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Abstract. Voice, video and multimedia applications are sensitive to the QoS provided by the 

underlying IP network. The DiffServ architecture offers a set of QoS mechanisms for IP networks. 

The “binding” of the applications QoS needs with the QoS features offered by the DiffServ 

networks is still an open problem. The simplest approach is to have a static configuration of QoS 

and therefore no direct interaction in the control plane between applications and QoS. We consider 

the advanced scenario, where the QoS mechanisms can be dynamically configured to follow the 

applications’ need. For this scenario, a set of control plane interfaces needed for a whole end-to-

end QoS architecture is defined. At the lower lever, an internal interface (“Application 

Programming Interface” – API) in the QoS router is considered. This interface provides access to 

the DiffServ QoS mechanism available in a router and it is used by the control logic running in the 

router itself. Then a QoS signaling protocol is considered, that allows external QoS clients to 

dynamically access the QoS services provided by the network. Finally the interaction of a session 

level signaling protocol (i.e. the SIP for IP telephony) with the QoS protocol is defined. The 

testbed implementation of proposed architecture and a set of performance tests on the internal QoS 

API are reported. 

1. Introduction 

The automation of the resource allocation process and of network element configuration within a QoS 

network is a hot topic in the Internet community. Looking at the standardization effort in the area of 
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IP QoS the two main approaches that have been proposed in the IETF are the Integrated Services 

(IntServ) model and the Differentiated Services (DiffServ) model. Additional proposals consider a 

combination of the two approaches. In addition, the MPLS (Multi Protocol Label Switching) 

technology is going to play an important role in this field, for example as transport backbone for 

DiffServ. A very good introduction to IP QoS topics can be found in [1], [2]. 

The DiffServ architecture has the potentiality, with its Per Hop Behaviors (PHBs), to differentiate the 

QoS in a scalable mode; unfortunately such architecture is still utilized in a static manner. The 

providers are configuring the network resources statically with a capacity planning study without a 

time-dependent optimization. Since the amount of traffic offered to the network is intrinsically 

variable with time there is the possibility of underutilizing the resources or overloading the network. 

The IntServ architecture, on the other hand, is a more dynamic one and it is more suited to address 

time-variant configuration issues but it has shown its weakness when dealing with scalability 

problems. 

In the current DiffServ framework, even if is possible to define a static SLA (Service Level 

Agreement), it is difficult for a client to rely on such SLAs for several reasons: 

− the maintenance of the information about all the users introduces scalability issues; 

− the user could change the call parameters during the call, paying for unused resource; 

− it is difficult to define static SLAs that well suite to the user demand. 

For these reasons dynamic resource allocation in a QoS domain is a very important issue. 

In particular, this work is focused on providing a scalable architecture for dynamic resource allocation 

/ configuration when an access network (which may be QoS aware or not) requests transport to a 

“QoS enabled” network. The proposed QoS architecture is based on two important aspects: the 

DiffServ based resource management scheme for guaranteeing a suitable level of QoS, and the 

signaling mechanisms for providing dynamic resource reservation. The first aspect mainly deals with 

“Traffic Control” (TC) and scheduling strategies, while the latter deals with signaling protocols. 

Traffic Control is the basic element of the QoS architecture, implemented in the QoS capable routers. 

Such QoS router should classify QoS enabled packets and handle the packets applying a proper 

forwarding treatment. These Traffic Control capabilities must be configured dynamically, i.e. the 
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routers should offer an interface to accept configuration requests related to the setup and release of 

QoS flows. Traffic Control capability and interface aspects will be analyzed in this work. 

Regarding the signaling mechanisms, different solution have currently been considered by 

standardization groups. Since QoS aspects are particularly important for real-time multimedia 

applications (e.g. IP Telephony, Videoconferencing, etc.), we will analyzed a dynamic reservation 

architecture based on the SIP (Session Initiation Protocol) protocol as application level protocol. SIP 

[3] is currently having a lot of attention within IETF (Internet Engineering Task Force) and it seems 

to be the more promising candidate as call setup signaling for the present day and future IP based 

telephony services (e.g. usage of SIP in the Internet Multimedia Subsystem (IMS) specifications is 

chosen by 3GPP group [4]). It could even be a real competitor to the Plain Old Telephone Service 

(PSTN). For the realization of this scenario, there is the obvious need to provide a good speech 

quality. This quality in turn depends on the Quality of Service delivered by the IP network. 

