
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Workshop NAOMI 2008,1st April 2008, Brussels, Belgium.
Copyright © 2004 ACM 1-59593-XXX-X/08/04…$5.00.

Design and Development of a Context Oriented Language for
Middleware Based Applications

Andrea Sindico

Elettronica S.p.A. Italy
andrea.sindico@elt.it

Giovanni Bartolomeo
DIE – Dept of Electronic

Engineering
University of Rome “Tor Vergata”

Italy
giovanni.bartolomeo@uniroma2.it

Vincenzo Grassi
University of Rome “Tor Vergata”

Italy
vgrassi@info.uniroma2.it

Stefano Salsano
DIE – Dept of Electronic

Engineering
University of Rome “Tor Vergata”

Italy
stefano.salsano@uniroma2.it

Abstract
Nowadays context-aware adaptation is becoming an important
feature for pervasive computing applications. In this paper we
present JCOOL, a COntext Oriented Language tailored to handle
context awareness in Java applications. JCOOL exploits Aspect
Oriented techniques so that context changes detection and related
adaptations can be considered as two separated crosscutting
concerns with respect to the core “business logic” of new or
legacy Java applications. Moreover, mobile and pervasive
applications generally rely on middlewares that hide the
complexity of the underlying environment. In order to show how
JCOOL support can be introduced into middleware based
application, in the second part of the paper we also describe
JCOOL integration in SMILE [1], a Middleware Independent
Layer developed in the scope of the SMS project [2].
Categories and Subject Descriptors: D.3.2, D3.3 [Language
Classifications, Language Constructs and Features]:
Specialized application languages – Frameworks.
General Terms: Design, Languages.
Keywords: context awareness, aspect oriented programming,
domain specific language, middleware.
1. Introduction
Specific mechanisms and API are needed to support context
dependent modifications of the behavior of mobile and distributed
applications. Existing platforms that try to achieve this goal using
general-purpose languages (GPLs), suffer from the common
difficulties of GPLs related to the lack of semantic expressiveness
of their constructs. Besides, the adaptation to different contexts
can be considered as an orthogonal task with respect to the core
application logic [3]. In this respect, Object Oriented GPLs

suffer from their inability to encapsulate crosscutting concerns,
such context awareness, without affecting the components
business logic. This suggests the adoption of a Context Oriented
Programming approach based on the use of Domain Specific
Languages (DSLs) tailored for the context awareness needs: these
languages can better capture the crosscutting nature of context
awareness and provide more effective constructs to aid the
developer in tackling this concern.
This paper describes an ongoing work on the definition of a
context oriented language named JCOOL (Java COntext Oriented
Language) we have recently started to design and develop as a
follow up of the work made in [4]. One of the main goals of
JCOOL is the possibility of introducing context awareness
capabilities into an already existing Java application without
changing its original code. To show how this can be achieved we
propose an example of JCOOL integration into SMILE [5][6], a
“Simple Middleware Independent LayEr” between applications
and the underlying middleware platform. The goal of SMILE is to
relieve the developer from the need of writing middleware
specific code, focusing instead on the implementation of the
application business logic.
2. Related Works
Context-oriented Programming (COP) is a new programming
approach which aims to alleviate the spreading of context-
dependent behaviours throughout a program by incorporating
context as a first-class construct of a programming language
[7][8][9]. In [10][11] the following list of mechanisms a Context
Oriented Programming Language should provide is described:

- Behavioral variations: variations tipically consist of
new or modified behaviour of the system components;

- Layers: Layers group related context-dependent
behavioural varations;

- Activation: Layers aggregating context-dependent
behavioural variations can be activated and deactivated
dynamically at runtime. Code can decide to enable or
disable layers of aggregate behavioural variations based
on the current context;

Context SimpleContext involve ClassA {

default;
 stateA :-(ClassA *.attribute == 1);
 stateB(i) :-(ClassA i.attribute == 2);

}

Context ComplexContext involve ClassB,
 SimpleContext

{

default;
 compositeState:-(SimpleContext.stateB),
 (ClassB *.attributeB >1);

complexState:-[(SimpleContext.stateA)+,
 (SimpleContext.stateB){2}],

(SimpleContext.stateA);

}

Figure 1. Examples of Contexts

- Context: Any information which is computationally
accessible may be part of the context upon which
behavioural variations depend;

- Scoping: The scope where layers are activated or
deactivated can be controlled explicitly.

