
A push-based scheduling algorithm for large scale
P2P live streaming

L. Bracciale, F. Lo Piccolo, D. Luzzi, S. Salsano, G. Bianchi, N. Blefari-Melazzi

DIE, University of Rome Tor Vergata
via del Politecnico, 1, Rome, Italy

{lorenzo.bracciale,francesca.lopiccolo,dario.luzzi}@uniroma2.it
{stefano.salsano,giuseppe.bianchi,blefari}@uniroma2.it

Abstract— In this paper, we present a chunk scheduling al-
gorithm for a mesh-based peer-to-peer live streaming system
and we evaluate it by simulations over large-scale networks.
Literature papers typically design chunk scheduling algorithms
by considering the chunk delivery ratio as performance metric.
We propose a push-based algorithm, which not only tries to
maximize the chunk delivery ratio but it also takes into account
and tries to minimize the delivery delay of chunks at the peer
nodes. This is an important requirement, when dealing with real-
time multimedia flows. Another important contribution of this
paper is the design and implementation of a simulator able to
evaluate the performance of large scale P2P networks (tens of
thousands peers). The importance of this contribution lies in
the fact that existing simulators and performance studies handle
at most hundreds or few thousands of peers, while real-life
P2P streaming systems aim at distributing contents to several
hundreds of thousands, if not millions, of users. The performance
evaluation study aims at providing a comprehensive view of
what performance can be expected for mesh-based peer-to-peer
streaming systems, both in terms of chunk delivery ratio and
delay, for a large range of the number of users. The individual
effect of a variety of system parameters, and especially number
of partner nodes in the mesh, constrained link bandwidth, node
heterogeneity, and network size, has been analyzed. Our results
show that performances of the proposed push-based solution are
already quite effective even with severely bandwidth constrained
large scale networks.

I. INTRODUCTION

Peer-to-peer (P2P) overlay systems are being recently pro-
posed to stream multimedia audio and video contents from
a source to a large number of end users. To this aim, end-
hosts auto-organize themselves in an overlay distribution net-
work, by using unicast tunnels among participating overlay
nodes. The contents to be distributed are divided in so-called
”chunks” and overlay nodes relay such chunks. Early propos-
als of overlay distribution networks are based on multicast dis-
tribution trees, among them NARADA [1], NICE [2], ZIGZAG
[3]. However, overlay multicast distribution trees perform well
when participating nodes do not move continuously and are
always available, but suffer from re-configurability problems
when nodes have a high churn rate. To face this issue, latest
proposals use overlay mesh-based and unstructured topologies.
CoolStreaming/DONet [4], GridMedia [5] and PRIME [6]
offer examples of this approach.

In this paper, we focus on overlay unstructured mesh-based
P2P streaming systems, and we investigate the problem of how

to schedule the distribution of stream chunks between overlay
neighbor nodes. We propose a push-based approach, where
a supplier node takes the decision of which chunks will be
served to which neighbor nodes.

Performance assessment is carried out in terms of both
chunk delivery ratio and delivery delay. To design and evaluate
scheduling algorithms for P2P streaming systems, the most
used performance metric is indeed the chunk delivery ratio
(also called continuity index, see e.g., [4], [7]), which is
defined as the ratio between the number of chunks arrived at
destination before the playback deadline and the total number
of streamed chunks. This parameter can measure the continuity
of the playback; however, little attention has been provided to
delay figures. The authors of [5] do mention absolute delay
as a possible performance metric. Nevertheless, they do not
exploit this metric in their scheduling algorithms, presented in
[7].

Another important contribution of this paper is the per-
formance evaluation carried out through a suitably adapted
custom-made C++ simulator called OPSS [8][9], capable of
evaluating the performance of large scale P2P networks (tens
of thousands peers). The importance of this contribution lies
in the fact that existing simulators and performance studies
handle at most hundreds or a few thousands of peers, while
real-life P2P streaming systems aim at distributing contents to
several tens of thousands, if not even several hundred thousand
or more users. Thus, the availability of this tool is important
to test the scalability of proposed streaming systems. Our
simulator assumes that network traffic can be modeled as a
fluid flow, that bottlenecks are in the access links, and that
the access uplink and downlink bandwidth is shared between
competing flows according to the classical max-min fairness
notion [10]. In more detail, OPSS achieves scalability by
exploiting an efficient implementation of the max-min fair
bandwidth allocation [11] specifically conceived for the above
simplifying assumptions.

