

OpenLab – D3.10, page 1 of 34

SEVENTH FRAMEWORK PROGRAMME

Theme 3

Information and Communication Technologies

Deliverable D3.10

EXPRESS final architecture and design,

evaluation plan

Grant Agreement number: 287581

Project acronym: OpenLab

Project title: OpenLab: Extending FIRE testbeds and tools

Funding Scheme: Large scale integrating project (I P)

Project website address: www.ict-openlab.eu

Date of preparation of deliverable: 21/02/2014

Project co-funded by the European Commission within the Seventh Framework Programme (2007-

2013)
Dissemination Level
PU Public X
PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission

CO
Confidential, only for members of the consortium (including the Commission

Services)

OpenLab – D3.10, page 2 of 34

Document properties

Document responsible: Stefano Salsano (CNIT)

Author(s)/editor(s): Stefano Salsano (editor), Nicola Blefari-Melazzi, Giuseppe
Bianchi, Luca Veltri, Andrea Detti, Claudio Pisa, Giuseppe
Siracusano, Fabio Patriarca, Federico Griscioli

All authors are affiliated to CNIT

Version: 1.0

Abstract:

The main objective of EXPRESS is designing an innovative, resilient SDN system capable to extend

the SDN applicability domain from fixed networks to intermittently connected network, like wireless

mesh networks. The EXPRESS solution will be implemented and then deployed in an experiment

involving the three OpenLab testbeds NITOS, W-iLab.t and PlanetLab Europe.

In this document we provide the final architecture and the evaluation plan. This documents extends

and refines the high level description of the solution that was provided in deliverable D3.9.

EXPRESS uses an SDN approach based on the OpenFlow protocol for the controller-to-switch

communication. EXPRESS relies on OLSR distributed routing protocol to setup the control plane for

the controller-to-switch communication. A distributed controller solution based on a hierarchy of

controllers is designed, capable to handle network partitioning and merging. On the data plane, the

SDN/OpenFlow approach is capable to support advanced routing strategies, going beyond the

shortest-path routing provided by OLSR.

As for the evaluation, the W-iLab.t and NITOS testbeds will host the wireless mesh nodes and the

local controllers, PlanetLab Europe will provide a layer 2 overlay based interconnection of the

wireless mesh networks and may host the centralized controller.

OpenLab – D3.10, page 3 of 34

Table of Contents

Table of Contents 3

1 Introduction....................................... ... 4

2 Final architecture 5

2.1 Overall architecture .. 5

2.2 Detailed design of networking and of WMR node internals ... 8

3 Controller distribution architecture 13

3.1 An example of the controller distribution approach .. 16

4 Evaluation plan 18

4.1 Testbed interconnection aspects. .. 18

5 Conclusion 20

6 References 21

7 APPENDIX A: Details on testbed interconnection and related tools 22

7.1 Existing solution for L2 overlays on Planet Lab Europe .. 22

7.2 Connection to an external testbed: scenario and requirements 22

7.3 Proposed solution .. 23

7.4 Creation of a Tunnel between PlanetLabEurope and an external node behind NAT 28

7.5 Details on the tools... 31

OpenLab – D3.10, page 4 of 34

1 Introduction

The main objective of EXPRESS (EXPerimenting and Researching Evolutions of Software-defined

networking over federated test-bedS) is designing an innovative, resilient SDN system capable to

extend the SDN applicability domain from fixed networks to intermittently connected network, like

wireless mesh networks. A more complete introduction to EXPRESS objectives, reference scenario

and technical approach can be found in our previous deliverable D3.9 [1]. For reader’s convenience,

Fig. 1 below reports the reference scenario.

Fig. 1 – Reference scenario: a provider or communit y network composed of a set of Wireless

Mesh Networks

Our previous deliverable D3.9 also included the detailed requirement analysis (in section 2), the initial

functional specification and high level design (in section 3) and a discussion on the state of the art (in

section 4).

In this deliverable we will provide the final architecture, the detailed design and the plans for the

system evaluation.

OpenLab – D3.10, page 5 of 34

2 Final architecture

Taking into account the requirements outlined in section 2 of our deliverable D3.9 [1], the EXPRESS is

based on an IP connectivity realized using the OLSR routing protocol. We deploy the SDN

mechanisms on top of the basic IP connectivity: the control plane communication between the

controllers and the OpenFlow switches uses the IP connectivity setup using OLSR. As for the data

plane communications, they can be handled in a flexible way, either using the basic IP connectivity or

using SDN/OpenFlow mechanisms. Proper classification mechanism can be configured in the WMR

nodes to support this flexibility and to decide which forwarding mechanisms will be used for which

flows.

The operation of the Wireless Mesh Routers have been designed in order to support the exchange of

OLSR messages and the coexistence of traffic relying on the basic IP connectivity and traffic that is

handled using SDN/OpenFlow mechanisms.

2.1 Overall architecture

The proposed approach foresees to use an IP ad hoc routing protocol (OLSR) among the nodes of the

mesh to establish a basic IP connectivity (see Fig. 2). Such connectivity will constitute the control

plane and will support all controller-to-switch OpenFlow messages as well as controller-to-controller

messages in case they are needed to coordinate the SDN operations. The use of OLSR ensures the

proper reaction to changing topology events, like addition/removals of mesh nodes and wireless links

among them. The forwarding on the data plane can rely on the basic IP connectivity or can be based

on an SDN/OpenFlow approach, in a flexible way.

As for the wireless channels, we use a single SSID for both the control traffic and the data traffic,

therefore we can classify it as an “in-band” control strategy from the OpenFlow protocol perspective.

OpenLab – D3.10, page 6 of 34

Fig. 2 – Control and data planes

The idea is that the control plane will use the basic IP connectivity, while the data plane can use the IP

connectivity or an “SDN based connectivity” in a flexible way. By SDN based connectivity we mean

that the routing of packet flow is decided by the SDN controller and the forwarding within each node is

based on the flow table rules installed using the OpenFlow protocol. In fact, each Wireless Mesh

Router will run an OpenFlow switch. Over the control plane, the OpenFlow switch can contact a set of

default controllers: the Home Controller (HC), running in the fixed network, and the Mesh Network

Main Controller (MMC), i.e. the main controller in the mesh. Moreover the switch can use other “lower

priority” Mesh controllers that can take over in case all other controllers are not reachable, these

“lower priority” Mesh controllers can implement a subset of the full OpenFlow-based available

services, they will be referred as SMC – Secondary Mesh Controllers. A switch node will also have a

built-in controller located in the switch itself for handling emergency services or, more in general,

partitioned networks without a pre-defined Home/Mesh controller. This built-in controller does not need

to be a full compliant OpenFlow controller, rather it is a process that is able to inject OpenFlow rules in

the local OpenFlow switch. We will call this entity “EFTM - Embedded Flow Table Manager”. The

hierarchy of controllers and flow table manager is shown in Fig. 3.