Reservation and/or admission control mechanisms could be needed to get QoS from the IP network. 

Unfortunately, at present day, there is not a clear picture about the “elected” mechanism for QoS 

provisioning in IP network, as much research and standardization effort is ongoing in this area. The 

interaction of these QoS mechanisms with the call setup procedures (i.e. SIP) is therefore a very hot 

topic. There is a recent work of the SIP IETF Working Group [5], which deals with the interaction 

between SIP and resource management for QoS. 

Our goal is to enable seamless inter-operation between the application level protocol, the 

policy/resource management protocol and the router configuration. To accommodate this aim we 

propose, in this work, a very simple solution that is based on an enhancement of the SIP protocol to 

convey QoS related information. The solution preserves backward compatibility with current SIP 

applications and it de-couples as much as possible the SIP signaling from the handling of QoS. 

Moreover the solution foresees the use of COPS (extended with QoS handler features) protocol as 

policy/bandwidth control and the use of Linux Traffic Control (TC) to build the QoS mechanisms. 

The rest of the paper is organized as follows. Section 2 gives an overview of the proposed 

mechanisms for dynamic resource allocation explaining the rationale and overall requirements. Those 

mechanisms are detailed in Sections 3 and Section 4, dealing with Traffic Control and QoS signaling 

mechanisms, respectively. In Section 5 a test-bed implementation of the overall architecture is 
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described, while  Section 6 reports the test results on the performance of the Traffic Control API. 

Finally, in Section 7, we give our conclusions. 

2. Dynamic Resource Configuration: Mechanisms Overview 

The configuration of the DiffServ Traffic Control mechanisms in the routers can be “triggered” in 

several ways. The simplest approach, suitable for a “static” QoS configuration is to manually operate 

with the router Command Line Interface (CLI). More sophisticated solutions, that always operate on 

the management plane (i.e. suitable for static QoS), are based on management protocols like SNMP 

[18] or COPS-PR [6]. Coming to a dynamic approach based on signaling, the IntServ architecture 

dictated the use of the RSVP protocol. We will describe the use of a variant of the COPS [7] 

protocol, named COPS-DRA (Dynamic Resource Allocation) [8] as the QoS signaling protocols that 

triggers the resource configuration in the routers. Fig. 1 provides a representation of the different 

resource configuration mechanisms of a DiffServ router. 

Internally the routers will have a primitive interface which will handle the configuration commands 

(coming from CLI interface, management or signaling protocols) translating into directives on the 

router hardware. This interface is typically not available in a commercial router. In case of the 

software router based on the open source Linux Operating System, such interface is available and it is 

called “TC API” [15]. The TC API allows a controlling entity to configure the traffic control modules 

(classifier, policer, marker, queuing disciplines) according to the dynamic setup and release of QoS 

flows. In dynamic approach considered in this work the controlling entity resides in the router and it is 

in turn controlled by means of a QoS signaling protocol. The performance of the dynamic 

configuration mechanisms in the routers may constitute a bottleneck in a dynamic QoS architecture. 

For example, a dynamic configuration mechanism based on Command Line Interface could not 

provide adequate performance in most current commercial routers. In Section 6 we will present some 

simple “black-box” measurements related to the TC API performance in a Linux based software 

router. 
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Fig. 1. Resource configuration mechanisms in a DiffServ router 

The IntServ “traditional” RSVP approach foresees that QoS signaling is initiated by the end terminals 

and strictly follows the data path. Therefore each router in the path receives resource reservations, it 

can take local admission control decisions and then it can configure the Traffic Control mechanism. In 

a Linux software router this last step means interacting with the TC API. 