The paper is organized as follows. In section II we review
the state of art. We describe our scheduling algorithm in sec-
tion III. Section IV presents the evaluation scenario, including
the performance metrics used to evaluate the proposed solu-
tion. Performance evaluation is carried out through simulation
in sections V and VI. Finally, section VII concludes the paper.

II. RELATED WORK

In this section we give a brief overview of the main P2P
live media streaming systems built on mesh-based overlay
topologies and we review the already available results on
the problem of the stream segment scheduling. In doing this,
we will focus on the way the performance of such systems
has been evaluated with particular regard to the performance
figures and the size of the investigated networks.

CoolStreaming/DONet [4] is a live media streaming system
which constructs a random overlay mesh to distribute the
stream segments between the participating overlay nodes.
Chunk availability in the node buffer is represented by a Buffer
Map (BM), where a bit 1 and 0 indicate that a segment is
respectively available or unavailable. Each node learns about
chunk availability by periodically exchanging its BM with the
BMs of its partners, which are the neighbors in the overlay
mesh. DONet is built on a pull approach, i.e. scheduling
decisions are taken at receivers and chunk transmissions start
only if a receiver requests that chunk from a supplier neighbor.
Specifically, the proposed heuristic scheduling algorithm gives
priority to the chunks with more stringent playback deadline
and to supplier neighbors with the highest bandwidth. So
the algorithm calculates the number of potential suppliers for
each segment and, starting from the segments with only one
potential supplier, it selects the supplier with the highest band-
width and enough available time in case of multiple suppliers.
DONet performance has been evaluated by using PlanetLab
[12][13]. PlanetLab is a global overlay network to support the
design and the performance evaluation of applications widely
distributed over the Internet. The number of used PlanetLab
nodes ranges from 10 to 200 (passing through 50, 100, 150),
while the number of partners ranges from 2 to 6. Control
overhead and continuity index are considered as performance
metrics. The former represents the ratio between control traffic
volume and video traffic volume; the latter is the number of
segments that arrive before or on playback deadlines over the
total number of segments.

GridMedia [5] is an unstructured P2P live media streaming
system which tries to overcome the limitation of the DONet
pull approach. It is based on a push-pull approach that consists
in requesting stream packets in pull mode at start up and
having nodes relaying stream packets in push mode (e.g.
without explicit request) in the immediate following phase.
PlanetLab testbed is used to evaluate GridMedia performance
in [5]. Pull and pull-push approaches are compared. The
proposed experimental results relate to a number of PlanetLab
nodes ranging from 300 to 340. Among the performance
indexes that are taken into account, we mention i) the absolute
delay, that is the delay between the sampling time at the
server and the playback time at the local node; ii) the delivery
ratio, that is the ratio between the number of stream packets
arriving before or right on absolute playback deadline and the
total number of packets; iii) the α-playback-time, that is the
minimum absolute delay at which the delivery ratio is larger
than α (0 ≤ α ≤ 1); iv) the control overhead, that is the

average ratio between the control traffic and the total traffic at
each node.

The same authors as [5] focus in [7] on the optimal
streaming scheduling problem in data-driven overlay networks.
The optimal streaming scheduling problem aims at addressing
how each node optimally decides from which neighbor to
request which block, and how it allocates its limited out-
bound bandwidth to every neighbor, in order to maximize
the throughput. This scheduling problem is formulated as a
classical min-cost network flow problem and two resolution
strategies are considered. The first one is a global optimal
solution which assumes a centralized knowledge of all network
state, the second one is an heuristic algorithm which is fully
distributed and calls for only local information exchange. To
validate their algorithm, they use a discrete event-driven packet
level simulator. The results reported in [7] refer to a data driven
overlay network of up to 1000 nodes. The main considered
metric is the average delivery ratio, that is the ratio between
the number of packets arriving before or right on the playback
deadline averaged on all the nodes and the total number of
packets.

In PRIME [6] participating peers form a randomly con-
nected and directed mesh, where all connections are con-
gestion controlled. The incoming and outgoing degrees of
individual peers are determined by maximizing the utilization
of the incoming and outgoing access link bandwidth. The
content is encoded with Multiple Description Coding (MDC)
which enables each peer to maximize the delivered quality
by pulling a proper number of descriptions. With regard
to the content delivery mechanism, PRIME combines push
advertisements by parents with pull requests by child peers.
The packet scheduling mechanism at child peers selects the
packets to be requested according to a global pattern of content
delivery that minimizes the probability of content bottleneck
among peers. Such pattern consists of the diffusion and the
swarming phases. The diffusion phase relates to the new
stream segments that have been advertised by parents during
the last scheduling event. The swarming phase relates to the
packets that have already been received and are within the
playout buffer. Performance of PRIME has been evaluated
via packet-level ns [14] simulations. The number of simulated
nodes ranges from 100 to 500. Performance metrics related
to delivered quality, content bottleneck occurrence during the
diffusion and swarming phase, bandwidth bottleneck, playout
buffer capacity and average path length of delivered packets
are presented.