OpenLab – D3.10, page 7 of 34

SMC -Secondary

Mesh Controller

OF

Switch

EFTM

WMR - Wireless Mesh Router

MMC - Main

Mesh Controller

HC - Home

Controller

Fig. 3 – Hierarchy of Controllers and Embedded Flow Table Manager

The OpenFlow controllers in the hierarchy can be used to engineer the routing of data traffic, forcing

an arbitrary subset of the traffic to follow a different route with respect to basic IP routing. In

emergency conditions, during which all OpenFlow controller fail or are unreachable, the basic IP

routing is always available. It will be a decision of the EFTM which traffic flows are allowed in these

emergency conditions: the most restrictive policy will be to allow only control traffic, i.e. directed

towards the IP addresses of the control subnet, the most liberal policy will be to allow traffic towards all

destinations (including all access networks all Internet destinations that are routed towards the default

gateways advertised by OLRS).

The WMR nodes can connect to different controllers, supporting controller failures and dynamic

topology modification, including network partitioning and joining.

The high level architecture of a Wireless Mesh Router node, showing the interplay between the OLSR

protocol, the IP forwarding and the EFTM entity is shown in Fig. 4. The OpenFlow switch in the WMR

is configured by the EFTM so that by default IP packets for the IP control subnet to which the WMR

interfaces belong are handled by the IP forwarding modules. This way, the OLSR daemon can send

and receive OLSR packets over the wireless interfaces. Once the basic IP routing is established with

OSLR, the OpenFlow switch in the WMR interacts with the OpenFlow controllers that can configure

the flow table for specific data plane flows.

OpenLab – D3.10, page 8 of 34

OF

Switch
EFTM

WMR - Wireless Mesh Router

OpenFlow

Controller(s)

OLSR

daemon

Initial configuration

of flow tables

Sends and receive

OLSR packets

Can configure the flow

table for data plane

IP

forwarding

Handles basic

IP forwarding

Fig. 4 – WMR node architecture

2.2 Detailed design of networking and of WMR node internals

The reference network scenario is shown in Fig. 5. A WMN is composed of Wireless Mesh Routers

(WMRs) which provide connectivity to a set of Access networks (either offering a wired or wireless

interface to user terminals). A subset of the WMRs operate as Gateways and provide connectivity

towards the Internet. A set of OpenFlow controllers can operate in the wireless mesh (indicated as

Main Mesh Controller and Secondary Mesh controller), connected to a WMR through a wireless/wired

connection. The Home Controller is on the wired backbone.

Within the whole control network, each controller is uniquely identified by its IP address in the control

network range. It means that a private IP range will be allocated for the control network and each

controller and mesh node will be statically given its IP address. Under these assumptions the control

plane connectivity can be built by using OLSR, spanning across the mesh network and the wired core

network. Control traffic and data traffic use different IP subnets. For instance, the subnet 10.0.0.0/16

can be used for control traffic, while other subnets are used for data traffic. The controllers and the

WMR wireless interfaces use addresses of the control subnet, while other interfaces of the network get

an IP address belonging to different subnets, e.g. 192.168.x.0/24, each announced in OLSR as an

“HNA network” (HNA stands for Host and Network Association).

OpenLab – D3.10, page 9 of 34

Access
net

Access

net Access

net192.168.0.0/24

192.168.1.0/24
192.168.2.0/24

WMR
WMR

WMR

Wireless
interfaces

Wireless or
wired access

interfaces

Main Mesh
Controller

WMR

Second. Mesh
Controller

WMR

10.0.0.2

10.0.0.3
10.0.0.8

10.0.0.4

10.0.0.5

10.0.0.6

10.0.0.7
Gateway

Wired
Router

Home
Controller

Wired

backbone

Fig. 5 – Reference network scenario

2.2.1 Basic IP forwarding/routing

In our WMR node, we assume that the OpenFlow switch will be directly connected to a set of physical

wireless (and wired if present) interfaces (see Fig. 6). For each physical interface connected to the

switch, a corresponding virtual internal interface is added to the OpenFlow switch. The IP routing and

forwarding of the node operates using this set of virtual internal interfaces. Initially, a simple set of

rules is configured in the switch so that the packets can flow from the physical interfaces to the virtual

internal interfaces and vice versa. A packet that is sent by the IP layer in the WMR over a virtual

interface crosses the OpenFlow switch and is sent out over the corresponding physical interface. An

incoming packet arriving over a physical interface is forwarded by the OpenFlow switch to the

corresponding virtual internal interface1. The OLSR routing protocol runs using the virtual internal

interfaces and learns the topology of the external links among the WMRs. An OLSR routing instance

1 This solution will be further detailed in section 2.2.3 and it is different from the solution discussed in previous

deliverable D3.9. The solution proposed in deliverable D3.9 was designed for a single networking interface and

could not be extended if the node needs to support multiple interfaces within the OpenFlow switch. This

configuration with multiple interfaces in the OpenFlow switch is needed to interact with L2 tunnels across

PlanetLab and have the possibility to modify the routing using an SDN/OpenFlow approach. With the previous

solution described in Deliverable D3.9 we could have crossed PLE only using IP routing in the “border node” of

each testbed. We note that this solution with virtual internal interfaces corresponding to the physical interfaces

(wireless and wired) of the node has been first proposed in the context of the EU DREAMER/GN3plus project

(http://www.geant.net/opencall/Software_Defined_Networking/Pages/Home.aspx#DREAMER). Differently from

the DREAMER approach: 1) we consider OLSR instead of OSPF as routing protocol; 2) we add the support for

wireless interfaces.

OpenLab – D3.10, page 10 of 34

runs on each WMR node and the IP address of the controller is also advertised by OLSR using a Host

and Network Association (HNA) messages with /32 mask.

