-ofelia-conet-ccnx
./configure
--->

<--- DOWNLOAD FROM .tgz (DEPRECATED)
wget https://www.dropbox.com/s/5uqhwhexpkfowjm/ccnx 071-conet-20130510.tgz
tar zxvf ccnx071-conet-20130510.tgz
cd ccnx071-conet-20130510
--->

vim csrc/include/conet/conet.h

check these parameters and set them correctly
define CONET_VLAN_ID 200
check that IS_CACHE_SERVER is set

Deliverable 9.3 OpenFlow in Europe – Linking Infrastructure and Applications - OFELIA

© OFELIA consortium 2010-2013 Page 37 of (46)

vim cache_server/conet.conf

cd cacheServer
./make_all.sh

if there is an error in /root/alien-ofelia-conet-cc nx/javasrc
cd /root/alien-ofelia-conet-ccnx/javasrc
make -d
if it complains that ../csrc/conf.mk is older than Makefile
just do touch ../csrc/conf.mk

apt-get install valgrind
(valgrind is a C debug tool)

edit
vim /root/alien-ofelia-conet-ccnx/cache_server/go_l istener.sh

replace the IP and Mac address of the cache server (not the one on eth0, the one on the interface
ethx.YY)
(they need to be consistent with conetcontroller.co nf in the controller)

(Note that the go_listener.sh script changes the LD _LIBRARY_PATH in order to dynamically load some
libraries)

install snmp on cache server
see SNMP on the managed side: for the icn client

°°° °°°°°°°°°°
Run the cache server
°°° °°°°°°°°°°
cd /root/alien-ofelia-conet-ccnx/cache_server
./go_listener.sh

°°° °°°°°°°°°°
Installing the controller
°°° °°°°°°°°°°

currently we have two development versions of the c ontroller:
the first version does not include the floodlight s ources (floodlight is included as a jar)
the second version includes the floodlight sources

VERSION ONE - NOT INCLUDING FLOODLIGHT SOURCES
cd root
git clone https://github.com/StefanoSalsano/alien -ofelia-controller
cd alien-ofelia-controller
make all

edit conetcontroller.conf
change VLAN_ID

./start.sh (this will start in background and wit h no output)

if needed stop.sh, restart.sh are available

you can launch interactively the controller as foll ows
java -cp lib/conetcontroller.jar:lib/conet.jar:lib/ json-simple-1.1.1.jar:lib/floodlight.jar
net.floodlightcontroller.core.Main

VERSION TWO - INCLUDING FLOODLIGHT SOURCES
your-homedir$ git clone https://github.com/StefanoS alsano/my-floodlight/
your-homedir$ cd my-floodlight
my-floodlight$ git checkout 0.90

in order to compile it
my-floodlight$ ant

edit conetcontroller.conf
change VLAN_ID

OFELIA – OpenFlow in Europe – Linking Infrastructure and Applications Deliverable 9.3

Page 38 of (46) © OFELIA consortium 2010-2013

in order to run it:
my-floodlight$ java -jar target/floodlight.jar

check if controller is running
 * ps ax | grep java

look at controller output log in in real time
VERSION ONE - NOT INCLUDING FLOODLIGHT SOURCES
 * # tail -f /root/alien-ofelia-controller/log/co netcontroller.log
VERSION TWO - INCLUDING FLOODLIGHT SOURCES
 * # tail -f /root/my-floodlight/log/conetcontrol ler.log

if you are setting up eclipse in your development m achine
follow the instructions for Setting up eclipse in
http://www.openflowhub.org/display/floodlightcontro ller/Installation+Guide

your-homedir$ cd my-floodlight
ant eclipse

°°° °°°°°°°°°°
Installing the management server
°°° °°°°°°°°°°
NB see also "Running the management server after a reboot" below

apt-get install snmp scli tkmib
apt-get install snmpd

apt-get install snmp-mibs-downloader

*** *
icinga installation

(NB the main reason to have icinga is to have the p lugin that periodically checks the controller for
the number of cached items)

install icinga
first install xammp
http://prnawa.wordpress.com/2012/01/15/how-to-run-x ampp-on-64-bit-linux/
apt-get install ia32-libs

http://www.howtoforge.com/icinga-monitoring-solutio n-installation-and-configuration-on-centos
pay attention with copy paste because hyphen '-' ma y be copied as a different char