III. CHUNK SCHEDULING ALGORITHM

The operation of a mesh-based, peer-to-peer, live stream-
ing system can be conceptually decomposed in two tasks:
”overlay mesh building” and ”chunk scheduling”, which are
typically realized by two distinct and distributed algorithms.
The ”overlay mesh building” algorithm is used by peer nodes
to select a set of neighbor peers. The aim is to build a
mesh of peers to be used to exchange control information
(e.g., information related to chunk availability and chunk

download requests). This control information is exploited by
the ”chunk scheduling” algorithm, whose aim is to define a set
of independent decisions to be taken by peers to select which
chunk to download from which neighbor peer (or, conversely,
which chunk to upload to which neighbor peer).

In this work, we focus on the chunk scheduling algorithm,
assuming that the overlay mesh is already in place. Also, we
limit our analysis to a static situation, where peers do not join
or leave the system. Thus, the impact of peer churn is left for
further study.

The algorithm is based on a push approach, where schedul-
ing decisions are taken at supplier nodes. To be efficient, our
algorithm uploads each received chunk to the higher number of
neighbors possible, trying to serve each chunk to at least one
neighbor. The sending node measures the chunk transfer time
to understand if it has to increase, maintain or decrease the
number of neighbors to which it is uploading simultaneously
the chunks. Moreover, the sending node tries dynamically to
identify the neighbor nodes that minimize the waste of its
uplink bandwidth, and it prefers them to the other ones. This
is achieved by performing downlink bandwidth estimations of
all neighbors.

We make the following assumptions: the bit rate of the
stream is constant, thus the chunk duration is always equal to
T ; the generic node stores received chunks in a FIFO queue;
chunks are numbered according to the order in which they are
received (thus, chunk #j is the j-th received chunk and not
necessarily the j-th chunk of the stream) and are served in the
same order as they are received.

The algorithm proceeds by steps, described as follows. At
the i-th step the supplier node n takes a decision on:

1) which chunk c(i) to upload, chosen among the received
ones;

2) how many neighbors N(i) to upload simultaneously the
chunk to;

3) which neighbors {p1, p2, ..., pN(i)} to upload the chunk
to.

Each step is dedicated to the upload of a single chunk. The
duration of the i-th step is equal to the time required to upload
chunk c(i) to the N(i) selected neighbors.

Let us now explain how these three decisions are taken.
1) The chunk to upload in step i, c(i), is the first chunk

in queue; if the queue is empty, the chunk c(i) is again
that of step (i − 1) if not all neighbor nodes received
that chunk, otherwise node n will stay idle. The initial
condition is c(1) = 1;

2) The number of neighbors N(i) to upload simultaneously
chunk c(i) is computed as follows:

a. N(i) = N(i − 1) − 1 if the total transmission
time at step (i−1) lasted more than T seconds
and the chunk queue is not empty;

b. N(i) = N(i − 1) + 1 if the total transmission
time at step (i − 1) lasted less than T seconds
and the chunk queue is empty;

c. N(i) = N(i − 1) in all other cases.

The initial condition is N(1) = 1.
3) The neighbors {p1, p2, ..., pN(i)} to upload chunk c(i)

are selected within a proper subset of neighbors. First
of all, such subset has to include neighbors interested
in chunk c(i). To this end, when a node n starts to
upload chunk #j, it advertises the availability of chunk
#(j + 1), that follows chunk #j in the FIFO queue1.
All neighbors that receive the advertisement of a given
chunk and lack the chunk will send a ”chunk missing
indication” to node n. Thus node n may exploit all
received ”chunk missing indications” relative to chunk
c(i) to identify the subset of interested neighbors. Sec-
ondly, if the subset of interested neighbors has more
elements than N(i), node n tries to identify neighbors
that minimize the waste of its uploading bandwidth. For
this purpose, it sorts its neighbors into ”classes” on the
basis of bandwidth estimations performed at the end of
each upload step. Specifically, at step i it shall estimate
its uplink bandwidth Un(i) as:

max
(

Un(i − 1),
Cfirst delivery

Tfirst delivery

)
where Tfirst delivery is the time of completion of the first
delivered chunk c(i) (in the case chunk c(i) is delivered
to multiple nodes) and Cfirst delivery are the overall
bytes which node n delivers to all its neighbors up to
Tfirst delivery. Node n shall also estimate the downlink
bandwidth Dnk

