
Dynamic resource configuration in DiffServ network: control plane mechanisms

and performance evaluation of a Traffic Control API

S. Giordano1, M. Listanti2, F. Mustacchio1, S. Niccolini1, S. Salsano3, L. Veltri4

1 Dept. of Information Engineering – University of Pisa, Italy

{s.giordano,fabio.mustacchio,s.niccolini}@iet.unipi.it
2 INFOCOM – University of Rome “La Sapienza”, Italy

listanti@infocom.uniroma1.it

3 DIE – University of Rome “Tor Vergata”, Italy

stefano.salsano@uniroma2.it

4 Dept. of Information Engineering – University of Parma, Italy

luca.veltri@unipr.it

Abstract. Voice, video and multimedia applications are sensitive to the QoS provided by the

underlying IP network. The DiffServ architecture offers a set of QoS mechanisms for IP networks.

The “binding” of the applications QoS needs with the QoS features offered by the DiffServ

networks is still an open problem. The simplest approach is to have a static configuration of QoS

and therefore no direct interaction in the control plane between applications and QoS. We consider

the advanced scenario, where the QoS mechanisms can be dynamically configured to follow the

applications’ need. For this scenario, a set of control plane interfaces needed for a whole end-to-

end QoS architecture is defined. At the lower lever, an internal interface (“Application

Programming Interface” – API) in the QoS router is considered. This interface provides access to

the DiffServ QoS mechanism available in a router and it is used by the control logic running in the

router itself. Then a QoS signaling protocol is considered, that allows external QoS clients to

dynamically access the QoS services provided by the network. Finally the interaction of a session

level signaling protocol (i.e. the SIP for IP telephony) with the QoS protocol is defined. The

testbed implementation of proposed architecture and a set of performance tests on the internal QoS

API are reported.

1. Introduction

The automation of the resource allocation process and of network element configuration within a QoS

network is a hot topic in the Internet community. Looking at the standardization effort in the area of

 2

IP QoS the two main approaches that have been proposed in the IETF are the Integrated Services

(IntServ) model and the Differentiated Services (DiffServ) model. Additional proposals consider a

combination of the two approaches. In addition, the MPLS (Multi Protocol Label Switching)

technology is going to play an important role in this field, for example as transport backbone for

DiffServ. A very good introduction to IP QoS topics can be found in [1], [2].

The DiffServ architecture has the potentiality, with its Per Hop Behaviors (PHBs), to differentiate the

QoS in a scalable mode; unfortunately such architecture is still utilized in a static manner. The

providers are configuring the network resources statically with a capacity planning study without a

time-dependent optimization. Since the amount of traffic offered to the network is intrinsically

variable with time there is the possibility of underutilizing the resources or overloading the network.

The IntServ architecture, on the other hand, is a more dynamic one and it is more suited to address

time-variant configuration issues but it has shown its weakness when dealing with scalability

problems.

In the current DiffServ framework, even if is possible to define a static SLA (Service Level

Agreement), it is difficult for a client to rely on such SLAs for several reasons:

− the maintenance of the information about all the users introduces scalability issues;

− the user could change the call parameters during the call, paying for unused resource;

− it is difficult to define static SLAs that well suite to the user demand.

For these reasons dynamic resource allocation in a QoS domain is a very important issue.

In particular, this work is focused on providing a scalable architecture for dynamic resource allocation

/ configuration when an access network (which may be QoS aware or not) requests transport to a

“QoS enabled” network. The proposed QoS architecture is based on two important aspects: the

DiffServ based resource management scheme for guaranteeing a suitable level of QoS, and the

signaling mechanisms for providing dynamic resource reservation. The first aspect mainly deals with

“Traffic Control” (TC) and scheduling strategies, while the latter deals with signaling protocols.

Traffic Control is the basic element of the QoS architecture, implemented in the QoS capable routers.

Such QoS router should classify QoS enabled packets and handle the packets applying a proper

forwarding treatment. These Traffic Control capabilities must be configured dynamically, i.e. the

 3

routers should offer an interface to accept configuration requests related to the setup and release of

QoS flows. Traffic Control capability and interface aspects will be analyzed in this work.

Regarding the signaling mechanisms, different solution have currently been considered by

standardization groups. Since QoS aspects are particularly important for real-time multimedia

applications (e.g. IP Telephony, Videoconferencing, etc.), we will analyzed a dynamic reservation

architecture based on the SIP (Session Initiation Protocol) protocol as application level protocol. SIP

[3] is currently having a lot of attention within IETF (Internet Engineering Task Force) and it seems

to be the more promising candidate as call setup signaling for the present day and future IP based

telephony services (e.g. usage of SIP in the Internet Multimedia Subsystem (IMS) specifications is

chosen by 3GPP group [4]). It could even be a real competitor to the Plain Old Telephone Service

(PSTN). For the realization of this scenario, there is the obvious need to provide a good speech

quality. This quality in turn depends on the Quality of Service delivered by the IP network.