I used icinga 1.7.4 rather then 1.2.1

#cd /root
#wget http://sourceforge.net/projects/icinga/files/ icinga/1.7.4/icinga-1.7.4.tar.gz/download
#mv download icinga-1.7.4.tar.gz
#tar zxvf icinga-1.7.4.tar.gz
#cd icinga-1.7.4
./configure --prefix=/opt/icinga --with-icinga-us er=daemon --with-icinga-group=daemon --with-
httpd-conf=/opt/lampp/etc

Note: please make sure you do not get any error whi le compiling. If you are getting errors make sure
the required packages are installed.

FROM http://docs.icinga.org/1.7/en/quickstart-icing a.html
 #> apt-get install apache2 build-essential libgd2- xpm-dev
 #> apt-get install libjpeg62 libjpeg62-dev libpng1 2 libpng12-dev
 #> apt-get install snmp libsnmp5-dev
BUT MAYBE NOT ALL ARE NEEDED AS WE ALREADY HAVE XAMPP

you may try without and you will likely find this a s output of the configure command:
--- ---------
*** GD, PNG, and/or JPEG libraries could not be loc ated... *********

Boutell's GD library is required to compile the sta tusmap, trends
and histogram CGIs. Get it from http://www.boutell .com/gd/, compile

Deliverable 9.3 OpenFlow in Europe – Linking Infrastructure and Applications - OFELIA

© OFELIA consortium 2010-2013 Page 39 of (46)

it, and use the --with-gd-lib and --with-gd-inc arg uments to specify
the locations of the GD library and include files.

NOTE: In addition to the gd-devel library, you'll a lso need to make
 sure you have the png-devel and jpeg-devel li braries installed
 on your system.

NOTE: After you install the necessary libraries on your system:
 1. Make sure /etc/ld.so.conf has an entry for the directory in
 which the GD, PNG, and JPEG libraries are installed.
 2. Run 'ldconfig' to update the run-time link er options.
 3. Run 'make clean' in the Icinga distributio n to clean out
 any old references to your previous compil e.
 4. Rerun the configure script.

NOTE: If you can't get the configure script to reco gnize the GD libs
 on your system, get over it and move on to ot her things. The
 CGIs that use the GD libs are just a small pa rt of the entire
 Icinga package. Get everything else working first and then
 revisit the problem. Make sure to check the icinga-users
 mailing list archives for possible solutions to GD library
 problems when you resume your troubleshooting .
--- ---------

I did not compile the source from http://www.boutel l.com/gd/, rather I followed the guide at
http://www.unix.com/unix-linux-applications/128614- gd-installation-guide-asking.html Debian/Ubuntu:
#apt-get install libgd2-xpm
To get the development package: Debian/Ubuntu:
#apt-get install libgd2-xpm-dev
To get the PHP package: Debian/Ubuntu:
#apt-get install php5-gd

make all
make install
make install-init
make install-config
make install-commandmode
make install-webconf

cd /opt/lampp/etc/
vim /opt/lampp/etc/httpd.conf
add at the end: Include etc/icinga.conf

chmod 777 /opt/
chmod 777 /opt/icinga/
chmod 777 /opt/icinga/var/
chmod 777 /opt/icinga/var/rw/
chmod 777 /opt/icinga/var/rw/icinga.cmd

#cd /opt/lampp/bin
#/opt/lampp/bin/htpasswd -c /opt/icinga/etc/htpassw d.users icingaadmin

check configuration before launching
#/opt/icinga/bin/icinga -v /opt/icinga/etc/icinga.c fg

(it will check the default configuration)

launch icinga in the default configuration (later w e will install our configuration files and will
restart icinga)
#/opt/icinga/bin/icinga -d /opt/icinga/etc/icinga.c fg

xampp splash page
http://ip-address

icinga home page
http://ip-address/icinga
login icingaadmin

setup of mrtg and mrtg-rrd

mrtg: apt-get install mrtg
(answer NO to have the file readable by mrtg-rrd)

apt-get install mrtg-rrd
apt-get install librrds-perl
apt-get install rrdtool

OFELIA – OpenFlow in Europe – Linking Infrastructure and Applications Deliverable 9.3

