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Abstract: 

 

The main objective of EXPRESS is designing an innovative, resilient SDN system capable to extend 

the SDN applicability domain from fixed networks to intermittently connected network, like wireless 

mesh networks. The EXPRESS solution will be implemented and then deployed in an experiment 

involving the three OpenLab testbeds NITOS, W-iLab.t and PlanetLab Europe. In this document we 

define the requirements for the EXPRESS systems, both in terms of architecture and functionality 

and in terms of deployment over the OpenLab testbed. This document include the high level design 

of the solution. EXPRESS will use an SDN approach based on the OpenFlow protocol for the 

controller-to-switch communication. EXPRESS will rely on OLSR distributed routing protocol to setup 

the control plane for the controller-to-switch communication and the communication among the 

controllers. A distributed controller solution based on a hierarchy of controllers will be designed, 

capable to handle network partitioning and merging. On the data plane, the SDN/OpenFlow approach 

will be capable to support advanced routing strategies, going beyond the shortest-path routing 

provided by OLSR. 
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1 Introduction 

The main objective of EXPRESS (EXPerimenting and Researching Evolutions of Software-defined 

networking over federated test-bedS) is designing an innovative, resilient SDN system capable to 

extend the SDN applicability domain from fixed networks to intermittently connected network, like 

wireless mesh networks. The system will be able to withstand attacks, failures, mistakes, natural 

disasters and able to keep operating also in fragmented and intermittently connected networks. Such a 

system will also be able to easily glue together separated networks or to form networks (e.g. mesh 

networks). In this scenario SDN has pros (ability to quickly update the forwarding plane) and cons 

(single point of failure, remote control). We aim at exploiting the pros while mitigating the cons by 

improving promptness and robustness of the SDN infrastructure. In a way, this project is investigating 

on the limits of the SDN approach, because the wireless and intermittently connected scenario that we 

are considering is highly challenging for the SDN approach based on the centralization of control 

functionality. 

In our reference scenario, wireless infrastructure nodes, or Wireless Mesh Routers (WMR) equipped 

with SDN, build up a set of Wireless Mesh Networks (WMNs). Different wireless mesh networks are 

interconnected by a set of wired SDN nodes (see Fig. 1), forming the core network. This topology is 

typical of so called “community networks” and of wireless mesh providers. In this project we address 

the issues related to using SDN over such a severe network environment, assuming that the failure of 

network links is not a rare event and the network could even become partitioned. In these conditions 

we aim at providing a resilient SDN control-plane, which is the foundation for any data-plane restoring 

mechanism. 

 

Fig. 1 – Reference scenario: a provider or communit y network composed of a set of Wireless 

Mesh Networks 
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The proposed solution will need to deal with the setup and maintenance of the routing functionality 

necessary to discover the network topology and install and maintain the routing protocols, and for the 

setup and maintenance of the SDN controller(s) and of the communication between the controllers 

and the switches. Once the infrastructure is up and running, SDN will allow to change the device 

configurations, if needed; to install/update policies for access control, tailored to specific environments 

and categories of users, or traffic engineering rules; to program security or launch monitoring actions, 

as a function of anomaly detection warnings; to offer a large set of virtualization functionalities. 

The second objective of EXPRESS is to implement a demonstrator of the defined SDN solution, in 

representatives scenarios of real world environments such as wireless mesh community networks and 

wireless mesh networks. To deploy our demonstrator, we will exploit a federation of three OpenLab 

testbeds (PlanetLab, NITOS and W-iLab.t), where PlanetLab plays the role of the core fixed backbone 

and NITOS and W-iLab.t play the role of the wireless mesh networks. 
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2 Requirements 

2.1 General architectural requirements 

 

In this section we list the general architectural requirements. These requirements are referred to as 

GRx (General Requirements). 

 

GR1 Express will be able to operate a Wireless Mesh Network (WMN) formed by a set of Wireless 

Mesh Routers (WMRs) by providing IP connectivity services to a set of access networks. 

The access networks will be connected to the WMRs via wired or wireless interfaces. 