Reservation and/or admission control mechanisms could be needed to get QoS from the IP network.

Unfortunately, at present day, there is not a clear picture about the “elected” mechanism for QoS

provisioning in IP network, as much research and standardization effort is ongoing in this area. The

interaction of these QoS mechanisms with the call setup procedures (i.e. SIP) is therefore a very hot

topic. There is a recent work of the SIP IETF Working Group [5], which deals with the interaction

between SIP and resource management for QoS.

Our goal is to enable seamless inter-operation between the application level protocol, the

policy/resource management protocol and the router configuration. To accommodate this aim we

propose, in this work, a very simple solution that is based on an enhancement of the SIP protocol to

convey QoS related information. The solution preserves backward compatibility with current SIP

applications and it de-couples as much as possible the SIP signaling from the handling of QoS.

Moreover the solution foresees the use of COPS (extended with QoS handler features) protocol as

policy/bandwidth control and the use of Linux Traffic Control (TC) to build the QoS mechanisms.

The rest of the paper is organized as follows. Section 2 gives an overview of the proposed

mechanisms for dynamic resource allocation explaining the rationale and overall requirements. Those

mechanisms are detailed in Sections 3 and Section 4, dealing with Traffic Control and QoS signaling

mechanisms, respectively. In Section 5 a test-bed implementation of the overall architecture is

 4

described, while Section 6 reports the test results on the performance of the Traffic Control API.

Finally, in Section 7, we give our conclusions.

2. Dynamic Resource Configuration: Mechanisms Overview

The configuration of the DiffServ Traffic Control mechanisms in the routers can be “triggered” in

several ways. The simplest approach, suitable for a “static” QoS configuration is to manually operate

with the router Command Line Interface (CLI). More sophisticated solutions, that always operate on

the management plane (i.e. suitable for static QoS), are based on management protocols like SNMP

[18] or COPS-PR [6]. Coming to a dynamic approach based on signaling, the IntServ architecture

dictated the use of the RSVP protocol. We will describe the use of a variant of the COPS [7]

protocol, named COPS-DRA (Dynamic Resource Allocation) [8] as the QoS signaling protocols that

triggers the resource configuration in the routers. Fig. 1 provides a representation of the different

resource configuration mechanisms of a DiffServ router.

Internally the routers will have a primitive interface which will handle the configuration commands

(coming from CLI interface, management or signaling protocols) translating into directives on the

router hardware. This interface is typically not available in a commercial router. In case of the

software router based on the open source Linux Operating System, such interface is available and it is

called “TC API” [15]. The TC API allows a controlling entity to configure the traffic control modules

(classifier, policer, marker, queuing disciplines) according to the dynamic setup and release of QoS

flows. In dynamic approach considered in this work the controlling entity resides in the router and it is

in turn controlled by means of a QoS signaling protocol. The performance of the dynamic

configuration mechanisms in the routers may constitute a bottleneck in a dynamic QoS architecture.

For example, a dynamic configuration mechanism based on Command Line Interface could not

provide adequate performance in most current commercial routers. In Section 6 we will present some

simple “black-box” measurements related to the TC API performance in a Linux based software

router.

 5

DiffServ
Traffic Control
mechanisms

IP data packets

QoS signalling
(RSVP,

COPS-DRA)

Management
(CLI, SNMP…)

Signalling protocols

Management protocols

(internal)
primitive interface

for resource
configuration

Fig. 1. Resource configuration mechanisms in a DiffServ router

The IntServ “traditional” RSVP approach foresees that QoS signaling is initiated by the end terminals

and strictly follows the data path. Therefore each router in the path receives resource reservations, it

can take local admission control decisions and then it can configure the Traffic Control mechanism. In

a Linux software router this last step means interacting with the TC API.

In the proposed architecture a “QoS provider” is placed in each Edge Router (ER). The COPS-DRA

protocol is used by a “QoS client” to make reservation requests to the QoS provider for admission in

a QoS enabled network. The QoS provider takes an admission control decision and then it uses the

TC API to configure the Traffic Control mechanisms. Differently from basic RSVP approach, the

admission control decision taken by the QoS provider in the Edge Router does not only refer to the

local link, but it can be related to an edge-to-edge path in the QoS enabled network. For this reason,

in the resource management and admission control process the Edge Routers may be supported by a

logically centralized entity, called Bandwidth Broker (BB). The signaling dialogue between Edge

Routers and Bandwidth Broker is based on COPS-DRA as well.

Another important difference from basic RSVP approach is that the COPS-DRA signaling does not

need to strictly follow the data path and the signaling does not need to be initiated by the end terminal.

Therefore the user terminal is not “forced” to be aware of the network QoS model, and it should not

originate the resource reservation with an “ad hoc” protocol (e.g. RSVP). In our belief such a solution

limits the scalability of the architecture and needs a capillary control on every user terminal.