Page 40 of (46) © OFELIA consortium 2010-2013

configuring mrtg
create folder /home/mrtg/cfg/ as root

mrtg.cfg sample files are available on dropbox
barcelona: https://www.dropbox.com/s/whugvusqvaj1kx 9/mrtg-i2cat.cfg
trento: wget https://www.dropbox.com/s/25p05ueot4qu mat/mrtg-trento.cfg
to be renamed after download:
mv mrtg-trento.cfg mrtg.cfg
mv mrtg-i2cat.cfg mrtg.cfg

copy it into folder /home/mrtg/cfg/
edit for all the different interfaces (very tedious ...)

the Target keyword you tell mrtg what it should mon itor. The Target keyword takes arguments in a
wide range of formats:
We are using interfaces by IP:
Target[10.216.12.86_10.216.12.86]: /10.216.12.86:pu blic@10.216.12.86:

or we are using interfaces by port index: Targe t[icnclient_eth1]: 3:public@10.216.33.56:

see http://oss.oetiker.ch/mrtg/doc/mrtg-reference.e n.html (target configuration)

in order to check the interface numbers run from th e management server
snmpwalk 10.216.12.84 -c public -v1 | grep ifName
snmpwalk 10.216.33.113 -c public -v1 | grep ifName

with the IP address of the monitored node

RUNNING MRTG
#kill mrtg if it is running ps ax | grep mrtg
#/usr/bin/mrtg --user=nobody --group=nogroup /home/ mrtg/cfg/mrtg.cfg

--- --------------------
ERROR: Mrtg will most likely not work properly when the environment
 variable LANG is set to UTF-8. Please run mr tg in an environment
 where this is not the case. Try the followin g command to start:

#env LANG=C /usr/bin/mrtg --user=nobody --group=nog roup /home/mrtg/cfg/mrtg.cfg
--- --------------------

cd /var/lock
mkdir mrtg
chown -R nobody:nogroup mrtg

cd /opt/lampp/htdocs/
mkdir mrtg
chown -R nobody:nogroup mrtg

cd /home/
chown -R nobody:nogroup mrtg

cd /var/lib
chown -R nobody:nogroup mrtg

move the mrtg icons in the right folder
cp /usr/share/mrtg/*.png /opt/lampp/htdocs/mrtg/

edit /etc/mrtg-rrd.conf and replace the existing fi le with /home/mrtg/cfg/mrtg.cfg

copy the cgi bin
copy /usr/lib/cgi-bin/mrtg-rrd.cgi into /opt/lampp/ cgi-bin/
cp /usr/lib/cgi-bin/mrtg-rrd.cgi /opt/lampp/cgi-bin /

test with
http://10.216.12.85/cgi-bin/mrtg-rrd.cgi/ (barcell ona)
http://10.216.33.91/cgi-bin/mrtg-rrd.cgi/ (trento)

#cd /opt/lampp/cgi-bin/
(only if updating:)#rm mrtg-rrd2.cgi
#wget https://www.dropbox.com/s/nu8nm8ebh3f4l0e/mrt g-rrd2.cgi
#chmod +x mrtg-rrd2.cgi

set up the configuration for i2cat or trento
#vim mrtg-rrd2.cgi
my $global_conf = "i2cat";
#my $global_conf = "trento";

Deliverable 9.3 OpenFlow in Europe – Linking Infrastructure and Applications - OFELIA

© OFELIA consortium 2010-2013 Page 41 of (46)

------> perl module prerequisite for myrrd.pl
#mkdir /root/perl
#cd /root/perl

search WWW::Curl::Easy on http://search.cpan.org/

#wget http://search.cpan.org/CPAN/authors/id/S/SZ/S ZBALINT/WWW-Curl-4.15.tar.gz
#tar zxvf WWW-Curl-4.15.tar.gz
#cd WWW-Curl-4.15

apt-get install libcurl4-gnutls-dev

#perl Makefile.PL
#make
#make test
#make install

search common::sense on http://search.cpan.org/
#wget http://search.cpan.org/CPAN/authors/id/M/ML/M LEHMANN/common-sense-3.72.tar.gz
#tar zxvf common-sense-3.72.tar.gz
#cd common-sense-3.72
#perl Makefile.PL
#make
#make test
#make install

search JSON-XS on http://search.cpan.org/
#wget http://search.cpan.org/CPAN/authors/id/M/ML/M LEHMANN/JSON-XS-2.34.tar.gz
#tar zxvf JSON-XS-2.34.tar.gz
#cd JSON-XS-2.34
#perl Makefile.PL
#make
#make test
#make install