The external OpenFlow controllers can control the rules of the OpenFlow switch. In this way, they can

reroute any chosen subset of the traffic over different paths with respect to the shortest paths selected

by the OLSR protocols.

Initial configuration
of flow tables

OpenFlow
Switch Flow Table

EFTM

OLSR
daemonOLSR

packets Writes
routing table

Control and data
packets

Physical Wireless
and wired

interface(s)

Wireless Mesh Router

IP forwarding
IP Routing

Table

Internal
virtual

interface(s)

Fig. 6 – OpenFlow and OLSR interaction

2.2.2 Forwarding/routing of traffic using SDN

Let us now consider how to handle the traffic using SDN approach, allowing traffic flows to follow

different paths with respect to the ones decided by OLSR routing. There will be two classes of

packets/flows as seen by the OpenFlow switches in the WMR:

1) Packets/flows that are processed using regular IP routing/forwarding (Basic class)

2) Packets/flows that will be handled by SDN (SDN class)

The OpenFlow rules in the tables of the OpenFlow switches will be used to classify packets as

belonging to Basic or SDN classes.

A packet that belongs to the Basic class will be forwarded by the OpenFlow switch from the virtual

internal interface to the physical interface (outgoing packets) or vice versa (incoming packets). A

packet that belongs to the SDN class will need to find a matching entry in the flow tables of the switch

or it will be forwarded to the OpenFlow controller. For this type of traffic within the Wireless Mesh

Network a matching entry will specify the outgoing interface and will set as destination MAC address

the next hop MAC address and as source MAC address the MAC address of the outgoing interface. In

this way the OpenFlow switch will emulate the behavior of a OLSR router in forwarding the packet, but

the outgoing interface can be set arbitrarily by the controller without following the routing chosen by

OLSR.

OpenLab – D3.10, page 11 of 34

For example, a possible approach is to include all traffic that belongs to the control-subnet in the Basic

class and all traffic for IP destinations outside the control-subnet (i.e. in the access networks or in the

Internet) in the SDN class.

Assume that a packet is generated by a host of the access network and destined to an Internet

address outside the wireless mesh network (but the same will also apply to packets destined to a host

of the access network as this occurs when packets come back from the Internet or for mesh internal

communications). The packet will be received by the WMR on its access network interface. The

packet will be processed at IP level and an outgoing virtual internal interface will be selected according

to basic IP routing table. The packet will enter the OpenFlow switch. A match is searched in the flow

table. If a match is found, the related action is carried out (i.e. set the destination and source MAC

address and forward the packet on an outgoing interface). If no match if found, the IP packet is

embedded in a OpenFlow packet-in, which is transferred to the controller currently in charge of the

WMR using the in-band control network. When the controller receives the packet-in, it can apply the

desired routing logic and install data plane entries in the flow table.

To distribute the topology information of the data plane, the IP subnets of the Access Networks are

advertised by WMRs and gateway WMRs using OLSR Host and Network Association (HNA)

messages. Moreover, gateway WMRs may also advertise the default route 0.0.0.0/0. With this

approach, each WMR node knows the full network topology. The controllers inquiry the connected

WMR to learn this topology information, which is fundamental to implement traffic engineering logic for

data traffic. This approach is different from the traditional OpenFlow topology discover in wired layer 2

network, performed using LLDP messages [1].

2.2.3 WMR node design

The architecture of a WMR node is shown in Fig. 7. It includes: one or more wireless interfaces

belonging to the Wireless Mesh Network (wlan0, wlan1…); a software bridge using OpenFlow

switching logic, e.g. Open vSwitch [3], a set of virtual internal interfaces vi0, vi1…; an optional wired

interface used as a gateway to Internet (ethX in the figure); an optional set of wired or wireless

interfaces towards client Access Networks (ethY, wlanZ in the figure; an optional virtual interface (tap9

in the figure) corresponding to an Ethernet over UDP tunnel toward a Planet Lab Europe Node.

Each virtual internal interface is logically associated with a physical wireless interface belonging to the

Wireless Mesh Network or (where present) with a tunnel toward a Planet Lab Europe Node. All virtual

internal interfaces have IP address belonging to the control-subnet, the physical wireless interfaces

belonging to the WMN (wlan0, wlan1) and the tap tunnel toward PLE (tap9) do not have an IP

address, ethZ and wlanZ have an address of the Access Networks subnet and ethX of the subnet

connected toward the Internet.

The OLSR daemon is configured to work on the virtual internal interfaces, therefore it will not operate

on the access networks nor on the interface towards Internet.

OpenLab – D3.10, page 12 of 34

Initial config
of flow table

OpenFlow
Switch Flow Table

EFTM

OLSR
daemon

10.0.0.x0

Wireless Mesh Router

vi0

wlan0

Gateway
to Internet

ethX

ethY
wlanZ

…

Access
network(s)

OpenFlow

Controller(s)

Config. flow
table for data traffic

handled by SDN

wlan1

10.0.0.x1
vi1

tap9

IP forwarding

10.0.0.x9
vi9

Fig. 7 – Detailed WMR architecture

2.2.4 Emergency conditions

The EFTM entity in the WMR will continuously check if the WMR is connected to an active controller.

In case of controller failures (e.g. due to hardware or communication issue) the ETFM will trigger the

start of an “emergency condition”. In this state the EFTM can choose to clear all rules set by the

controller, so that the node will only operate at IP level with the routing enforced by OLSR.

In these conditions the EFTM could enforce some policies to handle data traffic under emergency

condition. It will be possible to classify the data traffic and allow to forward only a subset of this data

traffic which has a higher priority, by setting proper rules in the OpenFlow switch flow table or by

operating at the level or IP routing.

When the controller becomes reachable again, the EFTM leaves the emergency status and restores

that initial basic rules in the OpenFlow switch (and the default routing policy if some changes to the IP

routing have been made).

OpenLab – D3.10, page 13 of 34

3 Controller distribution architecture

According to our requirements, Express needs a distributed solution that allow different controllers to

take control of our WMR nodes.

We considered in our design the following two main aspects:

1) The different controllers need to synchronize about which controller is master for each switch,

therefore a “master election” procedure is needed.

2) The different controllers need to share a common view of topology and of the network events

that are relevant to take decisions in the controller layer.

In our scenarios, the “master election” procedure needs to be repeated each time that a portion of

network become partitioned or when different partitions are joined together in a larger partition.