 6

However triggering the resource reservation is mandatory in order to take advantage from the

flexibility of a dynamic Service Level Agreement (SLA) scheme. The proposed solution is to enhance

the session initiation signaling in order to care for QoS. In particular we considered the use of the SIP

protocol in order to trigger the resource reservation.

The solution foresees the enhancement of the SIP proxy servers to handle QoS aspects. In the

following, the enhanced SIP server will be called Q-SIP server (QoS enabled SIP server). All the QoS

aspects can be covered by the Q-SIP servers in the originating and terminating sides, no involvement

of the terminals is needed, therefore the user terminal can be decoupled by the knowledge of the QoS

model used in the network. Note also that in a DiffServ QoS scenario there will be servers dedicated

to policy control, accounting and billing aspects. Hence, a solution based on SIP servers is really

suited to this QoS scenario.

Once the resource reservation is accepted the configuration phase takes place by means of kernel

configuration. In our solution a Traffic Control Server is used configure the Linux kernel; it takes the

input from the COPS-DRA client located in the Edge Router and configures the DiffServ classes.

Once the reservation process ends the Linux PCs are properly configured in order to forward the user

packets with the requested QoS (the necessary parameters are extracted from the Session Description

Protocol, SDP, in the SIP messages).

3. Traffic Control and its interaction with signaling

As discussed in the previous section, the Traffic Control (TC) functionality of a router can be

controlled by means of several mechanisms. We define a TC server which implements a “TC server

API” and offers services to a controlling entity. In our architecture the controlling entity will manage

the QoS Signaling Protocol (COPS-DRA) receiving requests coming from the QoS client (see Fig. 6).

The choice to build a TC server as a distinct module preserves the modularity of the architecture. The

TC server is a flexible element that could work also with different resource allocation mechanisms

(e.g. SNMP, RSVP, etc.).

Let us consider how the resource allocation is performed within the QoS–enabled routers. We

consider open-source Linux routers where the kernel provides the Traffic Control software functions

allowing the building of a DiffServ router. The component of the Linux operating system responsible

 7

for both bandwidth sharing and packet scheduling is called Traffic Control (TC) [14]. The main goal

of the Linux Traffic Control is to manage packets queued on the outgoing interface with respect to

the configured rules for the outgoing traffic. To achieve this goal the components used are: queuing

disciplines, classes, filters and policing functions.

Filters are needed to mark packets on the ingress interface with a tcindex value (a kernel level packet

specific value); it is used to forward the packets properly on the egress interface. Filtering rules could

be performed on the following fields of the TCP/IP header: IP source address, IP destination address,

source port, destination port, protocol, type of service. Policing functions are used in order to keep

the traffic profile under the negotiated SLA level. Queuing disciplines and classes allow to implement

PHBs in the DiffServ network.

The module responsible for resource allocation is named TC server and is located in the Edge Router.

The COPS-DRA client, located in the Edge Router itself, acting as a TC client issues commands on

the TC Server using the “TC Server API”.

Communications between TC server and client on the TC server API use a simple proprietary

protocol. The messages sent are TLV (Type-Length-Value) messages. The design foresees five

message types:

- REQUEST (to set-up filter and bandwidth allocation for a given flow);

- RELEASE (to delete structures set by the REQUEST message);

- MODIFY (to modify the bandwidth allocation for a specific flow);

- ACK (to notify the correct reception of the message);

- NACK (to notify an error in the reception).

REQUEST messages brings information about the flow identifier, the service class, the amount of

reservation and the filter set-up information.

The operational model of this message exchange is the following: when the controlling entity (TC

client) decides that a QoS flow must be configured, it sends a REQUEST message to the TC server to

configure the kernel parameters negotiated by means of COPS-DRA protocol. Then, TC server

replies to the TC client with an ACK or NACK message to notify whether the message is received

correctly or not. The operational model is the same for the RELEASE and the MODIFY messages.

 8

Moreover, in order to achieve higher scalability, we implemented a second operational model where

the resources are allocated in advance, up to a configurable quantity, by the COPS server running on

the Bandwidth Broker. When the Bandwidth broker instructs the controlling entities by means of the

COPS-DRA protocol of the advance reservation, the controlling entities sends a REQUEST message

to their TC servers to configure in advance the kernel parameters. Afterwards, only when new

requests make the resources becoming insufficient, a MODIFY message is sent to the interested TC

server thus modifying the original allocation. For sake of scalability and efficiency of operations a

combination of the two operational models is adopted in our solution.

4. COPS-DRA and Q-SIP signaling mechanism

In this section we first describe the proposed mechanism for admission control in a DiffServ network,

named COPS-DRA (COPS-DiffServ Resource Allocation). Then we define the QoS mechanisms in

the SIP protocol and its interaction with the COPS-DRA mechanism.