#mkdir /home/daemon/
#mkdir /home/daemon/myscripts
#cd /home/daemon/myscripts
#wget https://www.dropbox.com/s/k4nj6e7oyfe1ybr/myr rd.pl
#chmod +x myrrd.pl ; chown -R daemon:daemon /home/d aemon

#vim myrrd.pl
change configuration for i2cat / trento

#mkdir /opt/lampp/htdocs/mrtg/controller_
#chown nobody:nogroup /opt/lampp/htdocs/mrtg/contro ller_
#chmod 777 /opt/lampp/htdocs/mrtg/controller_
#chmod 777 /opt/lampp/htdocs/mrtg

the cached item RRD file needs to be manually creat ed
#/home/daemon/myscripts/myrrd.pl -i 10 -create /opt /lampp/htdocs/mrtg/controller_/cacheditems.rrd
#chown nobody:nogroup /opt/lampp/htdocs/mrtg/contro ller_/cacheditems.rrd
#chmod 777 /opt/lampp/htdocs/mrtg/controller_/cache ditems.rrd

in the management server 10.216.12.85 we also have
#mkdir /opt/lampp/htdocs/mrtg/controller255_
#chown nobody:nogroup /opt/lampp/htdocs/mrtg/contro ller255_
#chmod 777 /opt/lampp/htdocs/mrtg/controller255_
#chmod 777 /opt/lampp/htdocs/mrtg
#/home/daemon/myscripts/myrrd.pl -i 10 -create /opt /lampp/htdocs/mrtg/controller255_/cacheditems.rrd
#chown nobody:nogroup /opt/lampp/htdocs/mrtg/contro ller255_/cacheditems.rrd
#chmod 777 /opt/lampp/htdocs/mrtg/controller255_/ca cheditems.rrd

mkdir multisite
cd multisite
mkdir 02.08.02.08.00.00.00.03
mkdir 02.00.00.00.00.00.00.01
mkdir 00.10.00.00.00.00.00.01

mkdir multi12cat
cd multi12cat
mkdir 02.00.00.00.00.00.00.01

OFELIA – OpenFlow in Europe – Linking Infrastructure and Applications Deliverable 9.3

Page 42 of (46) © OFELIA consortium 2010-2013

...

mkdir i2cat
cd i2cat
mkdir 00.10.00.00.00.00.00.01
...

/home/daemon/myscripts/myrrd.pl -i 10 -create
/opt/lampp/htdocs/mrtg/multisite/02.08.02.08.00.00. 00.03/cacheditems.rrd
/home/daemon/myscripts/myrrd.pl -i 10 -create
/opt/lampp/htdocs/mrtg/multisite/02.00.00.00.00.00. 00.01/cacheditems.rrd
/home/daemon/myscripts/myrrd.pl -i 10 -create
/opt/lampp/htdocs/mrtg/multisite/00.10.00.00.00.00. 00.01/cacheditems.rrd

/home/daemon/myscripts/myrrd.pl -i 10 -create
/opt/lampp/htdocs/mrtg/multi12cat/02.00.00.00.00.00 .00.01/cacheditems.rrd
/home/daemon/myscripts/myrrd.pl -i 10 -create
/opt/lampp/htdocs/mrtg/multi12cat/00.10.00.00.00.00 .00.01/cacheditems.rrd

/home/daemon/myscripts/myrrd.pl -i 10 -create
/opt/lampp/htdocs/mrtg/i2cat/00.10.00.00.00.00.00.0 1/cacheditems.rrd
/home/daemon/myscripts/myrrd.pl -i 10 -create
/opt/lampp/htdocs/mrtg/i2cat/00.10.00.00.00.00.00.0 3/cacheditems.rrd

chown -R nobody:nogroup multisite
chmod -R 777 multisite
chown -R nobody:nogroup multi12cat
chmod -R 777 multi12cat
chown -R nobody:nogroup i2cat
chmod -R 777 i2cat