Express adopts a hierarchical approach, as illustrated in Fig. 3. The basic idea is that the control will

be taken by the controller connected to the WMR with the highest level in the hierarchy. The “master

election” procedure will therefore select for each switch the highest level controller that can control the

switch. With this approach, we focus on the problem of partitioning/merging of network portions, while

we are deliberately not focusing on load sharing issues. In fact, if the Home Controller will be visible

from each switches, it will be selected as the master controller for the whole network.

As for the common view of topology and events, we assume that OLSR topology distribution

mechanism can be exploited by OpenFlow controllers. The Express controllers will learn the topology

and will receive topology updates using OLSR. For the purpose of Express experiments, the overall

map of potential controllers and WMNs can be statically configured in all controllers (e.g. using some

configuration file). It is for further study to consider if the OLSR protocol can be extended to support

functionality related to our specific scenario, and it is not our priority to design and implement such

extensions.

In a traditional OpenFlow environment, it is assumed that communications among controllers are

relatively reliable. Therefore the master selection procedure can be executed with information

exchange among controllers that cooperatively choose a master to take control of a given switch.

Then the controllers send “role request” messages that are able to change controllers status, enforcing

for example one “master” and a set of “slave” controllers for a given OpenFlow switch. An example in

this line of reasoning can be found in [6]. Considering the requirements of a wireless mesh

environment that includes topology changes and links unreliability, there is the risk that a distributed

master election procedure produces inconsistent results. For transient periods, controllers could be

connected with the WMR but could not be able to communicate each other. Under such

circumstances, both controllers would believe they are in charge of controlling the WMR and would try

to become “master” using the “role request” messages.

For this reason we designed a procedure in which the WMR itself is in charge of selecting the more

appropriate controller given the connectivity status of the network. We note that WMRs and controllers

have the same information about the status of the network (excluding transient conditions), because

OpenLab – D3.10, page 14 of 34

they share the OLSR vision of the topology. In particular, the WMRs are directly involved in the OLSR

topology dissemination while the controller extracts the topology information from a nearby WMR.

Therefore, from the topology discovery point of view the WMR acquires topology information even

before the controller. Moreover, a WMR can directly check the connectivity with potential controllers

trying to establish TCP connections towards them (or monitoring the liveliness of established TCP

connections). In the designed procedure a WMR connects only toward a single controller at a given

time. This is different from the classical approach where a switch connects in parallel with several

controllers. The procedure is performed in the WMR with the help of an external entity with respect to

the switch, the EFCM (External Flow table and Controller Manager), which extends the EFTM

(External Flow Table Manager) that we have introduced for handling the flow tables. The modified

node architecture is shown in Fig. 8. The EFCM is in charge to perform the master election procedure

and will instruct the switch to connect to the selected controller at a given time. We can define the

proposed mechanism as “master selection” rather than “master election”: it is directly the WMR node

that monitors changes in the network topology (split/merging of mesh network, each such change can

make unavailable/available a given controller). Following a network topology change, a WMR node

takes into account the available (reachable) controllers, selects the best one (the highest in the

hierarchy) and setups an OpenFlow control connection with it. From the implementation point of view,

a sort of “hard” handover of the controller is performed by the WMR. The OpenFlow switch running in

our WMR node (Open vSwitch) does not support the adding of a new target controller at run time. In

order to connect to the new controller we have to stop the running switch and to start a new instance

of the switch specifying the IP address of the new selected controller.

We note that our mechanism is conceived to work for events of topology changes (network

merging/joining) that operate in the time scale of minutes, it may become critical if we want to manage

such events in the time scale of few seconds. Hysteresis timers can be added to the solution to

prevent too frequent iterations of the procedure and the related instability.

OpenLab – D3.10, page 15 of 34

Initial config
of flow table,
set the active

controller

OpenFlow
Switch Flow Table

EFCM

OLSR
daemon

10.0.0.x0

Wireless Mesh Router

vi0

wlan0

Gateway
to wired

backbone

ethX

ethY
wlanZ

…

Access
network(s)

OpenFlow

Controller(s)

Config. flow
table for data traffic

handled by SDN

wlan1

10.0.0.x1
vi1

tap9

IP forwarding

10.0.0.x9
vi9

Check connectivity with
controllers and

liveliness of controllers

Fig. 8 – WMR architecture: introduction of EFCM

Taking the decision on the WMR side with the proposed procedure has some advantages in our

scenario:

1. Each OpenFlow switch in the WMR will be connected with a single controller at a time, this

provides the guarantee that the switch is receiving rules from a single controller.

2. The OpenFlow switch in the WMR does not have to know in advance the controller or the set

of controllers to connect to, but the EFCM entity can discover available controller through

dynamic updates. To clarify this point, we recall that the OpenFlow switch that we are using in

our demo (Open vSwitch) does not support the adding of a new target controller at run time.

Therefore in any case adding a previously unknown controller would imply restarting the

OpenFlow switch.

3. A coordination mechanism among controllers is not needed, each controller can operate on its

own.

We note that our “hard” handover mechanism between a controller and the other is possible because

the basic IP forwarding is handled by the IP routing layer without the need of flow table entries set by

the controller. Therefore the switch will restart in a consistent state and will connect to the new target

controller.

As for the algorithm to select the master controller, in our demo we simply associate a priority to the

controllers based on their IP address. The controller with the highest IP address among the available

controllers will be selected. Therefore we will assign the IP addresses to the controllers so that the

desired hierarchy is enforced. The available controllers will be announced by OLSR as HNA (Host

Network Association) and we will distinguish the controllers assuming that their IP address will belong

OpenLab – D3.10, page 16 of 34

to a particular range. This is a simple solution that does not require any enhancement to OLSR, more

sophisticated solutions can be adopted extending OLSR so that controllers information can be

explicitly advertised in OLSR announcements.

3.1 An example of the controller distribution approach

In this section we provide an example of the proposed controller distribution mechanisms.

Fig. 9 shows a Wireless Mesh Network topology divided in three separate partitions (red, blue and

green) that do not communicate each other. The red nodes are not connected to any controller but can

only rely on IP routing and on the rules configured by the EFCM entity. The blue node is connected to

the controller available in its partition, the green node has two available controllers in its partition and

is connected with the one with highest priority (the Home Controller, coloured in green).