Aspect Oriented Programming (AOP) [12] can be exploited to
address these requirements. For example, Layers of behavioural
variations can be realized by the definition of ad hoc around
advices whose activation is triggered by other Aspects which play
the role of Context monitors as explained in [4]. However, AOP
languages only consider the elementary events in the execution
flow of a program such as method calls, field accesses, and so on,
which in AOP terminology are called join points. AOP join points
are not expressive enough to cover the complexity of a context
definition which instead may depend on complex and distributed
properties of the system components and even of its execution
environment. In [3], E. Tanter et al. point out that AOP languages
are also limited with respect to the kind of context dependencies
that can be expressed. For example, even though there are a
number of AOP languages that make it possible to define
pointcuts which depend on past execution history, because of the
lack of an explicit context definition, they only consider simple
events such as method invocations but don’t consider past
contexts.
Tanter et al. also propose a list of characteristics a context
definition should have:

- Stateful: a context may have state associated with it;
- Composable: different context definitions can be

combined to define complex contexts;
- Parametrized: context can be defined generically, and

parametrizied by aspects that are restricted to it;

In [3], a Reflex extension is proposed which addresses the above
requirements. Reflex itself is a Java extension which provides
building blocks for facilitating the implementation of different
aspect oriented languages so that it is easier to experiment with
new AOP concepts and languages. In the framework described in
[3] the developer has to define how and when a context has to be
saved so that it will be possible to refer to it in a future instant. In
this respect, JCOOL makes it easier to refer to past contexts. For
example the developer does not have to define how context must
be saved because the only informations a context should provide,
except his state, are the actual parameters which has verified it.
How these parameters are stored is hidden to the developer by the
JCOOL underlying environment.
In [13] Costanza et al. describe ContextL, a Context Oriented
Programming Language for Common Lisp Object System, which
provides a set of language constructs that allow the developer to
associate partial class and method definitions with layers. Layers
can then be activated and deactivated in the control flow of a
running program. When a layer is activated, the partial definitions
become part of the program until this layer is deactivated.
The main difference between ContextL and JCOOL is that
ContextL does not provide language constructs to define a
Context and its inner states. ContextL only provides a macro,
named with-active-layers, to activate a layer in the dynamic
scope of a program. However, even though the developer does not
have to spread context adaptation code in the base program,
which is instead encapsulated in the layer definitions, it has to
spread with-active-layers block of code in the base program
in those points where the related context changes. JCOOL
provides distinct language constructs for Context Monitoring and
Context Adaptation. It considers these two concerns as two

crosscutting concerns: the former crosscuts the base program to
detect when it is in a context of interest, the latter crosscuts the
Context Monitors to introduce context adaptations when needed.
In this way we achieve a strong separation between when and how
context adaptation should be carried out. Moreover, these two
concerns are well encapsulated in two distinct first-class language
constructs. Thanks to this, the base program is not affected by any
of these two concerns. Moreover, because of the lack of an
explicit context definition, ContextL does not address the Context
definition requirements proposed in [3], which are instead
explicitly taken into account by JCOOL.
3. JCOOL
JCOOL is a domain specific aspect oriented language derived
from the UML Profile for context awareness described in [4]. In
JCOOL there are two main constructs named Context and
Adaptor that are the code level counterparts of the
ContextMonitor and ContextAdaptor elements defined in the
aforementioned UML profile. As its UML equivalent, a Context
is composed by a set of rules which specify conditions that must
hold to introduce some kind of context adaptation.
In JCOOL each Context is identified by a unique name and can
involve one or more components of the base system. This means
that a Context definition can affect only those classes of the base
system that are listed after the key word involve.
A Context is represented as a state machine with a default start
state and one ore more states in which it may migrate. To this end,
a state transition rule is associated to each state. The relation
between a state and its transition rule is expressed with an Horn
Clause in a Prolog-like syntax [14].

stateName :- stateTransitionRule

A Context is in a given state until the related transition rule
holds while it is in the default state if none of its transition rules is
verified. A state transition rule consists of a set of one or more
predicates, over the components involved by the Context,
combined with the logical operators “,”(AND), “|” (OR) and “!”
(NOT). Because of these characteristics JCOOL’s Contexts can be
considered Statefull thus addressing the first requirement defined
in [3].