 $switch_human_readable{'02.08.02.08.00.00.00.03'} = "CN-03, cache enabled";
 $switch_human_readable{'02.08.02.08.00.00.00.01'} = "CN-01, no cache";
 $switch_human_readable{'02.00.00.00.00.00.00.01'} = "ETH-01, cache enabled";
 $switch_human_readable{'02.00.00.00.00.00.00.03'} = "ETH-03, no cache";
 $switch_human_readable{'00.10.00.00.00.00.00.01'} = "i2C-01, cache enabled";
 $switch_human_readable{'00.10.00.00.00.00.00.03'} = "i2c-03, no cache";
 $switch_human_readable{'01.00.00.00.00.00.00.ff'} = "iM-01, no cache";

now copy the images
#cd /opt/icinga/share/images/
#wget https://www.dropbox.com/s/wcp0hhb1eyspb9a/cni t-logo.png
#wget https://www.dropbox.com/s/7fnnwua8o0shnjr/ofe lia-logo.png

test with
http://10.216.12.85/cgi-bin/mrtg-rrd2.cgi/ (barcel lona)
http://10.216.33.91/cgi-bin/mrtg-rrd2.cgi/ (trento)

if mrtg.cfg is changed or if something is not worki ng well, the solution is to stop mrtg, delete the
.rrd files (e.g. in /opt/lampp/htdocs/mrtg/cacheser ver_)
and then restart mrtg

set up the experiment control page

search HTML::QuickTable on http://search.cpan.org/

#cd /root/perl
wget http://search.cpan.org/CPAN/authors/id/N/NW/ NWIGER/HTML-QuickTable-1.12.tar.gz
#tar zxvf HTML-QuickTable-1.12.tar.gz
cd HTML-QuickTable-1.12

#cd /opt/lampp/cgi-bin/
(only if updating:) #rm icn_experim.cgi
#wget https://www.dropbox.com/s/01okpfcqlmz1zty/icn _experim.cgi
#chmod +x icn_experim.cgi

set up the configuration for i2cat or trento
#vim icn_experim.cgi
my $global_conf = "i2cat";
#my $global_conf = "trento";

test with

Deliverable 9.3 OpenFlow in Europe – Linking Infrastructure and Applications - OFELIA

© OFELIA consortium 2010-2013 Page 43 of (46)

http://10.216.12.85/cgi-bin/icn_experim.cgi/ (barc ellona)
http://10.216.33.91/cgi-bin/icn_experim.cgi/ (tren to)

if there are problems, one can test it on the shell
#perl icn_experim.cgi

icinga cfg files

#cd /opt/icinga/etc/

for i2cat
#wget https://www.dropbox.com/s/ub7tuy64rhdj8ap/ici nga-cfg-files-i2cat.tar
#tar xvf icinga-cfg-files-i2cat.tar

for trento
#wget https://www.dropbox.com/s/jdr1d221co0km3f/ici nga-cfgfiles-trento.tar

NB the address of the ICN capable switch is coded i n the /opt/icinga/etc/objects/controller.cfg

00:10:00:00:00:00:00:05 for i2cat
02:08:02:08:00:00:00:02 for trento

if you need to recreate a tar file from all the use ful cfg file:
#cd /opt/icinga/etc/
#tar -cvf cfgfiles.tar icinga.cfg objects/cache_ser ver.cfg objects/icn_client.cfg
objects/icn_server.cfg objects/controller.cfg objec ts/localhost.cfg objects/switch.cfg
objects/commands.cfg

create the link to the script that updates the cach ed item value in the .rrd file:

#ln -s /home/daemon/myscripts/myrrd.pl /opt/icinga/ libexec/check_cached_items
#cd /opt/icinga/libexec/

--
 we added a (perl) plugin to perform monitoring of cached items in the controller and writing
results in the RRD database, it is /home/daemon/mys cripts/myrrd.pl (it was already used above to
create the .rrd file)

in cfg_file=/opt/icinga/etc/objects/commands.cfg we added

'check_cached_items' command definition
it is used to retrieve the number of cached items from the controller using RESTful interface
and to write the data in the RRD database
define command{
 command_name check_cached_items
 command_line $USER1$/check_cached_items -H $HOSTADDRESS$ -s $ARG1$ $ARG2$
 }

then we made a simbolic link from /opt/icinga/libex ec/check_cached_items to
/home/daemon/myscripts/myrrd.pl
(after doing su daemon, as the link should be owned by daemon:daemon)