GR2 Express will be able to operate a set of Wireless Mesh Network as above defined, 

interconnected by a wired backbone, providing IP connectivity services to a set of access 

networks. 

GR3 Express will consider fragmented network operations: 

• each WMN can run in isolation or can be connected with the backbone 

• a WMN in turn can be fragmented in different parts 

• two WMN fragments can merge into a bigger fragment (or into the whole WMN) 

GR4 Express will use an SDN approach based on the OpenFlow protocol to configure the 

operations of the WMRs and control the behaviour of the IP data plane. 

GR5 Express will assume that different controllers can take control of parts of the network and 

then merge back into a single network, when partitions are removed. Therefore different 

controllers do not necessarily share the same vision of the network. Different nodes may 

need to take the controller role and start controlling an isolated portion of the network. 

Simplified operations can be considered in these circumstances, with the goal of providing at 

least emergency operations (highest priority services), and then support lower priority 

services only if possible. 

GR6 IP routing protocols like AODV, BATMAN or OLSR are typically used to create IP 

connectivity in the mesh. With these protocols, it is hard to implement advanced features like 

flow based routing or load balancing. The Express SDN approach will offer the possibility to 

implement fine grained control on the use of resources. (NB Express work will not focus on 

finding optimal solutions but to provide the basic tools to implement such features). 

GR7 On the Data Plane, IP connectivity services will be offered to hosts in the access networks. 

The proposed architecture will not support layer 2 connectivity: the Wireless Mesh & Access 

node will act as an IP router for the clients. 
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GR8 We assume that the system can face transient issues leading to temporary loss of 

connectivity. Such failures needs to be recovered in time frames comparable with 

convergence time of distributed routing protocols like OLSR. In other words, Express does 

not aim at faster convergence times than the existing distributed routing protocols. The SDN 

approach will be used to offer more flexibility and more advanced services in the data plane 

(e.g. traffic engineering, load balancing). 

 

 

 

2.2 Requirements related to OpenLab testbeds  

 

In this section we list the requirements related to the experiments over the OpenLab testbeds. These 

requirements are referred to as TRx (Testbed Requirements). 

 

TR1 The experimental Wireless Mesh Network of Express will be deployed over both the NITOS 

and W-iLab.t wireless testbeds 

TR2 Express will perform preliminary experiments over isolated wireless testbeds (NITOS and/or 

W-iLab.t), then it will perform experiments over a federated testbed.  

TR3 The backbone network interconnecting the two experimental Wireless Mesh Network will be 

the OpenLab SDN testbed over PlanetLab Europe, as described in OpenLab Deliverable 

D4.3 “OpenFlow enhancements for PLE” 

TR4 The Express experiments will start by creating separate logins on the different testbeds, then 

if possible Express will try to use the myslice federated solution (). 
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3 Initial functional specification and overall design 

Taking into account the above outlined requirements, the EXPRESS approach will be based on a 

control plane IP connectivity realized using the OLSR routing protocol. We will deploy the SDN 

mechanisms on top of the control plane IP connectivity: the communication among the controllers will 

use the control plan IP connectivity, as well as the communication between the controllers and the 

OpenFlow switches. Enhancement of the OLSR routing protocol will be designed to support the SDN 

approach. 

We will design the operation of the Wireless Mesh Routers in order to support the exchange of OLSR 

messages and then the coexistence of control plane traffic and data plane traffic handled using 

SDN/OpenFlow mechanisms. 

 

3.1 High level architecture 

 

The proposed approach for using SDN to control the wireless meshes is to use an IP ad hoc routing 

protocol (OLSR) among the nodes of the mesh to establish a basic IP connectivity (see Fig. 2). Such 

connectivity will constitute the control plane and will support all controller-to-switch OpenFlow 

messages as well as controller-to-controller messages that are needed to coordinate the allocation of 

“master” controller role for the switches. The use of OLSR ensures the proper reaction to changing 

topology events, like addition/removals of mesh nodes and wireless links among them. The data plane 

will be based on an OpenFlow approach. 