In the proposed architecture a “QoS provider” is placed in each Edge Router (ER). The COPS-DRA 

protocol is used by a “QoS client” to make reservation requests to the QoS provider for admission in 

a QoS enabled network. The QoS provider takes an admission control decision and then it uses the 

TC API to configure the Traffic Control mechanisms. Differently from basic RSVP approach, the 

admission control decision taken by the QoS provider in the Edge Router does not only refer to the 

local link, but it can be related to an edge-to-edge path in the QoS enabled network. For this reason, 

in the resource management and admission control process the Edge Routers may be supported by a 

logically centralized entity, called Bandwidth Broker (BB). The signaling dialogue between Edge 

Routers and Bandwidth Broker is based on COPS-DRA as well. 

Another important difference from basic RSVP approach is that the COPS-DRA signaling does not 

need to strictly follow the data path and the signaling does not need to be initiated by the end terminal. 

Therefore the user terminal is not “forced” to be aware of the network QoS model, and it should not 

originate the resource reservation with an “ad hoc” protocol (e.g. RSVP). In our belief such a solution 

limits the scalability of the architecture and needs a capillary control on every user terminal. 
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However triggering the resource reservation is mandatory in order to take advantage from the 

flexibility of a dynamic Service Level Agreement (SLA) scheme. The proposed solution is to enhance 

the session initiation signaling in order to care for QoS. In particular we considered the use of the SIP 

protocol in order to trigger the resource reservation. 

The solution foresees the enhancement of the SIP proxy servers to handle QoS aspects. In the 

following, the enhanced SIP server will be called Q-SIP server (QoS enabled SIP server). All the QoS 

aspects can be covered by the Q-SIP servers in the originating and terminating sides, no involvement 

of the terminals is needed, therefore the user terminal can be decoupled by the knowledge of the QoS 

model used in the network. Note also that in a DiffServ QoS scenario there will be servers dedicated 

to policy control, accounting and billing aspects. Hence, a solution based on SIP servers is really 

suited to this QoS scenario. 

Once the resource reservation is accepted the configuration phase takes place by means of kernel 

configuration. In our solution a Traffic Control Server is used configure the Linux kernel; it takes the 

input from the COPS-DRA client located in the Edge Router and configures the DiffServ classes. 

Once the reservation process ends the Linux PCs are properly configured in order to forward the user 

packets with the requested QoS (the necessary parameters are extracted from the Session Description 

Protocol, SDP, in the SIP messages). 

3. Traffic Control and its interaction with signaling 

As discussed in the previous section, the Traffic Control (TC) functionality of a router can be 

controlled by means of several mechanisms. We define a TC server which implements a “TC server 

API” and offers services to a controlling entity. In our architecture the controlling entity will manage 

the QoS Signaling Protocol (COPS-DRA) receiving requests coming from the QoS client (see Fig. 6). 

The choice to build a TC server as a distinct module preserves the modularity of the architecture. The 

TC server is a flexible element that could work also with different resource allocation mechanisms 

(e.g. SNMP, RSVP, etc.). 

Let us consider how the resource allocation is performed within the QoS–enabled routers. We 

consider open-source Linux routers where the kernel provides the Traffic Control software functions 

allowing the building of a DiffServ router. The component of the Linux operating system responsible 
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for both bandwidth sharing and packet scheduling is called Traffic Control (TC) [14]. The main goal 

of the Linux Traffic Control is to manage packets queued on the outgoing interface with respect to 

the configured rules for the outgoing traffic. To achieve this goal the components used are: queuing 

disciplines, classes, filters and policing functions. 

Filters are needed to mark packets on the ingress interface with a tcindex value (a kernel level packet 

specific value); it is used to forward the packets properly on the egress interface. Filtering rules could 

be performed on the following fields of the TCP/IP header: IP source address, IP destination address, 

source port, destination port, protocol, type of service. Policing functions are used in order to keep 

the traffic profile under the negotiated SLA level. Queuing disciplines and classes allow to implement 

PHBs in the DiffServ network. 

The module responsible for resource allocation is named TC server and is located in the Edge Router. 

