
Extending SIP for QoS support

D. Papalilo1, S. Salsano2, L. Veltri3

1 Università di Roma “La Sapienza” (Italy)
2 DIE – Università di Roma “Tor Vergata” (Italy)

3 CoRiTeL – Via Anagnina 203, 00040 Roma (Italy)

e-mail: {papalilo,salsano,veltri}@coritel.it

Abstract. – SIP is currently having a lot of attention as a protocol
for session signaling over the Internet. It can cover voice, video
and multimedia sessions. Most of these applications are sensitive
to the QoS provided by the underlying IP network. Therefore a
lot of interest is currently devoted to the interaction of SIP with
the QoS mechanism in IP networks. This work will describe an
enhancement to SIP protocol for the interworking with a QoS
enabled IP network. The proposed mechanism is simple and it
fully preserves backward compatibility and interoperability with
current SIP applications. Moreover the paper describes the
realization of the proposed solution in a testbed implementation.

1. INTRODUCTION

Basically, SIP [1] is an end-to-end session setup protocol. In order
to provide satisfying quality to audio and video communication
services, the reservation of resources may be needed. In the current
view, the SIP user agent should rely on existing QoS protocols (e.g.
RSVP) for the support of resource reservation [2].

This fact has two main drawbacks: i) the user application must be
aware of the QoS mechanism used in the access network and the
relative QoS signaling protocol (e.g. RSVP, COPS, or other), ii) user
application must implement such QoS protocol, with the increase of
the client complexity. Moreover, if RSVP is used as signaling
protocol, both user terminals should implement the RSVP protocol.

Currently two main approaches have been proposed in the IETF
for the support of QoS in an IP network: the Integrated Services
(Intserv) model (strictly based on the use of RSVP), and the
Differentiated Services (Diffserv) model. A very good introduction to
IP QoS topics can be found in [3], [4]. An IP telephony (SIP)
architecture with end-to-end QoS support which can rely on the
Intserv model is described in [2].

Although the Intserv model seems to be suitable for services that
requires strict QoS guarantees, as for the IP telephony, it is more
complex and suffers of scalability problems.

For this reason the Diffserv model is now obtaining a lot of interest
within the IETF and, for the same reason, it has been chosen as QoS
model in this work.

Figure 1 shows the reference scenario considered in this draft.
The SIP terminals are connected through access networks to a

core network with QoS support. The QoS provided in the core
network is accessed via some QoS Access Points at the border of
such network. Without no loss of generality, we suppose that the
QoS Access Points coincide with the network Edge Routers (ERs)
(as in Figure 1). The QoS in the access networks depends on the
QoS model used by the ISP for the access, but it is outside the scope
of the mechanisms described in this document.

In this document we propose a very simple solution for QoS call
setup that is based on the enhancement of the SIP protocol to convey

end-to-end QoS related information. We will refer to such QoS
aware SIP implementation as Q-SIP.

The proposed QoS architecture (see Figure 3) eliminates the need
of QoS supports on the user terminals since all the QoS related
functions can be moved to SIP servers that will control both call
setup and resource reservation, thus relieving the terminals from
unneeded complexity.

Basically, when a call setup is initiated, the caller SIP client can
start a SIP call setup session through an outbound SIP proxy server.
If needed, the server (a Q-SIP server) starts a QoS session interacting
with a remote Q-SIP server and with the QoS provider (a QoS
Access Point). When the QoS provider responds, the call setup can
continue and finally the data session starts.

The requirements at the basis of the Q-SIP proposal are:
 i) it should be possible to use existing SIP clients; no

enhancements/modifications are needed in the SIP client
applications,

 ii) it should be possible to have a seamless interaction with other
parties which do not intend or are not able to use QoS,

 iii) the protocol enhancements should preserve backward
compatibility with standardized SIP protocol,

 iv) the resulting architecture should be as simple and scalable as
possible.

The QoS setup procedure is dealt entirely by QoS aware agents,
generally on SIP servers, and all protocol extensions needed for the
QoS setup are hidden from not-QoS-aware SIP agents. Hence the
solution preserves backward compatibility with current SIP
applications and it de-couples as much as possible the SIP signaling
from the handling of QoS.

Note that, it is reasonable that in a Diffserv QoS scenario there will
be servers dedicated to policy control, accounting and billing aspects.
A solution based on a SIP server is really suited to this QoS scenario.

SIP
terminal

QoS enabled network

SIP
terminal

Edge
Router

Edge
Router

Access network Access network

Figure 1 – Reference QoS scenario

2. SIP AND QOS: PREVIOUS SCENARIOS

Since the Integrated Services model can provide the stricter
guarantees for bandwidth reservations for single flows, it seems to be
a good candidate as reference model for QoS support for IP
Telephony services. The interaction of the QoS signaling (i.e. the
RSVP - Resource Reservation Protocol) and the SIP protocol has
been already considered (see [2]).