The basic idea is that Admission Control entities running on the network borders (e.g. in the Edge

Routers) dialogues with external QoS clients (the Q-SIP servers) and with Bandwidth Broker in the

“QoS enabled” network. The Admission Control entities use the COPS-DRA protocol to dialogue

with the QoS clients and with the Bandwidth Broker.

The COPS (Common Open Policy Service) protocol is a simple query and response protocol that

allows policy servers (PDPs, Policy Decision Points) to communicate policy decisions to network

devices (PEP, Policy Enforcement Point). “Request” messages (REQ) are sent by the PEP to the PDP

and “Decision” (DEC) messages are sent by the PDP to the PEP. In order to be flexible, the COPS

protocol has been designed to support multiple types of policy clients. We have defined the COPS-

DRA client type to support dynamic resource allocation in a DiffServ network.

 9

QoS QoS enabledenabled
networknetwork

COPS DRA

Bandwidth BrokerBandwidth Broker
EdgeEdge

RouterRouter

PDP PEP PDPPEP COPS DRA

Fig. 2. COPS support to dynamic DiffServ based IP QoS

As a generic example, in Fig. 2 it is depicted a representation of the proposed architecture for

dynamic DiffServ QoS. The COPS protocol is used on both the interface between the QoS client and

the network, and the interface between the Edge Router and the logically centralized admission /

policy control server. In Fig. 2 the QoS client is represented by a server for IP telephony and the

leftmost interface is a User-to-Network interface. The architecture can easily support other scenarios

where the QoS client belongs to the provider network (for example a SIP server in a 3rd generation

mobile network).

With respect to the generic example, in Fig. 3, the COPS-DRA protocol is used on two different

interfaces.

First, it is used as a generic signaling mechanism between the user of a “QoS enabled” network and

the QoS provider. In our case the Q-SIP proxy server plays the role of QoS user and will implement a

COPS-DRA client, while the Edge Router plays the role of QoS provider and will implement a

COPS-DRA server. On this interface, COPS-DRA provides the means to transport: the scope and

amount of reservation, the type of requested service and the flow identification. The second interface

where the COPS-DRA is applied is between the Edge Router and the Bandwidth Broker, in order to

perform the resource allocation procedures. A flexible and scalable model for resource allocation is

implemented. A set of resources can be allocated in advance by the Bandwidth Broker to the Edge

Router in order to accommodate future request (according to the so-called COPS provisioning

model). The amount of this “aggregated” allocation can also be modified with time. Moreover,

specific requests can be sent by the Edge Router to allocate resources for a given flow (according to

the so-called COPS outsourcing model). The set of Edge Routers and the Bandwidth Broker realize a

sort of distributed bandwidth broker in a DiffServ network. The generic COPS-DRA architecture is

better described in [9], the protocol details can be found in [8].

 10

By means of the COPS-DRA protocol, the Edge Routers provide a generic mechanisms that can be

used by different QoS clients. In this paper we describe how the SIP servers may use the COPS-DRA

in order to provide QoS to real-time applications (e.g. telephony, videoconferencing…). The whole

end-to-end scenario is depicted in Fig. 3.

AccessAccess
networknetwork

Q-SIP
AccessAccess
networknetwork

QoS QoS enabledenabled
networknetwork

SIPSIP

COPS DRA COPS DRA COPS DRAQ-SIP ServerQ-SIP Server Q-SIP ServerQ-SIP Server

Bandwidth BrokerBandwidth Broker

EdgeEdge
RouterRouter

COPS DRA

EdgeEdge
RouterRouterQ

oQ
Q

oQ
Si

gn
al

in
g

Si
gn

al
in

g
Ap

pl
ic

at
io

n
Ap

pl
ic

at
io

n
Si

gn
al

in
g

Si
gn

al
in

g

SIP TerminalSIP Terminal SIP TerminalSIP Terminal

Fig. 3. End-to-end QoS scenario for the proposed architecture

The SIP signaling protocol needs to be extended in order to support a QoS enabled resource

reservation. The extended version of the protocol will be called Q-SIP [10], [11]. The SIP proxy

servers that handle the QoS extensions are called Q-SIP proxy servers. When needed, these servers

originate the resource reservation requests to the DiffServ network (to the local or to the remote

Bandwidth Broker as needed), by means of COPS-DRA protocol. The managing of such information

is done at application level by means of proper coordination of Q-SIP and COPS-DRA protocols: in

order to establish the correct resource reservation and configuration the Q-SIP servers interact with a

COPS-DRA client. The first COPS-DRA client encountered in the resource reservation process is

located in the same machine as the Q-SIP proxy server. The COPS-DRA client asks for the resource

reservation to a COPS-DRA server located in the Edge Router of the DiffServ network. The Edge

Router in turn may ask the remote Bandwidth Broker for resource. The decision whether to ask for

resources to the remote Bandwidth Broker is taken with attention to the local resource availability; a

mix of the so-called COPS configuration and outsourcing model is preferred in order to take

advantage from the scalability of the former and the high control provided by the latter.