-H $HOSTADDRESS$ works because this is executed in the context of the scripts related to a specific
host
under the icinga control
the definition of the address within /home/daemon/m yscripts/myrrd.pl is overrided by this command
line parameter

command line to execute the plugin if you want to t est it (should do it with the same user as
icinga, i.e. daemon)

su daemon
#/opt/icinga/libexec/check_cached_items -H 10.216.3 3.109 -v -s all multisite
#/opt/icinga/libexec/check_cached_items -H 10.216.1 2.255 -v -s all multi12cat
#/opt/icinga/libexec/check_cached_items -H 10.216.1 2.88 -v -s all i2cat

in the management server 10.216.33.91 we added the following service definition
in /opt/icinga/etc/objects/controller.cfg

Define a service to check the number of cached it ems
define service{
 use local-servi ce ; Name of service template to use
 host_name controller

OFELIA – OpenFlow in Europe – Linking Infrastructure and Applications Deliverable 9.3

Page 44 of (46) © OFELIA consortium 2010-2013

 service_description CACHED_ITEM S
 check_command check_cache d_items!all!multisite
 }

in the management server 10.216.12.85 we have
/opt/icinga/etc/objects/controller.cfg
check_command check_cached_items! all!i2cat
/opt/icinga/etc/objects/controller255.cfg
check_command check_cached_items! all!multi12cat

/opt/icinga/etc/objects/controller255.cfg needs to be added in /opt/icinga/etc/icinga.cfg

 --- -

(NB the configuration file consider the use of icin ga embedded perl interpreter
http://docs.icinga.org/latest/en/embeddedperl.html
which has not been included in the configure before make, but no problem for now)

check configuration before launching
#/opt/icinga/bin/icinga -v /opt/icinga/etc/icinga.c fg

launch icinga
#/opt/icinga/bin/icinga -d /opt/icinga/etc/icinga.c fg

in case of icinga problems, have a look at the log file
#tail -200 /opt/icinga/var/icinga.log | more

°°° °°°°°°°°°°
Running the management server after a reboot
°°° °°°°°°°°°°
i've tried to disable automatic restarting of apach e
sudo update-rc.d -f apache2 remove
not sure if it worked

manually restarting:
su
check if apache is running
#ps ax | grep apache
if apache is running, stop it
#apachectl -k stop

start xampp
#/opt/lampp/lampp start
check that lampp is running
#ps ax | grep lampp

run icinga
/opt/icinga/bin/icinga -d /opt/icinga/etc/icinga. cfg
check that icinga is running
#ps aux | grep icinga

check if mrtg is running
ps aux | grep mrtg

in order to kill mrtg
kill -9 `cat /home/mrtg/cfg/mrtg.pid`

in any case, before starting mrtg, check that there are no lock files
#cat /home/mrtg/cfg/mrtg.pid
if present, delete it
#rm /home/mrtg/cfg/mrtg.pid

check also this folder
#ls /var/lock/mrtg
if there is any file, delete it
#rm /var/lock/mrtg/*

run mrtg
#/usr/bin/mrtg --user=nobody --group=nogroup /home/ mrtg/cfg/mrtg.cfg --logging
/home/mrtg/logs/mrtg.log
check that mrtg is running
#ps aux | grep mrtg

Deliverable 9.3 OpenFlow in Europe – Linking Infrastructure and Applications - OFELIA

© OFELIA consortium 2010-2013 Page 45 of (46)

if you get this error
ERROR: Mrtg will most likely not work properly when the environment
 variable LANG is set to UTF-8. Please run mr tg in an environment
 where this is not the case. Try the followin g command to start:

env LANG=C /usr/bin/mrtg --user=nobody --group=no group /home/mrtg/cfg/mrtg.cfg --logging
/home/mrtg/logs/mrtg.log

if mrtg does not start it may go in "out of memory" , this is logged in the dmesg
in this case, try to delete all RRD files like
#rm /opt/lampp/htdocs/mrtg/icnserver_/*.rrd
#rm /opt/lampp/htdocs/mrtg/controller_/*.rrd
#rm /opt/lampp/htdocs/mrtg/icnclient_/*.rrd
#rm /opt/lampp/htdocs/mrtg/cacheserver_/*.rrd