(i) of neighbor nk (k = 1, 2, ...,M and
M number of overlay neighbors per node) as

Cnk,first delivery

Tfirst delivery

where Cnk,first delivery are the bytes transmitted to
neighbor nk up to Tfirst delivery. Then node n classifies
neighbor node nk in class 1 if Dnk

is greater or equal
than Un, while in class h > 1 if Dnk

is greater or equal
than Un/h but lower than Un/(h − 1).2 In such a way,
a node in class h may be effectively exploited only if
the degree of parallelism of a chunk delivery is greater
or equal than h (i.e. a node in class 2 can be selected
for effective delivery of two or more chunks in parallel
and can not be selected alone for a chunk delivery).
As consequence, once a given N(i) is estimated for the
i-th step, the uploading node n selects a subset of its
neighbors interested in chunk c(i) preferring the ones
belonging to classes minor or equal to N(i).

1The rationale is to advertise the availability of a given chunk in proximity
of the corresponding upload step/steps. However, to guarantee at least one
advertisement per chunk, if a chunk is going to be served and it has never
been advertised, the uploading node advertises the chunk before uploading it.

2These estimates being straightforward starting from the already available
estimate Bnk (i) and downgrading the neighbor node class (initially set by
default to class 1) whenever bandwidth throttling is experienced. However
technical details are quite lengthy and here omitted to save space. It suffices
to add that, unlike the estimate Bn(k), the neighbor node class estimate is
periodically refreshed to avoid maintaining a temporary downlink bandwidth
reduction (due to e.g., multiple parallel downloads experienced by the con-
sidered neighbor node) forever.

If the subset of neighbor nodes interested in chunk
c(i) and belonging to classes minor or equal to N(i)
contains more elements than N(i), the supplier node
either i) selects the N(i) neighbors randomly, or ii)
selects the N(i) neighbors with the biggest value of
uplink bandwidth. By iterating the latter procedure, and
thus having the nodes with greatest branching degree
closest to the tree root (the source of the stream) an
optimal (shortest) distribution tree would be readily
formed. From an implementation stand-point, each node
signals to its neighbors its updated uplink bandwidth
estimation (independently carried out by each node as
described above). To avoid selecting the same neighbor
node (and thus reducing the randomness of the chunk
distribution trees) even in the case of marginal differ-
ences in the estimated uplink bandwidth, a tolerance
margin is introduced (α = 0.95) so that two uplink
bandwidth estimates Ba and Bb with Ba > Bb are
considered equal if Bb > αBa.

Finally, as the decisions to schedule chunk upload are taken
independently at sending nodes, nodes that share a neighbor
could upload the same chunk to such neighbor. To solve this
problem, a node receiving more than one copy of the same
chunk issues ”cancel” signalling commands, thus maintaining
only one upload, which is randomly chosen.

Figure 1 shows how decisions 1), 2) and 3) are taken when
node A has chunks x and y in its FIFO queue and it has to
serve neighbors B, C and D. The figure illustrates also the
advertisement, chunk missing and cancel signalling messages.

Fig. 1. The proposed algorithm with specific reference to decisions 1), 2)
and 3) and signalling aspects.

IV. EVALUATION SCENARIO

OPSS simulator [8][9] was used to assess the performance
of the proposed scheduling algorithm. Specifically, due to
the assumption about bottlenecks only in the access network,
we had no need to generate the physical topology. We only
generated an unstructured random overlay connected topology,
where each node is connected with M randomly selected
neighbors. Connections are bidirectional. This means that
each neighbor can be used either for uploading chunks to or
for downloading chunks from. Each overlay/physical link is

assigned a random end-to-end delay. According to the analysis
in [15], we consider a Gamma distribution for the end-to-end
delay. The Gamma parameters were set in such a way that
µ = 80 msec and σ/µ = 0.1. Introducing end-to-end delays
allowed us to assume that signalling messages take exactly the
end-to-end delay to cross the link between sender and receiver.