Access
net

Access

net Access

net192.168.0.0/24

192.168.1.0/24
192.168.2.0/24

WMR
WMR

WMR

Wireless
interfaces

Wireless or
wired access

interfaces

Main Mesh
Controller

WMR

Second. Mesh
Controller

WMR

10.0.0.2

10.0.0.3
10.0.0.8

10.0.0.4

10.100.100.100

10.100.100.101

10.0.0.7
Gateway

Wired
Router

Home
Controller

Wired

backbone

Fig. 9 – Wireless Mesh Network with 3 partitions

When the red partition merges into the blue one (Fig. 10), the previously red WMR nodes notices that

a controller is available and connect to it.

OpenLab – D3.10, page 17 of 34

Access
net

Access

net
Access

net192.168.0.0/24

192.168.1.0/24
192.168.2.0/24

WMR
WMR

WMR

Wireless
interfaces

Wireless or
wired access

interfaces

Main Mesh
Controller

WMR

Second. Mesh
Controller

WMR

10.0.0.2

10.0.0.3
10.0.0.8

10.0.0.4

10.100.100.100

10.100.100.101

10.0.0.7
Gateway

Wired
Router

Home
Controller

Wired

backbone

Fig. 10 – Wireless Mesh Network with 2 partitions

When the blue partition merges into the green partition and a single partition is formed (Fig. 11) all

nodes have potential access to three controllers belonging to three levels in the hierarchy. Among the

this set, all nodes select the highest in the hierarchy, that is the Home controller.

Access
net

Access

net Access

net192.168.0.0/24

192.168.1.0/24
192.168.2.0/24

WMR
WMR

WMR

Wireless
interfaces

Wireless or
wired access

interfaces

Main Mesh
Controller

WMR

Second. Mesh
Controller

WMR

10.0.0.2

10.0.0.3
10.0.0.8

10.0.0.4

10.100.100.100

10.100.100.101

10.0.0.7
Gateway

Wired
Router

Home
Controller

Wired

backbone

Fig. 11 – Wireless Mesh Network with a single parti tion

OpenLab – D3.10, page 18 of 34

4 Evaluation plan

We plan to evaluate our architecture using the combination of three OpenLab testbeds: the two

wireless testbeds NITOS and W-iLab.t and Planet Lab Europe (PLE). The W-iLab.t and NITOS

testbeds will host the wireless mesh nodes and the local controllers, PlanetLab Europe will provide a

layer 2 overlay based interconnection of the wireless mesh networks and may host the centralized

controller.

4.1 Testbed interconnection aspects.

We use Ethernet over UDP tunnels across Planet Lab Europe to interconnect the testbeds. The basic

methodology for creating tunnels over Planet Lab Europe has been described in [8][9]. In [10] and [11]

the methodology has been extended to support tunnels that terminate outside Planet Lab Europe. In

this work we provided support for tunnels terminating in testbed nodes using private IP addresses

behind a NAT.

In our testbed setup we use tunnels that terminate outside PLE, i.e. in the NITOS and W-iLab.t

testbeds. A node in PLE acts as an Ethernet switch, bridging a tunnel coming from NITOS and a

tunnel coming W-iLab.t. Therefore it is possible to provide Layer 2 connectivity between a node in

NITOS and a node in W-iLab.t. The interconnection setting is shown in Fig. 12. Note that this figure

shows only the two nodes in NITOS and W-iLab.t that terminates the tunnels towards PLE, the

experiment topology includes several other WMRs and a set of controllers both in NITOS and W-

iLab.t.

As shown in Fig. 12, we had to face the problem of private IP addresses, as both the NITOS and W-

iLab.t testbeds are connected to the Internet using NAT. We have designed and implemented 3

different solutions. The first two solutions use a “Port Forwarder” running in the node that

interconnects a testbed with the Internet, one is based on kernel level port forwarding using IP tables,

the other one is based on application level port forwarding using the socat utility. These solutions

require that something is executed (or configured) on the node that interconnects a testbed with the

Internet, each time that a new tunnel between a node in the testbed and a node in Planet Lab Europe

is created. The third solution does not require the Port Forwarder, but only relies on the regular NAT

translation of an outgoing UDP flow originating from a node in the testbed and terminating in the node

in Planet Lab Europe that acts as tunnel end-point. This solution is based on the dynamic discovery on

the Planet Lab Node of the UDP port that has been assigned by the NAT to the UDP flow that

supports the tunnel (this UDP port is needed on the Planet Lab Node to configure the tunnel). A small

disadvantage of the NAT solution with respect to the Port Forwarder solution is that the connection

needs to be initiated always from the wireless testbed side and it is not possible to initiate it from PLE.

A second disadvantage is that the connections through the NAT is closed after a timeout if no traffic is

flowing. Typical values of the time out range from 30 seconds to 2 minutes. To mitigate this problem it

is desirable that “keep alive” packets are periodically exchanged (e.g. a ping every 10/15 seconds).

OpenLab – D3.10, page 19 of 34

For testbed policies we were not allowed to run the Port Forwarder solution on the W-iLab.t testbed,

while in NITOS we have successfully tested the kernel/IP tables based solution with the assistance of

NITOS network administrators. The NAT solution has the big advantage of not requiring any

interaction with the gateway nodes, if the experimental nodes are allowed to initiate UDP connection

towards Internet. This advantage overcomes the minor disadvantages that have been mentioned

beforehand, therefore the NAT solution will be used by default in our experiments.

PLE node

OVS switch

pl0

NAT

pl1tap0

Private IP

addresses
Internet

W-iLab.t

Port

Forwarder

or NAT

tap0

Private IP

addresses

NITOS

Fig. 12 – Testbed interconnection

Further details on the three NAT traversal solutions that have been considered are reported in the

appendix.

OpenLab – D3.10, page 20 of 34

5 Conclusion

In this document we have reported the design of the Express solution for integrating SDN concepts

(using the OpenFlow protocol) in a Wireless Mesh Network scenario. We described the Express

architecture in terms of the routing and forwarding mechanism and the approach for dynamic selection

of the OpenFlow controller assuming a time changing topology with network merging/splitting. Finally

we have discussed our evaluation plans and presented the tools needed to support the

interconnection of NITOS and W-iLab.t testbeds using PlanetLab Europe nodes.

Our next steps will be to finalize the implementation, deploy of the solution, and run the integrated

experiment over NITOS and W-iLab.t interconnected through PlanetLab Europe.