As for the wireless channels, we use a single SSID for both the control traffic and the data traffic, 

therefore we can classify it as an “in-band” control strategy from the OpenFlow protocol perspective.  

 

Fig. 2 – Control and data planes 
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Each Wireless Mesh Router will run an OpenFlow switch. Over the control plane, the OpenFlow switch 

will try to contact a set of default controllers: the Home Controller (HC), running in the fixed network, 

and the Mesh Network Main Controller (MMC), i.e. the main controller in the mesh. Moreover the 

switch can use other “lower priority” Mesh controllers that can take over in case all other controllers 

are not reachable, these “lower priority” Mesh controllers can implement a subset of the full OpenFlow-

based available services, they will be referred as SMC – Secondary Mesh Controllers. A switch node 

will also have a built-in controller located in the switch itself for handling emergency services or, more 

in general, partitioned networks without a pre-defined Home/Mesh controller. This built-in controller 

does not need to be a full compliant OpenFlow controller, rather it is a process that is able to inject 

OpenFlow rules in the local OpenFlow switch. We will call this entity “EFTM - Embedded Flow Table 

Manager”. The hierarchy of controllers and flow table manager is shown in Fig. 3. 

SMC -Secondary

Mesh Controller

OF 

Switch

EFTM

WMR - Wireless Mesh Router 

MMC - Main

Mesh Controller

HC - Home

Controller

 

Fig. 3 – Hierarchy of Controllers and Embedded Flow  Table Manager 

The OpenFlow controllers in the hierarchy can be used to engineer the routing of data traffic, while 

OLSR is used to locally set up the control-rules used by OpenFlow control traffic, through the use of 

the EFTM entity. Moreover, OLSR is also used to push emergency-rules in the switch. Such rules 

route data traffic in emergency conditions, during which the OpenFlow controller fails or is 

unreachable. 

The controllers in the hierarchy coordinate each other, supporting controller failures and dynamic 

topology modification, including network partitioning and joining. 

The high level architecture of a Wireless Mesh Router node, showing the interplay between the OLSR 

protocol and the EFTM entity is shown in Fig. 4. The OpenFlow switch in the WMR is configured by 

the EFTM so that the OLSR daemon can send and receive OLSR packets over the wireless 

interfaces. The OLSR daemon provides topology information to the EFTM, which is needed to set up 
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the flow entries for the control traffic. The OF switch interacts with the OpenFlow controllers that can 

configure the flow table for data plane flows. 

OF 

Switch
EFTM

WMR - Wireless Mesh Router 

OpenFlow

Controller(s)

OLSR

daemon

Configures flow table

for OLSR control traffic

Sends and receive

OLSR packets

Provides info on 

topology

Configure the flow table 

for data plane

 

Fig. 4 – WMR node architecture 

It is noteworthy that in this architecture we have two different levels of entities setting up OpenFlow 

rules: a local distributed manager (the ETFM) taking care of control-rules, and the set of remote 

controllers taking care of rules for data traffic. 

 

 

3.2 Detailed design of networking and of WMR node internals 

 

The reference network scenario is shown in Fig. 5. A WMN is composed of Wireless Mesh Routers 

(WMRs) which provide connectivity to a set of Access networks (either offering a wired or wireless 

interface to user terminals). A subset of the WMRs operate as Gateways and provide connectivity 

towards the wired backbone. A set of OpenFlow controllers can operate in the wireless mesh 

(indicated as Main Mesh Controller and Secondary Mesh controller), connected to a WMR through a 

wireless/wired connection. The Home Controller is on the wired backbone. 

Within the whole control network, each controller is uniquely identified by its IP address in the control 

network range. It means that a private IP range will be allocated for the control network and each 

controller and mesh node will be statically given its IP address. Under these assumptions the control 

plane connectivity can be built by using OLSR, spanning across the mesh network and the wired core 
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network. Control traffic and data traffic use different IP subnets. For instance, the subnet 10.0.0.0/16 

can be used for control traffic, while other subnets are used for data traffic. The controllers and the 

WMR wireless interfaces use addresses of the control subnet, while other interfaces of the network get 

an IP address belonging to different subnets, e.g. 192.168.x.0/24, each announced in OLSR as an 

“HNA network” (HNA stands for Host and Network Association). 