Adaptor SimpleAdaptor {

SimpleContext.stateA {

//stateA incoming adaptations
in:{

 System.out.println(“coming in the
 SimpleContext.stateA context state”);

}

//stateA outgouing adaptations
 out:{
 System.out.println(“Going out from the

SimpleContext.stateA context state”);
}

//stateA layers (Behavioral changes)
 public void ClassA.simpleMethod(){
 System.out.println(“Alternative method
 Implementation”);
 }

}

SimpleContext.stateB(i){

//stateB incoming adaptations
 in: {...}
 //stateB outgoing adaptations
 out: {...}
 }

}

Figure 2. Example of Adaptor

Contexts are also Composable, because they may be built as a
composition of other contexts. The states of a composite Context
have state transition rules that depend on the state transitions of
the Contexts it is composed by.
Figure 1 depicts two examples of Context definition. The first
one consists of a Context named SimpleContext which involves
the ClassA class of an hypothetical base system. This context can
be in two different states: stateA and stateB, depending on the
value of an attribute of a ClassA’s instance.
The second Context depicted in Figure 1, named
ComplexContext, is an example of composite context because it
depends on the SimpleContext context and on the ClassB
class. It starts in the default state but migrates in the
compositeState state as soon as the SimpleContext is in the
stateA state and the value of an attribute of a ClassB’s instance
is greater than a certain value.
Sometimes it could be necessary to detect a precise sequence of
events in order to consider a Context in certain state. To this end,
square brackets must be used to enclose those events of a state
transition rule that must occur in the exact sequence they are
written in. Operators ?, + and * can be used, like in regular
expression, to express that an event should occur respectively:
never or one time; at least one time; never or any time. Curly
brackets can be used to enclose the exact number of times an
event must occur. In composite context this syntax can be used to
define a context state which depends on an exact sequence of past
contexts and possibly refers to their context parameters. For
example, the context ComplexContext of Figure 1 migrates in
the complexState only after that the SimpleContext has
migrated into the stateA at least one time, then it has migrated in
the stateB two times and it is currently in the stateA.
On the transition between two states, a context may trigger the
execution of one or more Adaptors through the invocation of
one of its entry points (Figure 2). As its UML counterpart, an
Adaptor is a container for context adaptation mechanisms. Each
Adaptor is identified by a unique name and may be driven by
one or more Contexts, as well each Context may drive several
Adaptors. Parameters can be passed to the adaptation action after
a transition rule is evaluated and fired. These parameters can be
free variables which take the values of those objects which verify
the fired state transition rule. For example, the i variable used in
the SimpleContext.stateB definition, takes the value of the
ClassA instance which verifies the related state transition rule
when fired.
An Adaptor has as many entry points as the state transitions it is
designed to intercept. For each entry point two kinds of adaptation
can be defined: one shot activities and behavioural variations.
One shot activities consist of two pieces of code associated to an
Adaptor’s entry point: the former must be executed at the related
context-state incoming event (in); the latter has to be executed at
the related context-state outgoing event (out). Within these
blocks it is possible to use the optional parameters passed with the
state transition.
Behavioral variations, or layers, consist of a set of alternative
method definitions that may affect classes or particular class
instances passed as parameters to the Adaptor. A behavioural
variation is active until the involved Context remains in the
related state. When a behavioural variation is no longer active the
methods it has affected return to their original implementations.
The difference between these two kinds of adaptation is that one
shot activities are executed as soon as the related Context goes
in/out a certain state. They can use objects passed by the related
context to perform activities preparatory to the context change.
Behavioural changes, instead, have to be considered as a dynamic
override of some methods of objects or classes of the base system

that change their behaviour until they remain in a certain context
state. As mentioned, behavioural changes may affect classes or
instances so that, in a given time, different objects of the same
class may have different implementations of the same methods
depending on their context. When a behavioural variation is
removed the methods it has affected return to their original
implementations.
Figure 2 depicts an example of Adaptor which is driven by the
SimpleContext of Figure 1. As soon as the SimpleContext
enters in the stateA the in block of code of the related
SimpleAdaptor entry point is executed. Until the
SimpleContext is in that state, behavioural changes are
introduced that consist, for this example, in the overriding of the
ClassA.simpleMethod method. Since this behavioural
variations is related to the ClassA it affects all the ClassA instance
of the system. When the SimpleContext goes out the stateA
the out block of code of the related SimpleAdaptor entry point
is executed and the behavioural variations are deactivated so that
the ClassA.simpleMethod returns to its original
implementation.
4. SMILE
Developed in the scope of the SMS Project [2] SMILE is an
abstract platform [15] with the explicit goal of avoiding
developers to rewrite their applications as a consequence of
changes in the underlying middleware, allowing to focus the
development effort on the business logic more than on the
implementation details. An application written for SMILE
consists of a set of peers, named SMILEPeers, which are abstract
classes loose coupled with the underlying runtime environment.