The proposed solution makes possible to use existing SIP clients with no enhancements or

modifications. It is possible to interact with no problem with other parties that do not intend or are

not able to use QoS. Moreover backward compatibility with standardized SIP protocol is preserved.

 11

The IP phones/terminals are located on the access networks; standard SIP clients can be used, set

with an explicit SIP proxying configuration. When a call setup is initiated, the caller SIP client starts a

SIP call session through the SIP proxy server. If a Q-SIP server is encountered, this can start a QoS

session interacting with a remote Q-SIP server and with the QoS providers for the backbone network

(i.e. the access ERs). Fig. 3 shows the reference architecture.

According to the direction of the call, the two Q-SIP servers are named caller-side Q-SIP server and

callee-side Q-SIP server.

As far as the reservation procedure is concerned, two different models are possible: i) unidirectional

reservations and ii) bi-directional reservations. The choice between the two models can be done on

the basis of a pre-configured mode or through the exchange of specific parameters (qos-mode

parameters) between the Q-SIP servers during the call setup phase. We are now going to detail the

uni-directional model because the bi-directional one is easily evinced from the previous.

In Fig. 4 we provide an example of the message exchange between Q-SIP servers, Edge Routers and

Bandwidth Broker. The call setup starts with a standard SIP INVITE message sent by the caller to the

local Q-SIP server (i.e. caller-side Q-SIP server). The message carries the callee URI in the SIP

header and the session specification within the body Session Description Protocol (SDP) (media,

codecs, source ports, etc). The Q-SIP server is seen by the caller as a standard SIP proxy server. The

Q-SIP server, based on the caller id and on session information, decides whether a QoS session has to

be started or not. If a QoS session is required/opportune, the server inserts the necessary descriptors

within the INVITE message and forwards it towards the callee. The INVITE messages can be relayed

by both standard SIP proxy servers and Q-SIP servers until they reach the callee-side Q-SIP server

and then the invited callee. When the callee responds with a 200 OK message, it is passed back to the

callee-side Q-SIP server. At this point, the callee-side Q-SIP server can request a QoS reservation to

the Edge Router on the callee access network (i.e. the QoS provider for the callee). Subsequently, the

200 OK response, opportunely extended by the callee-side Q-SIP server, is forwarded back to the

caller, via standard SIP servers and via the caller-side Q-SIP server. When the caller-side Q-SIP

server receives the 200 OK message, it performs QoS reservation with the Edge Router on the caller

access network (i.e. the QoS provider for the caller).

As for the COPS-DRA messages, The first message is originated by the COPS-DRA Client co-

located with Callee Q-SIP Server once it receives the 200 OK message from the Callee SIP Terminal.

 12

The dotted lines in Fig. 4 are optional messages needed if the outsourcing model is adopted and an

outsourced REQ message is sent to the BB. Once the 200 OK message arrives to the Caller Q-SIP

Server an analogous message exchange (REQ-DEC) is performed (since we are detailing an uni-

directional model).

It is important to note that the proposed architecture keeps the compatibility with standard SIP clients

and standard SIP servers. All the information needed by the Q-SIP servers to perform the QoS session

setup is inserted within the SIP messages in such a way that non Q-SIP aware agents can

transparently manage the messages.

QoS QoS enabledenabled
networknetwork

Q-SIP ServerQ-SIP Server Q-SIP ServerQ-SIP Server

Bandwidth BrokerBandwidth Broker

ER ER

SIP TerminalSIP Terminal SIP TerminalSIP Terminal

INVITE INVITE

<Traffic Stream> <Traffic Stream>

INVITE

180 ringing180 ringing 180 ringing

200 OK

200 OK

200 OK

ACK ACKACK

COPS REQCOPS REQ

COPS DECCOPS DEC

COPS DEC

COPS REQCOPS REQ

COPS DEC

Interaction
withTraffic Control

Interaction
withTraffic Control

Fig. 4. Q-SIP call signaling flow - QoS enabled model

5. Test-bed implementation

The proposed architecture has been implemented in a test-bed developed in the Nebula project [16].

Some of the DiffServ components of the test-bed have been also discussed in [12].The test-bed, has

been shown “up and running” during the GTTI [17] annual meeting in Trieste in June 2002. The

overall picture of the test-bed is described in Fig. 5.

 13

LinuxPCLinuxPC A A
Q-SIP Proxy ServerQ-SIP Proxy Server

Router BRouter B

WinPCWinPC
SIP ClientSIP Client

Router ARouter A
EthernetEthernet
SwitchSwitch

ATM SwitchATM Switch

LinuxPCLinuxPC
Q-SIP Proxy ServerQ-SIP Proxy Server

WinPCWinPC
SIP ClientSIP Client

LinuxPCLinuxPC B B

MMFMMF

Twisted pairTwisted pair

Access networkAccess network Access networkAccess network

Fig. 5. Overall Nebula test-bed

The Q-SIP proxy servers have been implemented on a Linux PCs based on RedHat7.1 distribution.