Access 
net

Access 

net
Access 

net192.168.0.0/24

192.168.1.0/24
192.168.2.0/24

WMR
WMR

WMR

Wireless
interfaces
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interfaces

Main Mesh 
Controller

WMR

Second. Mesh 
Controller

WMR

10.0.0.2

10.0.0.3
10.0.0.8

10.0.0.4

10.0.0.5

10.0.0.6

10.0.0.7
Gateway

Wired
Router

Home
Controller

Wired

backbone

 

Fig. 5 – Reference network scenario 

3.2.1 Control plane forwarding/routing 

In our WMR node, we assume that the OpenFlow switch will be directly connected to the wireless 

interfaces (see Fig. 6). In order to deploy our in-band control mechanism, we need to locally set-up the 

control-rules to forward OpenFlow control packets, which are packets with destination IP address 

belonging to the control-subnet. To this aim we use the OLSR routing protocol to learn the topology of 

the control-subnet and then exploit this knowledge to setup the control-rules. Accordingly, an OLSR 

routing instance runs on each WMR node and the IP address of the controller is also advertised by 

OLSR using a Host and Network Association (HNA) messages with /32 mask.  

Fig. 6 reports the main entities of a WMR involved in the interplay between OLSR and OpenFlow. The 

control-rules used by OpenFlow message are configured by a module running in the ETFM called 

OLSR-to-OpenFlow (O2O). O2O module operates by inspecting an IP routing table handled by the 

OLSR daemon. This IP routing table is a “dummy” table, i.e. not actually used by the operating system 

when forwarding IP packets. Under the Linux OS used in our implementation, this is a “user defined” 

routing table, different from the kernel main one, and never referenced in the Routing Policy Data 

Base.  

An entry of the dummy routing table has the form <control-subnet IP address/32, next-hop, output 

interface>; the O2O module converts it in a rule of the OpenFlow table whose match is “IP destination 

== control-subnet IP address” and whose action is “change source MAC address with the MAC 
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address of outgoing interface and the destination MAC address with the MAC address of the next-

hop”. Therefore the O2O module needs to know the MAC addresses of the WMRs; this IP-to-MAC 

translation can be provided offline or can be distributed by a novel OLSR plug-in, so that each WMR 

can learn the MAC addresses of all other WMRs. Note that while an ARP or ARP-like mechanism 

could be viable to learn the MAC addresses of nodes at one-hop distance, the central controller 

however needs to know all the associations between IP addresses and MAC addresses of all network 

nodes, therefore the solution of extending the OLSR seems to be the best one. 

In order to follow the topology changes, the OpenFlow table should be updated immediately when the 

OLSR protocol receives the information about the change and re-computes the dummy IP routing 

table. In order to simplify the implementation, a periodic “polling” procedure can be used to check if 

some route has changed. The simplest approach foresees to periodically update the Flow Table 

according to the dummy IP routing table. In this simplified approach, the O2O module sets a timeout 

(e.g. 60s) to the inserted control-rules and at the timeout expiration the dummy IP table is dumped 

again on the OpenFlow Table. 

 

Writes flow 
table for

control traffic

OpenFlow
Switch Flow Table

Dummy
IP Routing Table

EFTM

Reads
routing table

O2O

OLSR
daemon

MAC address list
OLSR

packets

Writes
routing table

Control and data 
packets

Wireless
interface(s)

Wireless Mesh Router

 

Fig. 6 – OpenFlow and OLSR interaction 

In addition to the control-rules used to route OpenFlow traffic, the flow tables are also filled by the 

EFTM with other control-rules needed to support the OLSR operations. These rules are used to 

forward the incoming OLSR packets to the OLSR daemon in the WMR node and to let the outgoing 

OLSR packets exit from the proper interfaces.  