We simulated two different scenarios in terms of access link
bandwidth. The first one will be referred to as homogeneous
scenario, because all nodes are assigned the same access link
uplink bandwidth including the stream source. In particular,
if U and R denote respectively the uplink bandwidth and
the stream bit rate (in Kbps), we can characterize the homo-
geneous scenario in terms of the ratio U/R, which will be
referred to as uplink factor. The second one will be referred to
as heterogeneous scenario, because it includes three different
categories of ADSL access links, as reported in table I. The
uplink bandwidth of the stream source is 640 Kbps, while the
stream bit rate is R = 300 Kbps.

Profile % of nodes Uplink Downlink
Origin 640 0
Low 20% 256 1500
Medium 70% 640 4000
High 10% 1000 12000

TABLE I
BANDWIDTH PROFILE

Chunks are generated at the stream source starting from the
time instant t = 1 sec, and each chunk contains T = 1 sec
of stream content. Each simulation was run for 1800 seconds.
However, in order to avoid to capture also the effects of the
initial and final transient, the simulation results we report in
sections V and VI refer to the simulation events relative to the
chunks generated in the timing interval [100,1600] sec.

For each simulation, we focused on the following perfor-
mance metrics.
Chunk delivery ratio - As section II shows, this is the most
common performance metric used in the literature for real time
P2P streaming systems. Specifically, with reference to a given
node, the chunk delivery ratio represents the ratio between the
number of (completely) received chunks and the total number
of generated chunks. Note that we assume that the playout
buffer at receivers has infinite capacity. After evaluating the
chunk delivery ratio corresponding to each node, for each
possible value x of the chunk delivery ratio we calculate the
fraction of nodes which have experienced a chunk delivery
ratio at least x. We will call such metric inverse cumulative
distribution of chunk delivery ratio. The rationale is that it
represents the 1’s complement of the cumulative distribution
of chunk delivery ratio across chunks.
Chunk delivery delay - Due to the characteristic of the
application (streaming of real-time multimedia flows), the
chunk delivery ratio evaluation needs to be complemented by
metrics related to the chunk delivery delay. With reference
to node n and chunk c, we define the delivery delay d(c, n)
as the difference between the time instant at which chunk
c is generated at the source and the time instant at which

the chunk c is completely received from node n. Such delay
accounts not only for the time necessary for the actual transfer
of the chunk (dependent on the connection rate assigned
according to the max-min fair allocation), but also for the
end-to-end delay. With reference to the generic node n, we
then calculate the average delivery delay by averaging on the
received chunks. Thus we evaluate both the distribution of the
average delivery delay across all nodes and the distribution
of the 0.99-percentile of the average delivery delay. Note that
due to the assumption of infinite capacity of the playout buffer,
we take all downloaded chunks into account to evaluate the
distribution of both the average delivery delays and the 0.99-
percentiles of average delivery delays. The latter allows to
identify a posteriori the proper value of the playout buffer
capacity that guarantees the desired chunk delivery ratio3.

V. PERFORMANCE EVALUATION - HOMOGENEOUS
SCENARIO

Results in this section are obtained for the case of ho-
mogeneous nodes. Partners to upload chunks to are selected
randomly. Two mesh scenarios are considered: the case of
each node connected to 3 neighbors, and the case of 9
neighbors. Three different values for the uplink factor are
considered: U/R = 2, 1.5, and 1.25. This choice for the
considered uplink factors allows us to derive results for a
”bandwidth-constrained” network, where the capacity of the
chunk distribution network is limited to at most a factor of
2. In the following results, in order to focus on the effects
of a single parameter, we further assume that the downlink
bandwidth does not contribute in further constraining the
available connection bandwidth4.

Figure 2 shows the inverse cumulative distribution of the
chunk delivery ratio for a network composed of 10.000 stream-
ing peers. We remark that this figure is computed on a per-node
basis, meaning that statistics have been collected separately
for each node, i.e. as perceived by each peer node, and not
averaged on different nodes (this implies that ”unlucky” nodes,
for instance due their topological placement, will explicitly
result in the figure as nodes for which the CDR is small).
The figure shows that i) for a fairly large amount of neighbors
(i.e. 9), there is virtually no node with a CDR lower than
98.5% even in the highly constrained U/R = 1.25 case; ii)
for U/R = 2, from the raw numerical results used in the figure
it is possible to conclude that 99.9% of the nodes experience a
CDR greater than 99.75% for the case of 9 neighbor nodes, and
99.5% for the case of 3 neighbor nodes, and iii) the more dense
the topology (number of neighbors), the better the experienced
CDR. This latter conclusion is quite interesting as it shows that

3Note that we have also to consider the chunk losses due to the push
mechanism.