The COPS-DRA client, located in the Edge Router itself, acting as a TC client issues commands on 

the TC Server using the “TC Server API”. 

Communications between TC server and client on the TC server API use a simple proprietary 

protocol. The messages sent are TLV (Type-Length-Value) messages. The design foresees five 

message types: 

- REQUEST (to set-up filter and bandwidth allocation  for a given flow); 

- RELEASE (to delete structures set by the REQUEST message); 

- MODIFY (to modify the bandwidth allocation for a specific flow ); 

- ACK (to notify the correct reception of the message); 

- NACK (to notify an error in the reception). 

REQUEST messages brings information about  the flow identifier, the service class, the amount of 

reservation and the filter set-up information. 

The operational model of this message exchange is the following: when the controlling entity (TC 

client) decides that a QoS flow must be configured, it sends a REQUEST message to the TC server to 

configure the kernel parameters negotiated by means of COPS-DRA protocol. Then, TC server 

replies to the TC client with an ACK or NACK message to notify whether the message is received 

correctly or not. The operational model is the same for the RELEASE and the MODIFY messages. 
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Moreover, in order to achieve higher scalability, we implemented a second operational model where 

the resources are allocated in advance, up to a configurable quantity, by the COPS server running on 

the Bandwidth Broker. When the Bandwidth broker instructs the controlling entities by means of the 

COPS-DRA protocol of the advance reservation, the controlling entities sends a REQUEST message 

to their TC servers to configure in advance the kernel parameters. Afterwards, only when new 

requests make the resources becoming insufficient, a MODIFY message is sent to the interested TC 

server thus modifying the original allocation. For sake of scalability and efficiency of operations a 

combination of the two operational models is adopted in our solution. 

4. COPS-DRA and Q-SIP signaling mechanism 

In this section we first describe the proposed mechanism for admission control in a DiffServ network, 

named COPS-DRA (COPS-DiffServ Resource Allocation). Then we define the QoS mechanisms in 

the SIP protocol and its interaction with the COPS-DRA mechanism. 

The basic idea is that Admission Control entities running on the network borders (e.g. in the Edge 

Routers) dialogues with external QoS clients (the Q-SIP servers) and with Bandwidth Broker in the 

“QoS enabled” network. The Admission Control entities use the COPS-DRA protocol to dialogue 

with the QoS clients and with the Bandwidth Broker. 

The COPS (Common Open Policy Service) protocol is a simple query and response protocol that 

allows policy servers (PDPs, Policy Decision Points) to communicate policy decisions to network 

devices (PEP, Policy Enforcement Point). “Request” messages (REQ) are sent by the PEP to the PDP 

and “Decision” (DEC) messages are sent by the PDP to the PEP. In order to be flexible, the COPS 

protocol has been designed to support multiple types of policy clients. We have defined the COPS-

DRA client type to support dynamic resource allocation in a DiffServ network. 
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Fig. 2. COPS support to dynamic DiffServ based IP QoS 

As a generic example, in Fig. 2 it is depicted a representation of the proposed architecture for 

dynamic DiffServ QoS. The COPS protocol is used on both the interface between the QoS client and 

the network, and the interface between the Edge Router and the logically centralized admission / 

policy control server. In Fig. 2 the QoS client is represented by a server for IP telephony and the 

leftmost interface is a User-to-Network interface. The architecture can easily support other scenarios 

where the QoS client belongs to the provider network (for example a SIP server in a 3rd generation 

mobile network). 

With respect to the generic example, in Fig. 3, the COPS-DRA protocol is used on two different 

interfaces. 