3.2.2 Data plane forwarding/routing 

Let us now consider how to handle the traffic for IP destinations outside the control-subnet, i.e. either 

to the access networks or to the Internet. Assume that a packet is generated in a host of the access 

network and destined to an Internet address outside the wireless mesh network (but the same will also 
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apply to packets destined to a host of the access network as this occurs when packets come back 

from the Internet or for mesh internal communications).  

The packet will be received by the WMR on its access network interface. Then a match is searched in 

the flow table. In case a match is found, the related action is carried out. Otherwise, the IP packet is 

embedded in a OpenFlow packet-in, which is transferred to the controller currently in charge of the 

WMR using the in-band control network. When the controller receives the packet-in, it can apply the 

desired routing logic and install data plane entries in the flow table.  

To distribute the topology information of the data plane, the IP subnets of the Access Networks are 

advertised by WMRs and gateway WMRs by using OLSR Host and Network Association (HNA) 

messages. Moreover, gateway WMRs may also advertise the default route 0.0.0.0/0. With this 

approach, each WMR node knows the full network topology. The controllers inquiry the connected 

WMR to learn this topology information, which is fundamental to implement traffic engineering logic for 

data traffic. This approach is different from the traditional OpenFlow topology discover in wired layer 2 

network, performed using LLDP messages [1]. 

3.2.3 WMR node design 

The architecture of a WMR node is shown in Fig. 7. It includes: a wireless interface belonging to the 

Wireless Mesh Network (wlan0); a virtual interface br0, which is a software bridge using OpenFlow 

switching logic, e.g. Open vSwitch [2]; an optional wired interface used as a gateway to the wired 

backbone (ethX in the figure); an optional set of wired or wireless interfaces towards client Access 

Networks (ethY, wlanZ in the figure. A generic “real” WMR node may additional wireless interfaces 

toward the WMN that can be bridged to br0 if a multi-channel WMR is used. 

The br0 interface has an IP address belonging to the control-subnet, wlan0 does not have an IP 

address, ethZ and wlanZ have an address of the Access Networks subnet and ethX of the subnet 

connected to the wired backbone. OLSR is connected to br0, and br0 is used as destination for any 

packets generated by the node and directed towards the WMN. To this aim we used the solution to 

insert a fake IP address (e.g. 10.0.254.254) in the main routing table of Linux as gateway of all the 

routes whose outgoing interface is br0 (i.e. of the routes directed toward the WMN). To avoid ARP 

generation, we also statically insert in the ARP table a fake MAC address for the fake IP address. 
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Fig. 7 – Detailed WMR architecture  

 

3.2.4 Emergency conditions 

The EFTM entity in the WMR will continuously check if the WMR is connected to an active controller. 

In case of controller failures (e.g. due to hardware or communication issue) the ETFM will trigger the 

start of an “emergency condition”.  

Some policies are needed to decide how to handle data traffic under this emergency condition. It could 

be needed to classify the data traffic and allow to forward only a subset of this data traffic which has a 

higher priority. 

A simple solution that will be described hereafter is to allow all data traffic, using the same routes used 

for control traffic. In this solution, when O2O enters in the emergency status it removes all the rules 

inserted by the remote controllers from the flow table and dumps all the OLSR routing table, i.e. 

including the routes outside the control-subnet and the default route advertised by the gateways. In 

doing so the routing of the mesh becomes substantially controlled by OLSR, while the forwarding is 

always carried out through OpenFlow mechanisms. When the controller becomes reachable, the O2O 

leaves the emergency status and removes from the flow table the rules associated to routes outside 

the control-subnet, thus forcing ongoing data flows to send packet-in data units to the controller, which 

will decide how to re-route them. 
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3.3 Design of controller distribution architecture 

 

According to our requirements, Express needs a distributed solution that allow different controllers to 

take control of our WMR nodes and of routers in the wired backbone.  

We considered in our design the following two main aspects:  

1) The different controllers need to synchronize about which controller is master for each switch, 

performing a “master election” procedure. 