OpenLab – D3.10, page 21 of 34

6 References

[1] S. Salsano (editor) “EXPRESS requirements, initial functional specification and overall design”,
Deliverable D3.9 of EU Project FP7 287581 “OpenLab”

[2] Volkan Yazıcı, “Discovery in Software-Defined Networks”, blog post,
http://vlkan.com/blog/post/2013/08/06/sdn-discovery/

[3] Open vSwitch website: http://openvswitch.org/

[4] P. Dely, A. Kassler, N. Bayer, “OpenFlow for Wireless Mesh Networks”, IEEE International
Workshop on Wireless Mesh and Ad Hoc Networks (WiMAN 2011), Hawaii, USA, August 2011

[5] T. Koponen et al., “Onix: A Distributed Control Platform for Large-scale Production Networks,” in
OSDI, 2010.

[6] Advait Dixit, Fang Hao, Sarit Mukherjee, T.V. Lakshman, Ramana Kompella, “Towards an Elastic
Distributed SDN Controller”, HotSDN 2013

[7] A. Tootoocian and Y. Ganjali, “HyperFlow: A distributed control plane for OpenFlow”, in
INM/WREN workshop, 2010.

[8] G. Lettieri, L. Rizzo, “OpenFlow enhancements for PLE”, Deliverable D4.3 of EU Project FP7
287581 “OpenLab”

[9] Planet Lab Europe - OpenFlow Overlay Network
https://www.planet-lab.eu/doc/guides/user/practices/openflow

[10] A. Gulyás, G. Biczók, F. Németh, B. Sonkoly, “ALLEGRA - Implementation and evaluation of
greedy forwarding in PlanetLab”, Deliverable D4.11 of EU Project FP7 287581 “OpenLab”

[11] OpenFlow and PlanetLab, wiki page,
http://sb.tmit.bme.hu/mediawiki/index.php/OpenFlow_and_PlanetLab

OpenLab – D3.10, page 22 of 34

7 APPENDIX A: Details on testbed interconnection and

related tools

7.1 Existing solution for L2 overlays on Planet Lab Europe

Within Planet Lab Europe (PLE) it is possible to deploy an L2 overlay, as described in [8][9].

It is also possible to create L2 tunnels towards nodes that are external to PLE, so that the L2 overlay

can extend outside PLE, see [10] and [11]

Example: an overlay with two planetlab switches and two external hosts:

 USER PL1 PL2 WEB

+--------+ +-------+ +-------+ +-------+

| toto0 | | ovs | | ovs | | toto0 |

| .---+---+---O---+--+---O---+---+--. |

| | | | | | | |

+--------+ +-------+ +-------+ +-------+

Figure 1 – A L2 overlay over Planet Lab Europe

The connection between a PL node and an external node (in the figure above for example between

“PL2” and “WEB” is based on a UDP “connection”, in which both ends must have a public IP address.

Currently, the IP:port of the external node (e.g. WEB) must be known beforehand and it is configured

in the setup script that creates the L2 overlay in PLE (by default the UDP port 2020 is used). When the

setup script is run in the experimenter management host, the UDP ports on the PLE nodes are

allocated and the startup script outputs the UDP ports on the console. Then the UDP port can be given

given as input to the tunnel setup script on the external host (i.e the WEB node In the example above)

and the tunnel between the PLE node and the external node can be setup.

7.2 Connection to an external testbed: scenario and

requirements

The requirement is to dynamically setup L2 tunnels toward nodes in external testbeds.

These nodes are typically behind NAT/Firewall and have private IP addresses.

The solution should support several independent tunnels from Planet Lab Europe toward an external

testbed. (In fact, a single experiment can use more than one tunnel and several experiments can be

run in parallel).

OpenLab – D3.10, page 23 of 34

 EXTERNAL TESTBED (NITOS,w-iLab.t)

 USER PL1 PL2 PRI

+--------+ +-------+ +-------+ +-------+ +-------+

| toto0 | | ovs | | ovs | | NAT | | toto0 |

| .---+---+---O---+--+---O---+->? | /FW | ?<-+--. |

| | | | | | | | | |

+--------+ +-------+ +-------+ +-------+ +-------+

Figure 2 – A L2 overlay over Planet Lab Europe invo lving an external tesbed node behind a

NAT

7.3 Proposed solution

The simplest and most efficient solution is to have a Port Forwarder (PF) with a public IP address on a

server in the external testbed.

 EXTERNAL TESTBED (NITOS,w-iLab.t)

 USER PL1 PL2 PRI

+--------+ +-------+ +-------+ +-------+ +-------+

| toto0 | | ovs | | ovs | | | | toto0 |

| .---+---+---O---+--+---O---+->? | PF | ?<-+--. |

| | | | | | | | | |

+--------+ +-------+ +-------+ +-------+ +-------+

Figure 3 – Port Forwarder to solve NAT issues

 PL2 PRI

+-------+ +-------+ +-------+

| ovs | | | | Plab0 |

+---O---+-> | PF | <-+--. |

| | | | | |

+-------+ +-------+ +-------+

PL2_IP:PORT_PL2 PF_PL2_IP:PF_PL2_PORT PF_PRI_IP:PF_PRI_PORT PRI_IP:PRI_PORT

Figure 4 – Port Forwarder to solve NAT issues: deta il with IP addresses and UDP ports

OpenLab – D3.10, page 24 of 34

In the direction PL2 to PRI, the PF will forward packets as follows

destination -> PF_PL2_IP:PF_PL2_PORT source -> PL2_IP:PL2:PORT

remapped into

destination -> PRI_IP:PRI_PORT source -> PF_PRI_IP:PF_PRI_PORT

In the direction PRI to PL2, the PF will forward packets as follows

destination -> PF_PRI_IP:PF_PRI_PORT source -> PRI_IP:PRI:PORT

remapped into

destination -> PL2_IP:PL2_PORT source -> PF_PL2_IP:PF_PL2_PORT

Sequence of operation is as follows:

1) Assign PORT_PF_PUB and PORT_PRI

2) Run the setup script in PLE using PORT_PF_PUB (to be associated to PF_PUB_IP)

3) Read from the console output PORT_PL2 information

4) A) activate PF using with PORT_PL2 information

B) activate tunnelling in PRI using PORT_PL2

We have made experiment with two different tools for port forwarding: 1) iptables 2) socat

7.3.1 Example scenario in our lab

We have created an example scenario with our own PF

 PL2 move.netgroup.uniroma2.it stud.netgroup.uniroma2.it

+-------+ +-------+ +-------+

| ovs | | | | Plab0 |

+---O---+-> | PF | <-+--. |

| HA | | | | USER |

+-------+ +-------+ +-------+

160.80.221.39:46932 160.80.221.32:2445 160.80.221.34:3333 160.80.221.14:2222

(192.168.19.11/24) (192.168.19.44/24)

Figure 5 – Example scenario with external node in o ur lab

OpenLab – D3.10, page 25 of 34

Note: the PL2 port (46932) is dynamically assigned and shown in “Makefile” script output.