First, it is used as a generic signaling mechanism between the user of a “QoS enabled” network and 

the QoS provider. In our case the Q-SIP proxy server plays the role of QoS user and will implement a 

COPS-DRA client, while the Edge Router plays the role of QoS provider and will implement a 

COPS-DRA server. On this interface, COPS-DRA provides the means to transport: the scope and 

amount of reservation, the type of requested service and the flow identification. The second interface 

where the COPS-DRA is applied is between the Edge Router and the Bandwidth Broker, in order to 

perform the resource allocation procedures. A flexible and scalable model for resource allocation is 

implemented. A set of resources can be allocated in advance by the Bandwidth Broker to the Edge 

Router in order to accommodate future request (according to the so-called COPS provisioning 

model). The amount of this “aggregated” allocation can also be modified with time. Moreover, 

specific requests can be sent by the Edge Router to allocate resources for a given flow (according to 

the so-called COPS outsourcing model). The set of Edge Routers and the Bandwidth Broker realize a 

sort of distributed bandwidth broker in a DiffServ network. The generic COPS-DRA architecture is 

better described in [9], the protocol details can be found in [8]. 
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By means of the COPS-DRA protocol, the Edge Routers provide a generic mechanisms that can be 

used by different QoS clients. In this paper we describe how the SIP servers may use the COPS-DRA 

in order to provide QoS to real-time applications (e.g. telephony, videoconferencing…). The whole 

end-to-end scenario is depicted in Fig. 3. 
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Fig. 3. End-to-end QoS scenario for the proposed architecture 

The SIP signaling protocol needs to be extended in order to support a QoS enabled resource 

reservation. The extended version of the protocol will be called Q-SIP [10], [11]. The SIP proxy 

servers that handle the QoS extensions are called Q-SIP proxy servers. When needed, these servers 

originate the resource reservation requests to the DiffServ network (to the local or to the remote 

Bandwidth Broker as needed), by means of COPS-DRA protocol. The managing of such information 

is done at application level by means of proper coordination of Q-SIP and COPS-DRA protocols: in 

order to establish the correct resource reservation and configuration the Q-SIP servers interact with a 

COPS-DRA client. The first COPS-DRA client encountered in the resource reservation process is 

located in the same machine as the Q-SIP proxy server. The COPS-DRA client asks for the resource 

reservation to a COPS-DRA server located in the Edge Router of the DiffServ network. The Edge 

Router in turn may ask the remote Bandwidth Broker for resource. The decision whether to ask for 

resources to the remote Bandwidth Broker is taken with attention to the local resource availability; a 

mix of the so-called COPS configuration and outsourcing model is preferred in order to take 

advantage from the scalability of the former and the high control provided by the latter. 

The proposed solution makes possible to use existing SIP clients with no enhancements or 

modifications. It is possible to interact with no problem with other parties that do not intend or are 

not able to use QoS. Moreover backward compatibility with standardized SIP protocol is preserved. 



 11 

The IP phones/terminals are located on the access networks; standard SIP clients can be used, set 

with an explicit SIP proxying configuration. When a call setup is initiated, the caller SIP client starts a 

SIP call session through the SIP proxy server. If a Q-SIP server is encountered, this can start a QoS 

session interacting with a remote Q-SIP server and with the QoS providers for the backbone network 

(i.e. the access ERs). Fig. 3 shows the reference architecture. 

According to the direction of the call, the two Q-SIP servers are named caller-side Q-SIP server and 

callee-side Q-SIP server. 

As far as the reservation procedure is concerned, two different models are possible: i) unidirectional 

reservations and ii) bi-directional reservations. The choice between the two models can be done on 

the basis of a pre-configured mode or through the exchange of specific parameters (qos-mode 

parameters) between the Q-SIP servers during the call setup phase. We are now going to detail the 

uni-directional model because the bi-directional one is easily evinced from the previous. 

In Fig. 4 we provide an example of the message exchange between Q-SIP servers, Edge Routers and 

Bandwidth Broker. The call setup starts with a standard SIP INVITE message sent by the caller to the 

local Q-SIP server (i.e. caller-side Q-SIP server). The message carries the callee URI in the SIP 

header and the session specification within the body Session Description Protocol (SDP) (media, 

codecs, source ports, etc). The Q-SIP server is seen by the caller as a standard SIP proxy server. The 