2) The different controllers need to share a common view of topology and of the network events 

that are relevant to take decisions in the controller layer. 

In our scenarios, the “master election” procedure needs to be repeated each time that a portion of 

network become partitioned or when different partitions are joined together in a larger partition. 

Express adopts a hierarchical approach, as illustrated in Fig. 3. The basic idea is that the control will 

be taken by the controller connected to the WMR with the highest level in the hierarchy. The “master 

election” procedure will therefore select for each switch the highest level controller that can control the 

switch. With this approach, we focus on the problem of partitioning/merging of network portions, while 

we are deliberately not focusing on load sharing issues. In fact, if the Home Controller will be visible 

from each switches, it will be selected as the master controller for the whole network. 

As for the common view of topology and events, we assume that OLSR topology distribution 

mechanism can be exploited by OpenFlow controllers. The Express controllers will learn the topology 

and will receive topology updates using OLSR. For the purpose of Express experiments, the overall 

map of potential controllers and WMNs can be statically configured in all controllers (e.g. using some 

configuration file). We will analyse if the OLSR protocol can be further extended to support 

functionality related to our specific scenario, but it is not of highest priority to design and implement 

such extensions. 
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4 Discussion and state of the art  

 

In this section we provide some background discussion about the design choices we have made and 

some information about the state of the art of research and related works. We first discuss the aspects 

of failures of control plane communication links and then the aspects related to distribution of 

functionality among a set of controllers and to controller failures. 

 

The failure of control-plane communications is typically faced by a wired SDN/OpenFlow deployment 

by means of an “out-of-band” switched network, virtually implemented through a pre-configured VLAN, 

realized by means of pre-loaded rules in the switch flow-table. In this case the OpenFlow switch routes 

the control traffic towards the controller, using plain Ethernet auto-learning mechanisms, including the 

Spanning Tree Protocol. In case of link failure, after a timeout, the MAC lookup table of the switch will 

be properly updated with an alternate route. In our scenario, this Ethernet auto-learning approach for 

setting up and maintaining the control-plane communications is not viable, because it requires point-

to-point links, rather than single broadcast interfaces as in a Wireless Mesh Network environment. 

Furthermore, also the out-of-band strategy [3] may be difficult to handle in a mesh environment, where 

multi-hop VLAN support is not provided off-the-shelf. These consideration led us to define the in-band 

control approach described in section 3.2. 

 

The design of a distributed controller architecture is an open research issue, existing work has been 

focused on solution for load sharing and resilience in wired environment (mostly data center 

environment or WAN interconnection of data centers). This has led to “flat” solutions where a layer of 

controllers is able to take control of a set of switches. In these solutions, the different controllers are 

used to distribute the control load, to increase the proximity between the controller and the controlled 

switch and for backup, so that a “secondary” controller can become masters of a set of switches if their 

default primary controller fails. There is no hierarchy among controllers in these approaches [4][5][6]. 

The failure of the controller-unit is typically “protected” by replicating the controller [6], in a static and 

pre-defined way, so having in the network an origin controller and a surrogate controller. In case of 

failure of the origin controller, the “hot standby” surrogate controller can take over. Likewise [5] focuses 

on the issue of migrating the control of a switch between one controller and another one in the 

controller layer, as a reaction to change of load conditions on the controllers. 

In our Express scenarios, the system should react to partition and merge events so we cannot assume 

a flat layer of controllers that are typically always available. Therefore we have focused on a 

hierarchical approach. 
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5 Conclusion 

In this document we have reported the Express requirements and the initial design of the Express 

architecture. We have described the proposed solution for integrating SDN concepts, in particular 

using the OpenFlow protocol, in a Wireless Mesh Network scenario. 

Our next steps will be the implementation of the proposed solution and the deployment of the solution, 

first in the separated OpenLab wireless testbeds NITOS and W-iLab.t, then in an integrated 

experiment involving PlanetLab Europe testbed to interconnect the wireless testbeds. 
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