The Q-SIP server is developed in Java (running on Sun JDK 1.2.2 virtual machine) while the COPS

DRA and TC clients/servers are developed in plain C. The TC modules are based on the TCAPI [15]

a library that allows the dynamic configuration of filters and scheduling mechanisms. The internal

architecture of the test bed elements is shown in Fig. 6. The source code of the Q-SIP server is

available under the GPL license [10]. Note that also the COPS-DRA and TC server source code are

available under the GPL license. The publicly available “Ubiquity SIP User Agent” version 2.0.10 [13]

has been used as SIP terminals, running on Win98 PCs.

The Q-SIP server has a modular architecture, in order to be able to handle different QoS mechanisms.

As shown in Fig. 6, there is a JAVA module called Generic Q-SIP Protocol Handler, which is

independent of the underlying QoS mechanism. This module dialogues through a JAVA interface with

a QoS-specific Interface module (realized in JAVA as well), which is specific of the underlying QoS

model. In the picture, the COPS-DRA specific module is shown, which interacts through a socket

interface to the COPS-DRA client process, realized in C. The Edge Routers, that act as QoS Access

Points, include a COPS DRA server that communicate through a socket interface with a process

implementing the Local Decision Server and the COPS DRA client. This process communicates

through another socket interface to the TC server that is able to configure the traffic control

mechanisms provided by the Linux kernel. Communications between TC server and Linux kernel are

made through a netlink socket. The PDP/BB is composed by a COPS DRA server and a Decision

Server, that interact through a socket based interface.

 14

SIP server

COPS DRA client

API

API
COPS DRA

server Linux kernel

TC client

Local Decision server

COPS
messages

Edge Router
(QoS Access Point)

Q-SIP server

JAVA

SIP messagesSIP messages
COPS messages

C

socket

Bandwidth Broker

COPS DRA server

Decision Server

socket

TC server

socket

TC server API

COPS DRA client

TCAPI

TCAPI

socket

Fig. 6. Q-SIP server, ER, and BB internal architectures

Some tests have been performed on this test-bed to verify the speech quality received at application

level in both “no-QoS” and “QoS enabled” scenarios. In the “no-QoS” test we have observed that the

quality perceived is good in condition of low traffic but degrades quickly when the background traffic

causes the link congestion. In the “QoS enabled” test even if an heavy background traffic is present

the quality perceived is good and not affected by the traffic volume itself.

The access network A is constituted by a Win98 PC that plays the role of the caller SIP Client and by

two Linux PCs. Linux PC A acts as the background traffic generator in both scenarios and, in the

“QoS enabled” one as the Q-SIP server too. Linux PC B is a router that connects the access network

to the backbone link in both scenarios and, in the “QoS enabled” one plays the role of the COPS

client too. The access network B is constituted by two computers, a Win98 PC and a Linux one

directly connected to a router on the backbone link. The Win98 PC is the SIP called client, while the

Linux PC acts as the background traffic receiver and, as it concerns the “QoS enabled” scenario as

both Q-SIP server and COPS client. The router A and B are two Linux PCs on which we have

implemented the TC mechanisms. In order to reduce the topology complexity we have decided to

make the Router A playing the role of the BB too. The backbone link is emulated by means of an

ATM connection using a New Bridge CS-1000 ATM Switch. The next step would be to replace it

with the real Internet and, in this case the enhancement of the protocol inter-working should be

 15

considered in order to make the BB configure the core routers when the resource allocation request is

accepted.

Further studies have been planned to estimate the packet’s end-to-end delay and jitter when the QoS

mechanisms have been set-up. Moreover a tool for an objective evaluation of the voice speech quality

perceived at user level is an ongoing work.

6. Performance test of Traffic Control API

Performance tests were carried out in order to give figures both on the rate of calls per seconds and

on the number of active calls supported by our system architecture.

As described in the previous sections we are using an API to manage the Traffic Control kernel data

structures. This means our tests were performed looking at the kernel as a “black-box” while applying

to it solicitations. Our aim was to understand the performance limits and not to improve the kernel

implementation (though this issue will be briefly addressed in the following). We are aware that the

results presented here may not have a general validity since they rely on the PC hardware on which

the software implementation is running. However, it is important to notice that while the absolute

values presented are likely to be variable depending on the processor speed and memory size, the

relative values are likely to be valid across multiple speed processors and memory sizes. The results

presented here are relative to an IA32 PC (Pentium IV) with 256 MB of RAM; moreover the kernel

used was the 2.4.19.