Q-SIP server, based on the caller id and on session information, decides whether a QoS session has to 

be started or not. If a QoS session is required/opportune, the server inserts the necessary descriptors 

within the INVITE message and forwards it towards the callee. The INVITE messages can be relayed 

by both standard SIP proxy servers and Q-SIP servers until they reach the callee-side Q-SIP server 

and then the invited callee. When the callee responds with a 200 OK message, it is passed back to the 

callee-side Q-SIP server. At this point, the callee-side Q-SIP server can request a QoS reservation to 

the Edge Router on the callee access network (i.e. the QoS provider for the callee). Subsequently, the 

200 OK response, opportunely extended by the callee-side Q-SIP server, is forwarded back to the 

caller, via standard SIP servers and via the caller-side Q-SIP server. When the caller-side Q-SIP 

server receives the 200 OK message, it performs QoS reservation with the Edge Router on the caller 

access network (i.e. the QoS provider for the caller). 

As for the COPS-DRA messages, The first message is originated by the COPS-DRA Client co-

located with Callee Q-SIP Server once it receives the 200 OK message from the Callee SIP Terminal. 
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The dotted lines in Fig. 4 are optional messages needed if the outsourcing model is adopted and an 

outsourced REQ message is sent to the BB. Once the 200 OK message arrives to the Caller Q-SIP 

Server an analogous message exchange (REQ-DEC) is performed (since we are detailing an uni-

directional model). 

It is important to note that the proposed architecture keeps the compatibility with standard SIP clients 

and standard SIP servers. All the information needed by the Q-SIP servers to perform the QoS session 

setup is inserted within the SIP messages in such a way that non Q-SIP aware agents can 

transparently manage the messages. 
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Fig. 4. Q-SIP call signaling flow - QoS enabled model 

5. Test-bed implementation 

The proposed architecture has been implemented in a test-bed developed in the Nebula project [16]. 

Some of the DiffServ components of the test-bed have been also discussed in [12].The test-bed, has 

been shown “up and running” during the GTTI [17] annual meeting in Trieste in June 2002. The 

overall picture of the test-bed is described in Fig. 5. 
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Fig. 5. Overall Nebula test-bed 

The Q-SIP proxy servers have been implemented on a Linux PCs based on RedHat7.1 distribution. 

The Q-SIP server is developed in Java (running on Sun JDK 1.2.2 virtual machine) while the COPS 

DRA and TC clients/servers are developed in plain C. The TC modules are based on the TCAPI [15] 

a library that allows the dynamic configuration of filters and scheduling mechanisms. The internal 

architecture of the test bed elements is shown in Fig. 6. The source code of the Q-SIP server is 

available under the GPL license [10]. Note that also the COPS-DRA and TC server source code are 

available under the GPL license. The publicly available “Ubiquity SIP User Agent” version 2.0.10 [13] 

has been used as SIP terminals, running on Win98 PCs. 

The Q-SIP server has a modular architecture, in order to be able to handle different QoS mechanisms. 

As shown in Fig. 6, there is a JAVA module called Generic Q-SIP Protocol Handler, which is 

independent of the underlying QoS mechanism. This module dialogues through a JAVA interface with 

a QoS-specific Interface module (realized in JAVA as well), which is specific of the underlying QoS 

model. In the picture, the COPS-DRA specific module is shown, which interacts through a socket 

interface to the COPS-DRA client process, realized in C. The Edge Routers, that act as QoS Access 

Points, include a COPS DRA server that communicate through a socket interface with a process 

implementing the Local Decision Server and the COPS DRA client. This process communicates 

through another socket interface to the TC server that is able to configure the traffic control 

mechanisms provided by the Linux kernel. Communications between TC server and Linux kernel are 

made through a netlink socket. The PDP/BB is composed by a COPS DRA server and a Decision 

Server, that interact through a socket based interface. 
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Fig. 6. Q-SIP server, ER, and BB internal architectures 

Some tests have been performed on this test-bed to verify the speech quality received at application 

level in both “no-QoS” and “QoS enabled” scenarios. In the “no-QoS” test we have observed that the 

quality perceived is good in condition of low traffic but degrades quickly when the background traffic 

causes the link congestion. In the “QoS enabled” test even if an heavy background traffic is present 

the quality perceived is good and not affected by the traffic volume itself. 