Context MediumReliability involve SmilePeer{

default;

 low(instance):-instance.currentBinding.
 equals(SipBinding);
 high(instance):-instance.currentBinding.
 equals(XMPPBinding) &&
 ((XMPPBinding)instance.currentBinding).

getTransport().
 equals(XMPPBinding.HTTPS));

}

Adaptor PrivacyAdaptor {

MediumReliability.low(instance) {

 in : {
 System.out.println(“Warning unsecured

 medium “);
 }

out : { //No action }
 //layer definition
 Public void instance.send(Message msg){
 if((msg.getOverallPrivacyLevel()==HIGH){
 msg.getSender().printMsg(“Message

privacy level not compliant with the
current medium”);

 } else { proceed(); }
 }

}

}

Figure 3. Examples of JCOOL in SMILE

From the developer point of view, SMILE peers are autonomous
entities which may communicate through message exchanges.
Each peer may access a common minimun set of features provided
in form of an API. These features typically include naming and
addressing, service registry, message routing mechanisms, etc.
and are implemented by exploiting the underlying middleware
facilitations.
In order to exploit these facilitations, without directly relying on
them, SMILE provides a mechanisms called binding, similar to
the one defined in Web Service Description Language (WSDL)
[16]. Thanks to this separation layer, applications written for
SMILE are not to be changed as a consequence of changes in the
underlying middleware platform; instead only the binding has to
change. Unlike WSDL, however, the same SMILE application, at
run-time, might exploit more than one binding, thus dynamically
adapting its behaviour to different contexts. More details can be
found in [5][6].
In the following section we will describe how this feature
represents an interesting use case for JCOOL, which may be
seamlessly integrated into SMILE. For clearness’ sake, with the
help of an example, we will describe step by step the procedure
developers have to follow to successfully achieve such an
integration, together with some internal details the platform hides
them, in order to properly run JCOOL context oriented
applications in a seamless way.
5. JCOOL as COP Support for SMILE
Developers wishing to use JCOOL support in SMILE first have to
identify possible join points; in addition to application specific
operations, these include specific pointcuts provided by the
SMILE API, which are of four kinds: callbacks for implementing
the application lifecycle; methods to interact with the service
registry; methods and callbacks for message exchanges and for
remote procedure calls; interfaces between the applications and
the bindings. Subsequently, developers add two additional sets of
files to their SMILE application source code: one set defining
Context, with initial state and state transition rules; the second
set defining the Adaptors. Both these file sets have a global
scope, i.e. they can refer to any object (including custom objects)
defined in the sources.
As an example, consider a SMILE application composed by a set
of SMILE Peers with some of them having to send messages
requiring a high privacy level. JCOOL can be used to introduce a
context aware adaptation so that, depending on the reliability of
the transport protocol available in the currently active binding, a
SMILE Peer should send or not its message.
Figure 3 depicts the definition of a JCOOL Context named
MediumReliability which involves the SMILEPeer class.
Suppose this context can be in two different states: low and high,
depending on the security level provided by the transport protocol
used by a given binding.
The instance parameter, used in the context definition, is a formal
parameter which is evaluated whenever the state transition rule is
fired. Once evaluated, it is passed as actual parameter to any
Adaptor triggered by this Context. In this example, whenever the
MediumReliability context migrates into the low state, it
triggers the execution of PrivacyAdaptor. PrivacyAdaptor
prints out a message to alert about the context change and
introduce a behavioral variation that changes the send method of
the passed SMILEPeer instance so that this instance will not send
any message requiring a high privacy level. Note that this change
affects only SMILEPeer instances which are using an unsecure

binding whereas other SMILEPeers continue to use seamlessly
their original implementation of the send method.
The SMILE platform takes care of implementing such a logic
seamlessly , in two simple steps. At compile time, JCOOL
Adaptors pass through an ad hoc pre-processor that weaves them
with legacy sources in order to insert adaptation code. At runtime,
an entity called “Broker”, implementing inversion of control and
listening at any event related to peers contained in a given
platform instance, is responsible also to monitor the bindings to
the underlying middleware platforms. Whenever the application
uses JCOOL support, context states and transition rules contained
in a JCOOL Context are dynamically interpreted by the Broker
which finally invokes the execution of triggered adaptation
actions whenever needed.

6. Conclusions
The ultimate goal of research in Context Oriented Programming is
to provide language constructs to aid software developers in a
better encapsulation of crosscutting context dependent behaviors.
In this paper we have presented JCOOL, a domain specific
language that makes possible a strong separation between the
Context Monitoring and Context Adaptation concerns with
respect to the base system. This feature aids the designer to think
at these two concerns separately, designing different Context
Monitors and Adaptors that can even be reused and combined into
different architectures to achieve the desired degree of context
awareness. Moreover, in order to show how JCOOL support can
be provided into a middleware for distributed applications, we
have also described JCOOL integration into SMILE.