The first set of tests performed were focused to compute the resource allocation request time as it is

seen from the Traffic Control server point of view. To this aim we profiled the Traffic Control server

code extracting the time it takes for a resource allocation request to be completed (in this test all the

resource allocation requests we issued were accepted). Fig. 7 reports the time needed for an

allocation request to be completed (different rates of resource allocation requests are plotted) versus

the number of requests already allocated in the systems. From the graph, it’s easy to notice that this

time is independent on the rate of the calls (in this test every new call makes a new resource allocation

request start) while it depends on the number of requests already allocated only. Moreover, the graph

shows how the resource allocation time grows with the number of requests already accepted by the

system. This result may indicate a linear management of the filter/class inside the kernel through a

 16

chain of data structures (to achieve higher performance this linear management has to be avoided; an

hash tabled should be used instead).

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 500 1000 1500 2000

A
llo

ca
tio

n
T

im
e(

us
)

N.request allocated

10 call/sec

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 500 1000 1500 2000

A
llo

ca
tio

n
T

im
e(

us
)

N.request allocated

10 call/sec
20 call/sec

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 500 1000 1500 2000

A
llo

ca
tio

n
T

im
e(

us
)

N.request allocated

10 call/sec
20 call/sec
50 call/sec

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 500 1000 1500 2000

A
llo

ca
tio

n
T

im
e(

us
)

N.request allocated

10 call/sec
20 call/sec
50 call/sec

100 call/sec

Fig. 7. Resource Allocation Request time versus resource allocation request number

When performing the previous tests we realized that, if the allocation time depends only on the state

of the system when the allocation request takes place (i.e. on the number of requests already allocated

in the system so far), there is a bound to the number of simultaneous calls that can be handled at

different allocation rates. This limit is exceeded when the inter-arrival allocation request time is

greater than the time required by the Traffic Control server to serve a resource allocation request. We

report those results in Table 1 as performance bound since this is the value that, if exceeded, makes

the resource allocation server starting buffering resource allocation requests.

The performance bounds gets the more tightening as the request allocation rate increases. The results

reported here have to be interpreted as the maximum number of simultaneous active calls our current

implementation may handle with a given call rate.

 17

Table 1. Maximum number of simultaneous allocated requests versus calls per second

This number of simultaneous calls decreases as the call rate increases up to the maximum supported

call rate of approx 2000 call/sec (as it can be seen from Fig. 7, the time for the first resource

allocation request is in the range of 0.5 msec independently on the call rate). Moreover, Table 1

reports a strange behavior when the number of requests already allocated is 2048: for resource

allocation request rates ranging from 50 to 500 calls per second the performance limit is always 2048

allocated requests. This strange behavior is highlighted in Fig. 8 where we report a slice of our test

with call rate of 100 calls/sec with request number ranging from 1000 to 3000.

0

20000

40000

60000

80000

100000

120000

1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

A
llo

ca
tio

n
T

im
e(

us
)

N.request allocated

100 call/sec

Fig. 8. Resource Allocation Request time versus resource allocation request number

 18

The resource allocation time is still increasing but Fig. 8 shows that the performance worsens of one

order of magnitude (from approx 2 msec to more than 20 msec) when exceeding the 2048th request

allocated. This behavior is common to all the call rate tested ranging from 1 to 1000 call/sec. This

result may indicate that table entries are allocated from a dedicated kernel memory pool up to a

certain number; when this number is exceeded then the kernel needs to allocate extra memory space

addressing a different memory area thus loosing efficiency (a higher amount of memory space is

required to be reserved in kernel space directly to manage larger systems). The last tests performed

were devoted to understand whether such a performance worsening is reversible once the number of

allocated requests drops below 2048. In Fig. 9 and Fig. 10 we report two different tests:

• in the former (Fig. 9) we firstly allocated 4000 requests, then we released them and then we

allocated again 4000 requests (here the requests with numbers [0-4000] and [8000+] are

resource allocation requests, the others are resource release requests);

• in the latter (Fig. 10) we firstly allocated 400 requests, then we released them and then we

allocated again more than 2000 requests (here the requests with numbers [0-400] and

[800+] are resource allocation requests, the others are resource release requests);

In Fig. 9 is clear that the performance worsening affects the resource allocation requests time only

(releasing a resource previously allocated is always done within a little time) and that, once the limit of

2048 requests allocated is reached, the system has no reversibility even if the number of resource

allocated decreases to 0 (the 8001st request is a resource allocation request and the time it takes to

complete is the same as the 2049th in this test). In Fig. 10, instead, the performance degradation took

place only when the request allocated exceeded 2048 for the first time: i.e. when the number of the

request was 2848 (= 400+400+2048).

Taking into account the results shown here, we can claim that, after testing our system under the load

of different resource allocation rates:

• no dependency on the call rate value was found;

• the number of simultaneous calls supported by the system depends on the call rate following

an inverse law, except for the specific behavior, above discussed, due to kernel memory

management;

• to achieve better performance the number of 2048 simultaneous requests allocated must not

to be exceeded.