The access network A is constituted by a Win98 PC that plays the role of the caller SIP Client and by 

two Linux PCs. Linux PC A acts as the background traffic generator in both scenarios and, in the 

“QoS enabled” one as the Q-SIP server too. Linux PC B is a router that connects the access network 

to the backbone link in both scenarios and, in the “QoS enabled” one plays the role of the COPS 

client too. The access network B is constituted by two computers, a Win98 PC and a Linux one 

directly connected to a router on the backbone link. The Win98 PC is the SIP called client, while the 

Linux PC acts as the background traffic receiver and, as it concerns the “QoS enabled” scenario as 

both Q-SIP server and COPS client. The router A and B are two Linux PCs on which we have 

implemented the TC mechanisms. In order to reduce the topology complexity we have decided to 

make the Router A playing the role of the BB too. The backbone link is emulated by means of an 

ATM connection using a New Bridge CS-1000 ATM Switch. The next step would be to replace it 

with the real Internet and, in this case the enhancement of the protocol inter-working should be 
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considered in order to make the BB configure the core routers when the resource allocation request is 

accepted. 

Further studies have been planned to estimate the packet’s end-to-end delay and jitter when the QoS 

mechanisms have been set-up. Moreover a tool for an objective evaluation of the voice speech quality 

perceived at user level is an ongoing work. 

6. Performance test of Traffic Control API 

Performance tests were carried out in order to give figures both on the rate of calls per seconds and 

on the number of active calls supported by our system architecture. 

As described in the previous sections we are using an API to manage the Traffic Control kernel data 

structures. This means our tests were performed looking at the kernel as a “black-box” while applying 

to it solicitations. Our aim was to understand the performance limits and not to improve the kernel 

implementation (though this issue will be briefly addressed in the following). We are aware that the 

results presented here may not have a general validity since they rely on the PC hardware on which 

the software implementation is running. However, it is important to notice that while the absolute 

values presented are likely to be variable depending on the processor speed and memory size, the 

relative values are likely to be valid across multiple speed processors and memory sizes. The results 

presented here are relative to an IA32 PC (Pentium IV) with 256 MB of RAM; moreover the kernel 

used was the 2.4.19. 

The first set of tests performed were focused to compute the resource allocation request time as it is 

seen from the Traffic Control server point of view. To this aim we profiled the Traffic Control server 

code extracting the time it takes for a resource allocation request to be completed (in this test all the 

resource allocation requests we issued were accepted). Fig. 7 reports the time needed for an 

allocation request to be completed (different rates of resource allocation requests are plotted) versus 

the number of requests already allocated in the systems. From the graph, it’s easy to notice that this 

time is independent on the rate of the calls (in this test every new call makes a new resource allocation 

request start) while it depends on the number of requests already allocated only. Moreover, the graph 

shows how the resource allocation time grows with the number of requests already accepted by the 

system. This result may indicate a linear management of the filter/class inside the kernel through a 
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chain of data structures (to achieve higher performance this linear management has to be avoided; an 

hash tabled should be used instead). 
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Fig. 7. Resource Allocation Request time versus resource allocation request number 

When performing the previous tests we realized that, if the allocation time depends only on the state 

of the system when the allocation request takes place (i.e. on the number of requests already allocated 

in the system so far), there is a bound to the number of simultaneous calls that can be handled at 

different allocation rates. This limit is exceeded when the inter-arrival allocation request time is 

greater than the time required by the Traffic Control server to serve a resource allocation request. We 

report those results in Table 1 as performance bound since this is the value that, if exceeded, makes 

the resource allocation server starting buffering resource allocation requests. 

The performance bounds gets the more tightening as the request allocation rate increases. The results 

reported here have to be interpreted as the maximum number of simultaneous active calls our current 

implementation may handle with a given call rate. 