4Although results in what follows are presented with a ”large” - i.e. a
factor of 10 - per-node downlink bandwidth to avoid any possibility of chunk
delivery throttling by the downlink channels, we have verified via simulation
that no notable difference in performance occurs as long as the downlink
bandwidth is twice the uplink bandwidth. It is also worth to note that in typical
P2P nodes, frequently deployed through asymmetric ADSL connections, it is
reasonable to consider the uplink bandwidth as the throttling factor.

Fig. 2. Inverse cumulative distribution of chunk delivery ratio for varying
uplink factor U/R = 2, 1.5, 1.25 and for varying number of neighbors (3,
9). The network size is 10000 nodes.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 10 20 30 40 50 60 70 80 90

F
ra

c
ti
o

n
 o

f
N

o
d

e
s

Chunk Delivery Delay [s]

3 neighborsUplink Factor
2

1.5
1.25

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 10 20 30 40 50 60 70 80 90

F
ra

c
ti
o

n
 o

f
N

o
d

e
s

Chunk Delivery Delay [s]

9 neighborsUplink Factor
2

1.5
1.25

Fig. 3. Distribution of chunk delivery delay for varying uplink factor U/R =
2, 1.5, 1.25 and for varying number of neighbors (3, 9). The network size is
10000 nodes.

the availability of a large number of neighbors is an important
parameter to guarantee limited loss in the distribution of the
chunks. Figure 3 reports the distribution of chunk delivery
delay. A straightforward consideration that is confirmed by
the figure is that by increasing the uplink factor, the delay
performance consistently improves. Perhaps less obvious is the
comparison of the two cases of 3 and 9 neighbors, as in the
latter case the nodes experience an higher delay. Nevertheless,
this is easily justified. In fact, on the one side, the number
of neighbors do not affect the available bandwidth (in other
words, with U/R = 2 a node may only serve at most two
neighbors during each chunk time, regardless of the number
of connected nodes). On the other side, the fact that a node
has several neighbors implies that it may randomly choose
a node who is, in the same time, downloading the same
chunk from another peer (we recall that this is possible as
there is an interval of time between signalling completion and
actual chunk delivery). The waste of time brought about by
canceled downloads turns into an increased chunk delivery
delay. Finally, another very interesting remark that can be
drawn from figure 3 is that the spread of the average delay as

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09

 5 10 15 20 25 30

F
ra

c
ti
o

n
 o

f
N

o
d

e
s

Chunk Delivery Delay [s]

3 neighbors nodes
100

1000
10000

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 5 10 15 20 25 30

F
ra

c
ti
o

n
 o

f
N

o
d

e
s

Chunk Delivery Delay [s]

9 neighbors nodes
100

1000
10000

Fig. 4. Distribution of chunk delivery delay for varying network size
(100,1000,10000 nodes) and for varying number of neighbors (3,9). The
uplink factor is U/R = 2.

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07

 20 25 30 35 40 45

F
ra

c
ti
o

n
 o

f
N

o
d

e
s

Chunk Delivery Delay [s]

3 neighbors nodes
100

1000
10000

 0
 0.005

 0.01
 0.015

 0.02
 0.025

 0.03
 0.035

 0.04
 0.045

 20 25 30 35 40 45

F
ra

c
ti
o

n
 o

f
N

o
d

e
s

Chunk Delivery Delay [s]

9 neighbors nodes
100

1000
10000

Fig. 5. Distribution of 0.99-percentiles of chunk delivery delay for varying
network size (100,1000,10000 nodes) and for varying number of neighbors
(3,9). The uplink factor is U/R = 2.

perceived by different nodes is very limited. This is clearly
motivated by the exploitation of a random node selection
mechanism which statistically makes all the network nodes
to experience similar delay performance. This occurs because
nodes tend to act as leaves for some chunk (and thus do not use
their uplink bandwidth for said chunk), and as intermediary
nodes for other chunks.

Figure 4 reports the distribution of the perceived average
delay by each node, for varying network sizes, 100, 1000
and 10000 nodes, and U/R = 2. Both cases of neighbor
number equal to 3 and 9 are reported. As expected, delay
performance clearly degrades with the network size, although
the degradation is somewhat limited and appears to follow a
logarithmic law with the number of network nodes (this is
indeed quite intuitive as the depth of the distribution trees
that randomly form clearly follows such a logarithmic law).
Figure 5 shows the corresponding results for what concerns
the distribution of the 0.99-percentiles of the average chunk
delivery delays.