What we have presented is a first step of an ongoing work. In the
future, we intend to investigate about the possibility to import
Prolog knowledge bases in a Context definition so that its state
transition rules, thank to their horn clause syntax, may use modus
ponens to detect inferred context states. For example: if the fact
“Paris is in France” is known, the context location(“Paris”)
will be accepted as a match of the context location(“France”)
[9].
Another open issue concerns the coincidental activation of
different behavioural variations that affect common target
components; i.e. different behavioural variations that affect the
same methods of the same components at the same time.
Currently, for each component, behavioural variations affecting
the same method are activated in a stack like way so that when a
behavioural variation is activated it automatically deactivates the
previous one. However we would investigate about a better way
to solve this issue i.e. by providing a way to automatically merge
in a unique variation independent not conflictual variations that
affect the same components.
We are currently working on the development of a first prototype
of JCOOL pre-processor that will perform a static weaving of
Context and Adaptors’ code with a given target base system. This
first goal will not cover the possibility to handle unforeseen
context adaptation. However, to address the issue of unpredictable
context changes and related adaptations, we are already
investigating about the possibility to exploit runtime weaving
capabilities of modern AOP environment [17].

References
[1] The SMILE (Simple Middleware Independet LayEr) Project.

http://netgroup.uniroma2.it/twiki/bin/view.cgi/Main/SmilePublic
[2] The IST-Simple Mobile Service (IST-SMS) Project.

http://www.ist-sms-org
[3] E. Tanter, K. Gybels, M. Denker, A. Bergel Context Aware Aspects.

SC 2006 (W. Lowe, M. Sudholt eds), LNCS 4089, 2006 pp.227.242
[4] V. Grassi, A. Sindico Towards Model Driven Design of Service

Based Context Aware Applications. International Workshop on
Engineering of software services for pervasive environments.
ISBN:978-1-59593-798-8, pages 69-74, ACM, USA.

[5] G. Bartolomeo, S. Salsano, R. Glaschick, A Glimpes into SMILE
Programming.
http://netgroup.uniroma2.it/twiki/bin/viewfile.cgi/Main/SmilePublic?
rev=1;filename=tr-smile-v1.0.pdf

[6] S. Salsano, G. Bartolomeo, C. Trubiani, N. Blefari Melazzi: SMILE, a
Simple Middleware Independent LayEr for distributed mobile
applications. IEEE WCNC 2008, March 31-April 1, 2008, Las Vegas

[7] M. Gassanenko, Context Oriented Programming: Evolution of
Vocabularies. Proceedings of the euroFORTH’93 Conference.
Marianske Lazne, Czech Republic.

[8] M. Gassenenko, Context Oriented Programming. euroFORTH’98,
Schloss Dagstuhl, Germany.

[9] R. Keays, A. Rakotonirainy. Context Oriented Programming.
International Workshop on Data Engineering for Wireless and Mobile
Access, San Diego, USA, 2003. ACM Press.

[10] R. Hirschfeld, Modularizing Context-dependent Behavioral Var
ations with Context-oriented Programming. Generative and Trans
formational Techniques in Software Engineering, Braga, Portugal
2007.

[11] R. Hirschfeld, P. Costanza, O. Nierstrasz. Context-oriented Pro
gramming. In Journal of Object Technology (JOT), vol. 7, no. 3,
pages 125-151, March-April 2008, www.jot.fm;

[12] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M
Loingtier, J. Irwin, Aspect Oriented Programmin: In Proceedings of
the European Conference on Object-Oriented Programming
(ECOOP), Eds Vo. 1241. Springer-Verlag, Berlin, Heidelberg, and
New York, 220-252.

[13] P.Costanza R. Hirschfeld Language constructs for context oriented
programming. In Proceedings of the ACM Dynamic language
Symposium, San Diego, California, USA, October 18,2005 ACM
DL..

[14] W.F. Clocksin, C.s. Mellish, Programming in Prolog, Springer
Verlag New York, Inc., New York, NY, USA, 1987.

[15] P. A. Almeida, Model-Driven Design of Distributed Applications.
Ph.D. (TI/FRS/018), The Netherlands, 2006, ISBN 90-75176-422

[16] W3C Web Services Description Language (WSDL) 1.1. W3C Note
15 March 2001, http://www.w3.org/TR/wsdl

[17] W. Vanderperren, D. Suvèe, B. Verheecke, M. Agustina Cibràn, V.
Jonckers. Adaptive Programming in JAsCo. In Proceedings of AOSD
2005, ACM Press, Chicago, USA.