 17 

 

Table 1. Maximum number of simultaneous allocated requests versus calls per second 

This number of simultaneous calls decreases as the call rate increases up to the maximum supported 

call rate of approx 2000 call/sec (as it can be seen from Fig. 7, the time for the first resource 

allocation request is in the range of 0.5 msec independently on the call rate). Moreover, Table 1 

reports a strange behavior when the number of requests already allocated is 2048: for resource 

allocation request rates ranging from 50 to 500 calls per second the performance limit is always 2048 

allocated requests. This strange behavior is highlighted in Fig. 8 where we report a slice of our test 

with call rate of 100 calls/sec with request number ranging from 1000 to 3000. 
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Fig. 8. Resource Allocation Request time versus resource allocation request number 



 18 

The resource allocation time is still increasing but Fig. 8 shows that the performance worsens of one 

order of magnitude (from approx 2 msec to more than 20 msec) when exceeding the 2048th request 

allocated. This behavior is common to all the call rate tested ranging from 1 to 1000 call/sec. This 

result may indicate that table entries are allocated from a dedicated kernel memory pool up to a 

certain number; when this number is exceeded then the kernel needs to allocate extra memory space 

addressing a different memory area thus loosing efficiency (a higher amount of memory space is 

required to be reserved in kernel space directly to manage larger systems). The last tests performed 

were devoted to understand whether such a performance worsening is reversible once the number of 

allocated requests drops below 2048. In Fig. 9 and Fig. 10 we report two different tests: 

• in the former (Fig. 9) we firstly allocated 4000 requests, then we released them and then we 

allocated again 4000 requests (here the requests with numbers [0-4000] and [8000+] are 

resource allocation requests, the others are resource release requests); 

• in the latter (Fig. 10) we firstly allocated 400 requests, then we released them and then we 

allocated again more than 2000 requests (here the requests with numbers [0-400] and 

[800+] are resource allocation requests, the others are resource release requests); 

In Fig. 9 is clear that  the performance worsening affects the resource allocation requests time only 

(releasing a resource previously allocated is always done within a little time) and that, once the limit of 

2048 requests allocated is reached, the system has no reversibility even if the number of resource 

allocated decreases to 0 (the 8001st request is a resource allocation request and the time it takes to 

complete is the same as the 2049th in this test). In Fig. 10, instead, the performance degradation took 

place only when the request allocated exceeded 2048 for the first time: i.e. when the number of the 

request was 2848 (= 400+400+2048). 

Taking into account the results shown here, we can claim that, after testing our system under the load 

of different resource allocation rates: 

• no dependency on the call rate value was found; 

• the number of simultaneous calls supported by the system depends on the call rate following 

an inverse law, except for the specific behavior, above discussed, due to kernel memory 

management; 

• to achieve better performance the number of 2048 simultaneous requests allocated must not 

to be exceeded. 
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Fig. 9. Resource Allocation/Release Request time versus request number (exceeding the limit) 
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Fig. 10. Resource Allocation/Release Request time versus request number (not exceeding the limit) 

7. Conclusions 
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In this paper we have proposed an architecture for the dynamic configuration of DiffServ QoS 

mechanisms in IP network. We started from the definition of a “TC server API” to interact with QoS 

mechanism in an open source router based on Linux OS. Then we have considered the COPS-DRA 

protocol as a generic signaling mechanism to let QoS client interact with a QoS enabled IP network. 

The interaction between the COPS-DRA control logic and the TC server API has been defined. As an 

example application, we have considered the IP telephony based on SIP protocol. The extension to 

SIP protocol required to interact with the COPS-DRA mechanisms have been defined. We introduce 

modification in SIP protocol that only affects SIP “proxy” servers, so that “legacy” SIP user 

application can be fully reused. We note also that the solution is fully backward compatible with 

current SIP based equipment that does not support QoS, allowing a smooth migration. The whole 

architecture has been implemented in a testbed and the internal architecture of the software modules is 

described. Results on the performance of Traffic Control mechanisms in Linux based routers have 

been reported. Future work include the combined performance evaluation of signaling mechanisms 

and traffic control mechanisms in the router, in order to understand the scalability in terms of call rate 

and number of active calls also including the signaling load. 
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