In PL2 we have run script “Makefile” using the “conf.mk” file below in order to create:

SLICE=uniroma2_xpress

HOST_HA=planet-lab-node2.netgroup.uniroma2.it

IP_HA=192.168.19.11/24

HOST_USER := move.netgroup.uniroma2.it

LINKS :=

LINKS += HA-USER

EXTERNAL_HOSTS := USER

EXTERNAL_PORT_USER := 2445

In “stud.netgroup.uniroma2.it” (USER) we have run (as root) the “tunproxy2.py” python program:

./tunproxy2.py -t 160.80.221.39:46932 -p 2445 -e -d -a 192.168.19.44/24

In PF we have forwarded packets as shown below:

Direction HA > USER

destination -> 160.80.221.32:2445 source -> 160.80.221.39:46932

remapped into

destination -> 160.80.221.14:2222 source -> 160.80.221.34:3333

Direction USER > HA

destination -> 160.80.221.34:3333 source -> 160.80.221.14:2222

remapped into

destination -> 160.80.221.39:46932 source -> 160.80.221.32:2445

In “move.netgroup.uniroma2.it” in order to set the forwarding rules (above) we have created a text file,

named “pl_config”, with inside:

OpenLab – D3.10, page 26 of 34

PL2_IP=160.80.221.39

PL2_PORT=46932

PF_PL2_IP=160.80.221.32

PF_PL2_PORT=2445

PF_PRI_IP=160.80.221.34

PF_PRI_PORT=3333

PRI_IP=160.80.221.14

PRI_PORT=2222

The PL2_PORT can be inserted only after the make script on PLE is run.

To use iptables run "iptables_pl" script using the command:

./iptables_pl.sh-f pl_config

To use socat tool run “socat_pl” script with command:

./socat_pl.sh -f pl_config

NOTE: if socat is used, the tunnel must be setup by sending packets from host USER to HA (e.g. ping

192.168.19.11 from USER).

7.3.2 Example scenario NITOS / PLE

Hereafter we describe an example scenario with a L2 tunnel between NITOS and PLE (not yet

tested!!)

PLANET LAB NITOS SERVER NITOS NODE

 (NAT)

+-------+ +-------+ +-------+

| ovs | | | | Plab0 |

+---O---+-> | PF | <-+--. |

| HA | | | | USER |

+-------+ +-------+ +-------+

160.80.221.39:33990 83.212.32.136:2445 10.0.1.200:3333 10.0.1.28:2222

(192.168.19.11/24) (192.168.19.22/24)

Figure 6 – Example scenario with external node in N ITOS

OpenLab – D3.10, page 27 of 34

Note: the PL2 port (33990) is dynamically assigned and shown in “Makefile” script output.

In PL2 we have run script “Makefile” using the “conf.mk” file below in order to create:

SLICE=uniroma2_xpress

HOST_HA=planet-lab-node2.netgroup.uniroma2.it

IP_HA=192.168.19.11/24

HOST_USER := 83.212.32.136

LINKS :=

LINKS += HA-USER

EXTERNAL_HOSTS := USER

EXTERNAL_PORT_USER := 2445

In “stud.netgroup.uniroma2.it” (USER) we have run (as root) the “tunproxy2.py” python program:

./tunproxy2.py -t 160.80.221.39:33990 -p 2445 -e -d -a 192.168.19.22/24

In NITOS SERVER is required to forward packets as shown below:

Direction HA > USER

destination -> 83.212.32.136:2445 source -> 160.80.221.39:33990

remapped into

destination -> 10.0.1.200:3333 source -> 10.0.1.28:2222

Direction USER > HA

destination -> 10.0.1.200:3333 source -> 10.0.1.28:2222

remapped into

destination -> 160.80.221.39:33990 source -> 83.212.32.136:2445

In “move.netgroup.uniroma2.it” in order to set the forwarding rules (above) we must create a text file,

named “pl_Nitos_config”, with inside:

OpenLab – D3.10, page 28 of 34

PL2_IP=160.80.221.39

PL2_PORT=33990

PF_PL2_IP=83.212.32.136

PF_PL2_PORT=2445

PF_PRI_IP=10.0.1.200

PF_PRI_PORT=3333

PRI_IP=10.0.1.28

PRI_PORT=2222

The PL2_PORT can be inserted only after the make script on PLE is run.

To use iptables run "iptables_pl.sh" script using the command:

./iptables_pl.sh -f pl_Nitos_config

To use socat tool run “socat_pl” script with command:

./socat_pl.sh -f pl_Nitos_config

NOTE: if socat is used, the tunnel must be setup by sending packets from host USER to HA (e.g. ping

192.168.19.11 from USER).

7.4 Creation of a Tunnel between PlanetLabEurope and an

external node behind NAT

Here after we describe ho to connect a PlanetLabEurope (PLE) node with an external node behind a

NAT.

Let us consider the scenario depicted below

OpenLab – D3.10, page 29 of 34

 PL Natbox External Node

+-------+ +-------+ +-------+

| ovs | | | | Plab0 |

+---O---+-> | NAT | <-+--. |

| | | | | |

+-------+ +-------+ +-------+

PL_IP:PL_Port S_IP:S_port S_InIP:S_InPort ExtNodeIP:ExtNodePort

(PL_PrivIP) (ExtNode_PrivIP)

Figure 7 – Interconnection with an external node th rough a NAT

Note: PL_PrivIP and ExtNode_PrivIP are the overlay private IP addresses.