 19

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

0 2000 4000 6000 8000 10000 12000 14000

A
llo

ca
tio

n
T

im
e(

us
)

N.request

100 call/sec

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

0 2000 4000 6000 8000 10000 12000 14000

A
llo

ca
tio

n
T

im
e(

us
)

N.request

100 call/sec

Fig. 9. Resource Allocation/Release Request time versus request number (exceeding the limit)

0

5000

10000

15000

20000

25000

30000

0 500 1000 1500 2000 2500 3000

A
llo

ca
tio

n
T

im
e(

us
)

N.request

100 call/sec

Fig. 10. Resource Allocation/Release Request time versus request number (not exceeding the limit)

7. Conclusions

 20

In this paper we have proposed an architecture for the dynamic configuration of DiffServ QoS

mechanisms in IP network. We started from the definition of a “TC server API” to interact with QoS

mechanism in an open source router based on Linux OS. Then we have considered the COPS-DRA

protocol as a generic signaling mechanism to let QoS client interact with a QoS enabled IP network.

The interaction between the COPS-DRA control logic and the TC server API has been defined. As an

example application, we have considered the IP telephony based on SIP protocol. The extension to

SIP protocol required to interact with the COPS-DRA mechanisms have been defined. We introduce

modification in SIP protocol that only affects SIP “proxy” servers, so that “legacy” SIP user

application can be fully reused. We note also that the solution is fully backward compatible with

current SIP based equipment that does not support QoS, allowing a smooth migration. The whole

architecture has been implemented in a testbed and the internal architecture of the software modules is

described. Results on the performance of Traffic Control mechanisms in Linux based routers have

been reported. Future work include the combined performance evaluation of signaling mechanisms

and traffic control mechanisms in the router, in order to understand the scalability in terms of call rate

and number of active calls also including the signaling load.

Acknowledgements

The authors would like to thank Donald Papalilo and Enzo Sangregorio for their work in support of

the specifications and of the test-bed implementation.

References

[1] X. Xiao, L.M. Ni “Internet QoS: A Big Picture”, IEEE Networks, March 1999

[2] W. Zhao, D. Olshefski and H. Schulzrinne “Internet Quality of Service: an Overview” Columbia
University, New York, New York, Technical Report CUCS-003-00, Feb. 2000

[3] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M. Handley, E.
Schooler “ SIP: Session Initiation Protocol”, IETF RFC 3261, June 2002

[4] M. Garcia-Martin “3rd-Generation Partnership Project (3GPP) Release 5 requirements on the Session
Initiation Protocol (SIP)”, <draft-ietf-sipping-3gpp-r5-requirements-00.txt>, October 2002, Work in
Progress, http://www.ietf.org/internet-drafts/draft-ietf-sipping-3gpp-r5-requirements-00.txt

[5] G. Camarillo et al. “Integration of Resource Management and SIP”, IETF RFC 3312, October 2002.

 21

[6] K. Chan et al. “COPS usage for Policy Provisioning (COPS-PR)”, IETF RFC 3084, March 2001.

[7] D. Durham, J. Boyle, R. Cohen, S. Herzog, R. Rajan, A. Sastry “The COPS (Common Open Policy
Service) Protocol”, IETF RFC 2748, January 2000

[8] S. Salsano "COPS usage for DiffServ Resource Allocation (COPS-DRA)", <draft-salsano-cops-dra-
00.txt>, September 2001, Work in Progress, http://www.coritel.it/projects/cops-bb

[9] S. Salsano, L. Veltri “QoS Control by means of COPS to support SIP based applications”, IEEE
Network, March/April 2002

[10] L. Veltri, S. Salsano, D. Papalilo, “QoS Support for SIP based Applications in DiffServ Networks”,
<draft-veltri-sip-qsip-01.txt>, October 2002, Work in Progress, http://www.coritel.it/projects/qsip

[11] L. Veltri, S. Salsano, D. Papalilo, “QoS Support for SIP Based Applications in a Diffserv Network”,
IEEE Softcom 2003, October 7-10, 2003, Split, Dubrovnik (Croatia), Ancona, Venice (Italy).

[12] W. Almesberger, S. Giordano, R. Mameli, S. Salsano, F. Salvatore “A prototype implementation for
IntServ operation over DiffServ Networks”, IEEE Globecom 2000, S. Francisco, December 2000

[13] “SIP User Agent”, Ubiquity Software Corporation, http://www.ubiquity.net

[14] B. Hubert “Linux Advanced Routing & Traffic Control HOWTO” http://lartc.org/howto

[15] TC API Project - http://www-124.ibm.com/developerworks/projects/tcapi

[16] Nebula Project Home Page - http://nebula.deis.unibo.it/

[17] GTTI Home Page - http://www.gtti.cnit.it/

[18] Levi, Meyer, Stewart "SNMP Applications", IETF RFC 3413, December 2002.