Finally, while all the above results were obtained with a
bandwidth-constrained node as source of the stream, results
shown in figure 6 show the beneficial effect of having a source
node with increased capacity. The figure shows the case of a
homogeneous network composed of 1000 nodes, with U/R =
1.5 and 9 neighbors per node, and it compares the case of a
source node with the same U/R as all the other nodes versus

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 18 20 22 24 26 28 30 32 34

F
ra

c
ti
o

n
 o

f
N

o
d
e
s

Chunk Delivery Delay [s]

Origin U/R
1.5

3

Fig. 6. Impact of increased source node capacity on the distribution of
chunk delivery delay. The network size is 1000 nodes, the uplink factor is
U/R = 1.5 for non source nodes, the number of neighbors is 9.

a source node with double uplink bandwidth, i.e., U/R = 3.
The figure shows that by just doubling the uplink capacity
of the source node, a gain of almost 20% in terms of delay
performance is achieved for the whole network.

VI. PERFORMANCE EVALUATION - HETEROGENEOUS
CASE

Results in this section are obtained for the case of hetero-
geneous scenario described in section IV.

The ability of the algorithm to select among the possible
destinations the nodes which exhibit the largest estimated
uplink bandwidth is fundamental to avoid using the low band-
width nodes as intermediary ones for the chunk distribution.
Figure 7, obtained for a network composed of 10000 nodes,
indeed shows that, thanks to this ability, the CDR experienced
by nodes belonging to different classes is different, and
specifically low bandwidth nodes are the only ones which may
exhibit, with 9 neighbors, a CDR lower than 99.9%. Clearly
with only 3 neighbor nodes there are less nodes among which
the choice of delivering a chunk may be taken, and this turns
into a performance impairment also for the Medium class
nodes. Note that increasing the number of neighbors improves
the CDR of medium profile nodes to the detriment of low
profile ones (which are more rarely chosen by neighbor nodes).

Figure 8 provides the corresponding results for what con-
cerns the chunk delivery delay. The positive impact of a
greater number of neighbor nodes on the chunk delivery tree
formation is clearly envisioned, as chunks are delivered with
significantly lower delay to the high bandwidth nodes (and
also to the medium bandwidth ones when compared with the
low bandwidth nodes). This clearly shows that high (and to
a lower extent medium) bandwidth nodes are more frequently
chosen as intermediaries in the chunk delivery process.

The benefit of such a choice in terms of overall performance
is highlighted in figure 9, which compares the overall chunk
delivery delay distribution obtained by the algorithm choosing
the ”best” neighbor node(s) versus an algorithm who randomly
chooses the neighbors to serve. It shows clearly that the benefit
of choosing to upload chunks to nodes with the higher uplink
bandwidth leads not only to better performance perceived by
high and medium profile nodes with respect to the random
choice algorithm, which is obvious, but surprisingly also to
smaller average chunk delivery delay values for low profile
nodes.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.96 0.965 0.97 0.975 0.98 0.985 0.99 0.995 1

P
e

rc
e

n
ta

g
e

 o
f

N
o

d
e

s

Chunk Delivery Ratio

3 neighbors

Profile
Low

Medium
High

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.96 0.965 0.97 0.975 0.98 0.985 0.99 0.995 1

P
e

rc
e

n
ta

g
e

 o
f

N
o

d
e

s

Chunk Delivery Ratio

9 neighbors

Profile
Low

Medium
High

Fig. 7. Inverse cumulative distribution of chunk delivery ratio classified for
uplink bandwidth profile (Low, Medium and High) and for varying number
of neighbors (3,9) and for network size of 10.000 nodes.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 10 12 14 16 18 20 22 24 26

P
e

rc
e

n
ta

g
e

 o
f

N
o

d
e

s

Chunk Delivery Delay [s]

3 neighborsProfile
Low

Medium
High

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 10 12 14 16 18 20 22 24 26

P
e

rc
e

n
ta

g
e

 o
f

N
o

d
e

s

Chunk Delivery Delay [s]

9 neighborsProfile
Low

Medium
High

Fig. 8. Distribution of chunk delivery delay classified for uplink bandwidth
profile (Low, Medium and High) and for varying number of neighbors (3,9)
and for network size of 10.000 nodes.