Steps to create a tunnel between a PlanetLab node and the external node:

1. In external node type (in a terminal) the command below in order to discover the public IP address
of the Natbox:

wget -qO- http://ipecho.net/plain ; echo

(in output the public IP)

2. Run “Makefile” using the “conf.mk” file in order to create an overlay network in a PLE slice.

The overlay network does not need to include any reference to the External Node

make -j

Below is an example of “conf.mk” file to configure PlanetLab (internal) nodes

SLICE=uniroma2_xpress

HOST_HONE=planet-lab-node2.netgroup.uniroma2.it

IP_HONE=192.168.19.120/24

HOST_HTWO=merkur.planetlab.haw-hamburg.de

IP_HTWO=192.168.19.121/24

LINKS :=

LINKS += HONE-HTWO

3. In a Planetlab node (PL) create a new virtual cable endpoint attached the switch used. This will be
the end-point of the tunnel towards the External Node.

OpenLab – D3.10, page 30 of 34

sliver-ovs create-port [SwitchName] [PortName]

(e.g. sliver-ovs create-port uniroma2_xpress HA-EXT)

4. In PL discover the internal port (PL_Port) of the node using:

sliver-ovs get-local-endpoint [PLPortName]

(e.g. sliver-ovs get-local-endpoint HA-EXT)

5. In PL find the public IP (PL_IP) of the node and the interface used

ip addr

6. In PL run the “tcpdump” tool to sniff on the public interface [int], filtering by source IP address

tcpdump -i [int] udp src [S_IP] -nn -s0

(e.g. tcpdump -i eth0 src 83.212.32.136 -nn -s0)

7. In the External node run “tunproxy2.py” using any port and specifying with argument [-a] the
overlay private IP address node (ExtNode_PrivIP)

 # ./tunproxy2.py -t [PL_IP:PL_Port] -p [ExtNodePort] -a [ExtNode_PrivIP/SubnetMask] -e -d

(e.g. ./tunproxy2.py -t 195.148.124.74:48360 -p 2222 -a 192.168.19.122/24 -e –d)

8. In External node run a ping toward the PlanetLab node using the overlay private IP address
(setting frequency of ping to 10 seconds)

ping -i 10 [PL_PrivIP]

(e.g. ping -i 192.168.19.122)

9. In PL node read the external server’s port (S_Port) printed on the tcpdump standard output (see
step 6)

Something like below:

10:50:59.493509 IP 83.212.32.136.4567 > 195.148.124.74.48360: UDP, length 90

10:50:59.973579 IP 83.212.32.136.4567 > 195.148.124.74.48360: UDP, length 78

In this case the external port is 4567

OpenLab – D3.10, page 31 of 34

10. In PL set the remote endpoint

sliver-ovs set-remote-endpoint [PLPortName] [S_IP] [S_Port]

(e.g. sliver-ovs set-remote-endpoint HA-EXT 83.212.32.136 4567)

11. In PL ping the External node using the overlay private IP address in order to check the connection

ping -c7 [ExtNode_PrivIP]

(e.g. ping -c7 192.168.19.122)

7.5 Details on the tools

7.5.1 IPTABLES_PL

“iptables_pl.sh” scripting allows to set the forwarding rules using iptables unix tool

You can set the “default parameters” editing “iptables_pl.sh” and changing port and ip address in the

section “Default Values”, in the top of the script.

When you run “iptables_pl.sh” it generates a text file named “iptables_pl.out”.

It contains the parameters of the configuration set.

You can use it to remove the last configuration (see [-r] option) or configure again the same forwarding

rules (see [-f] option).

IMPORTANT: “iptables_pl.out” file is overwritten each time that you run again the script

To show a commands help type:

./iptables_pl.sh -h

To set the “default parameters” forwarding rules (i.e. using the address parameters configured in the

script)

./iptables_pl.sh –d

To manually enter the parameters of the topology

./iptables_pl.sh -a [PL2_IP] [PL2_PORT] [PF-PL2_IP] [PF-PL2_PORT] [PF-PRI_IP] [PF-PRI_PORT]

[PRI_IP] [PRI_PORT]

OpenLab – D3.10, page 32 of 34

To use a configuration file that provides all address parameters:

./iptables_pl.sh -f [FileName]

To change only the PLE dynamic port with respect to the “default parameters” forwarding rules (i.e.

using the address parameters configured in the script):

./iptables_pl.sh –p 34567

To change only the PLE dynamic port with respect to the parameters provided in a file:

./iptables_pl.sh –f [FileName] –p 34567

To remove the “default parameters” rules

./iptables_pl.sh –r default

To remove the forwarding rules of the specified configuration

./iptables_pl.sh -r [ConfigurationFileName]

NOTE: using “iptables_pl.out” file (automatically created) you can remove the last configuration set

7.5.2 SOCAT_PL

“socat_pl.sh” scripting allows to forward packets using socat unix tool.

You can set the “default parameters” editing “socat_pl.sh” and changing port and ip address in the

section “Default Values”, in the top of the script.

To use “Default Values”

./socat_pl.sh -d

To use the “Default Values” and change only the dynamic PlanetLab port (shown in “Makefile” script

output)

./iptables_pl.sh -p [PortNumber]

To use a configuration text file:

OpenLab – D3.10, page 33 of 34

./iptables_pl.sh -f [FileName]

To use a configuration text file and change only the dynamic PlanetLab port (shown in “Makefile” script

output)

./iptables_pl.sh -f [FileName] –p [PortNumber]

7.5.3 TUNPROXY2

“tunproxy2.py” is a Python program to run the server of the UDP socket with PlanetLab node.

Furthermore it creates virtual TAP interface sets up the overlay private IP address to node

Now a brief list of the useful options:

./tunproxy2.py -t 160.80.221.39:33990 -p 2445 -e -d -a 192.168.19.22/24

To specify IP address and port of the remote PlanetLab node

>> [-t] [PL_IP:PL_PORT]

To set the local port of the node (where is run)

>> [-p] [PortNumber]

To use TAP tunnel

>> [-e]

(if you want a TUN tunnel use [-n])

To set in debug mode

>> [-d]

To set the IP address of the virtual TAP interface created

>> [-a] [IPaddress/subnetmask]

(specify the subnet mask using the CISCO style)

7.5.4 TUNPROXY.C

“tunproxy.c” is a C source code to run the server of the UDP socket with PlanetLab node.

OpenLab – D3.10, page 34 of 34

To run the program it must be compiled using the command below:

gcc tunproxy.c -o tunproxy

How to run the program

./tunproxy -t [PL_IP:PL_PORT] -p [LocalPort] -e

(e.g. ./tunproxy -t 160.80.221.39:33990 -p 2445 -e)

[-e] specifies TAP tunnel.