--- -------------------
installing floodlight
apt-get update
apt-get install build-essential default-jdk ant p ython-dev

$ git clone git://github.com/floodlight/floodlight. git
$ cd floodlight
$ ant
DOES NOT WORK !!

wget http://floodlight.openflowhub.org/files/floo dlight-source-0.90.tar.gz
tar zxvf floodlight-source-0.90.tar.gz
cd floodlight-source-0.90
ant
java -jar target/floodlight.jar

--- -------------------

http://www.openflowhub.org/display/floodlightcontro ller/Installation+Guide

setting up the floodlight on eclipse including the conet module

copy src/local and src/org into floodlight src fold er

copy lib/json-simple-1.1.1.jar and lib/conet.jar in to floodlight lib folder and add them to build
path

edit src/main/resources/floodlightdefault.propertie s

floodlight.modules = net.floodlightcontroller.stati cflowentry.StaticFlowEntryPusher,\
net.floodlightcontroller.jython.JythonDebugInterfac e,\
net.floodlightcontroller.counter.CounterStore,\
net.floodlightcontroller.perfmon.PktInProcessingTim e,\
net.floodlightcontroller.topology.TopologyManager,\
net.floodlightcontroller.linkdiscovery.internal.Lin kDiscoveryManager,\
net.floodlightcontroller.devicemanager.internal.Dev iceManagerImpl,\
local.conet.ConetModule

edit src/main/resources/META-INF/services/net.flood lightcontroller.core.module.IFloodlightModule

and remove these two lines
net.floodlightcontroller.core.test.MockFloodlightPr ovider
net.floodlightcontroller.core.test.MockThreadPoolSe rvice

create log folder in floodlight base folder
copy conetcontroller.conf in floodlight base folder

Addresses for the multi site demo create net ##

+-- -----------------------+
| host | control IP | experim. I P | server |
|multisitecontroller | 10.216.33.109| | create-net vm3 |
+-- -----------------------+

exp VLAN 3001

OFELIA – OpenFlow in Europe – Linking Infrastructure and Applications Deliverable 9.3

Page 46 of (46) © OFELIA consortium 2010-2013

http://10.216.33.109:8080/ui/index.html
(WEB GUI not working)

*** ******************************
vm1server1 10.216.33.102 192.168.64.1
vm3client1 10.216.33.113 192.168.0.1
vm3cache1 10.216.33.114 192.168.128.1
et3server1 10.216.10.45 192.168.64.2
et2client1 10.216.9.21 192.168.0.2
et2cache1 10.216.9.31 192.168.128.2
rodserver1 10.216.12.242 192.168.64.3
verclient1 10.216.12.179 192.168.0.3
vercache1 10.216.12.202 192.168.128.3

switches datapath

02:08:02:08:00:00:00:01 CN-01
02:08:02:08:00:00:00:03 CN-03
01:00:00:00:00:00:00:ff iminds
02:00:00:00:00:00:00:01 ETHZ-01
02:00:00:00:00:00:00:03 ETHZ-03
00:10:00:00:00:00:00:01 i2C-01
00:10:00:00:00:00:00:03 i2C-03

Addresses for the multi site demo i2cat ##

*** ******************************
msi2c_et3server1 10.216.10.31 192.168.64.2 02:0 2:31:11:11:6c
msi2c_et2client1 10.216.9.38 192.168.0.2 02:0 2:21:11:11:81
msi2c_et2cache1 10.216.9.37 192.168.128.2 02:0 2:21:11:11:7e
msi2c_rodserver1 10.216.12.116 192.168.64.3 02:0 3:00:00:01:12
msi2c_verclient1 10.216.13.1 192.168.0.3 02:0 3:00:00:02:b9
msi2c_vercache1 10.216.13.0 192.168.128.3 02:0 3:00:00:02:b6

switches datapath

01:00:00:00:00:00:00:ff iminds
02:00:00:00:00:00:00:01 ETHZ-01
02:00:00:00:00:00:00:03 ETHZ-03
00:10:00:00:00:00:00:01 i2C-01
00:10:00:00:00:00:00:03 i2C-03