VII. CONCLUSION

In this paper we propose a push-based scheduling algorithm
for P2P mesh-based overlay streaming systems. Performance
assessment of the presented solution is based on OPSS, a
discrete event fluid flow simulator for the simulation of large
scale P2P streaming networks. OPSS allowed to produce
simulation results relative to networks of up to 10000 nodes,
whereas experimental results relative to networks of up to 1000
nodes have been proposed up to now. Moreover, differently
from the most of literature works, which focus on the chunk
delivery ratio as performance metric, we also consider the
chunk delivery delay as metric somehow representative of the
absolute delay with respect to the stream source. We analyzed
the individual effect of a variety of system parameters, such
as the number of neighbor nodes, constrained link bandwidth,
node heterogeneity or network size. The achieved results show
that performance is already quite effective even with severely
bandwidth constrained large scale networks. Future work will
be focused on analyzing the effect of the peer churn on the
performance of the proposed scheduling strategy.

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09

 10 12 14 16 18 20 22 24 26 28

F
ra

c
ti
o

n
 o

f
N

o
d

e
s

Chunk Delivery Delay [s]

Low profileAlgorithm
random

best

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09

 10 12 14 16 18 20 22 24 26 28

F
ra

c
ti
o

n
 o

f
N

o
d

e
s

Chunk Delivery Delay [s]

Medium profileAlgorithm
random

best

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 10 12 14 16 18 20 22 24 26 28

F
ra

c
ti
o

n
 o

f
N

o
d

e
s

Chunk Delivery Delay [s]

High profileAlgorithm
random

best

Fig. 9. Comparison of the distribution of the chunk delivery delay classified
for uplink bandwidth profile (Low, Medium and High) of the two algorithms
for 9 neighbors and for network size of 10.000 nodes.

REFERENCES

[1] Y. Chu, S. G. Rao and H. Zhang, A case for end system multicast, in
Proceedings of ACM SIGMETRICS, 2000.

[2] S. Banerjee, B. Bhattacharjee and C. Kommareddy, Scalable application
layer multicast, in Proceedings of ACM SIGCOMM, 2002.

[3] D. A. Tran, K. A. Hua and T. Do, ZIGZAG: an efficient peer-to-peer
scheme for media streaming, in Proceedings of IEEE INFOCOM, 2003.

[4] X. Zhang, J.C. Liu, B. Li and P. Yum, CoolStreaming/DONet: A data-
driven overlay network for efficient live media streaming, In Proceedings
of IEEE INFOCOM, 2005.

[5] M. Zhang, L. Zhao, Y. Tang, J. Luo and S. Yang, Large-Scale Live
Media Streaming over Peer-to-Peer Networks through Global Internet,
in Proceedings of ACM Multimedia, 2005.

[6] N. Magharei and R. Rejaie, PRIME: Peer-to-Peer Receiver-drIven MEsh-
based Streaming, in Proceedings of IEEE INFOCOM, 2007.

[7] M. Zhang, Y. Xiong, Q. Zhang and S. Yang, On the Optimal Scheduling
for Media Streaming in Data-driven Overlay Networks, in Proceedings
of IEEE GLOBECOM, 2006.

[8] OPSS simulator, http://netgroup.uniroma2.it/twiki/bin/
view.cgi/Netgroup/OpssPublicPage.

[9] L. Bracciale, F. Lo Piccolo, D. Luzzi and S. Salsano OPSS: an
Overlay Peer-to-peer Streaming Simulator for large-scale networks,
to be appear in ACM Performance Evaluation Review and available
at http://netgroup.uniroma2.it/twiki/bin/viewfile.
cgi/Netgroup/OpssPublicPage?rev=1;filename=opss_
acm_perf.pdf.

[10] D. Bertsekas and R. Gallager, Data networks, Prentice-Hall, Inc., Upper
Saddle River, NJ, 1987

[11] F. Lo Piccolo, G. Bianchi and S. Cassella, Efficient simulation of
bandwidth allocation dynamics in P2P Networks, in Proceedings of IEEE
GLOBECOM, 2006.

[12] PlanetLab web site, http://www.planet-lab.org/.
[13] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak

and M. Bowman, PlanetLab: An Overlay Testbed for Broad-Coverage
Services, in ACM Computer Communications Review, vol. 33, no. 3,
2003.

[14] The Network Simulator ns-2, http://www.isi.edu/nsnam/ns/
[15] C.J. Bovy, H.T. Mertodimedjo, G. Hooghiemstra, H. Uijterwaal and P.

Van Mieghem, Analysis of End-to-end Delay Measurements in Internet,
in Proceedings of the Passive and Active Measurements Workshop
(PAM2002), 2002 (on line available at http://www.ripe.net/
projects/ttm/Documents/PAM2002_TUD.pdf).