The basic concept is to let the terminals start a RSVP based
bandwidth reservation during the SIP call setup. The SIP user
agents, that should “natively” include the RSVP support, are
connected to an Integrated Services based IP network; all routers are
Intserv aware and support RSVP, per flow bandwidth reservation
and per flow packet scheduling. According to this scenario, when the
calling User Agent wants to establish a QoS call, it sends the SIP
INVITE message to the callee, specifying that a bandwidth
reservation is requested.

Upon the receiving of the INVITE message, a 183 “session
progress” response is sent from the callee and then the resource
reservation procedure can start. Depending if the bandwidth
reservation is requested for one or two-ways traffic flows, the caller
or/and the callee starts a RSVP session by sending PATH messages
to the peer party, followed by the classical RSVP signaling flow.

Upon the reception of the RESV messages each user agent realizes
that the reservation has been successfully setup and the SIP call setup
can continue with the 180 “ringing” message, the 200 OK and the
caller ACK.

Figure 2 describes the SIP/RSVP signaling flow for the call setup
between two SIP/RSVP aware user agents.

The main disadvantage of this scenario is that it suffers of the well
known scalability problem of the Intserv approach ([5]).

This problem can be overcome by using a Differentiated Services
approach. Different proposals are available in literature for QoS
support through Diffserv networks [6]. The most common approach
is to let RSVP signaling within access networks and to use Diffserv
mechanisms within the core of the network. The bandwidth
reservation is still requested by the terminals by means of RSVP
signaling, but the resources in the core network are handled with
Diffserv mechanisms.

SIP
Terminal

SIP
Terminal

INVITE (with QoS)

RSVP Resv

SIP
Server

SIP
Server

router
RSVP

INVITE (with QoS)

RSVP Resv RSVP Resv

RSVP Resv

RSVP Path RSVP Path RSVP Path

RSVP Resv

RSVP Path

RSVP ResvRSVP Resv RSVP Resv

RSVP Path RSVP PathRSVP Path RSVP Path

<Traffic Stream> <Traffic Stream>

ACK ACK

200 (OK)

180 (Ringing) 180 (Ringing)

200 (OK)

183 (Session Progress)

router
RSVP

router
RSVP

Figure 2 –The SIP/RSVP call setup signaling flow

This combination of the two approaches tries to benefit from both
Intserv and Diffserv features. Scalability is achieved by the Diffserv
aggregation in the core, while is kept the advantages of end-to-end
signaling by the use of RSVP. Admission control within the Diffserv
network is enforced at the edge of the network by the Edge Routers
(ERs), (i.e. the routers placed at the boundary between the IntServ
access networks and the Diffserv core network, while different
architectures can be used to perform the resource management. A
possible solution is to have a logically centralized entity (the
Bandwidth Broker - BB) in charge of managing resources of the
whole Diffserv network. The BB may act as an Admission Control
Server. At the reservation setup time, the ingress Edge Router

queries the BB and admits or rejects the new flow depending on its
response.

Although this second architecture represents a significant step
towards scalability, there are still some problems in common with
the previous pure SIP/RSVP architecture. First, it requires ad-hoc
user agents that are aware of both SIP and RSVP signaling; therefore
no generic SIP client can be used. Second, the support of both SIP
and RSVP protocols may be critical for very light terminals such as
mobile phones small IP devices or other handheld IP based
terminals, due to their limited memory and processor capacities.
Third, a lot of signaling messages have to be sent and processed by
terminals, servers and routers.

Moreover it is important to consider that the increased complexity
of the SIP clients due to the support RSVP signaling in conjunction
with the SIP signaling, is not justified by benefit derived by the use of
RSVP. The objective of bandwidth reservation is usually the core
network that, in this case, implements the Diffserv model, while the
RSVP is used just as a generic protocol to ask QoS to the core
network.

The above considerations are the basis of the proposed QoS
architecture. The main idea is to eliminate the RSVP signaling from
the terminals, and to use the SIP as unique call setup protocol for
QoS (and not QoS) calls. An additional advantage is that all the QoS
related functions can be moved to SIP proxy servers that will control
both call setup and resource reservation, thus relieving the terminals
from unneeded complexity.

3. QOS SIP: OVERVIEW

The basic idea is that SIP clients use a default SIP proxy server in
their domains for both outgoing and incoming calls. The client sends
SIP messages to its proxy server and receives the messages from its
server. The SIP servers are therefore involved in the message
exchange between the clients and can add (and read) QoS related
information in the SIP messages. This QoS information exchange is
made transparent to the clients. The SIP server will extract from SIP
signaling QoS parameters among them and will interact with the
network QoS mechanisms. The enhanced SIP server will be called
Q-SIP server (QoS enabled SIP server) in the following.

The originating Q-SIP server adds QoS information in the SIP
messages. This is meant as an offer to terminating SIP server, or as a
hint that the originating side is capable of QoS and is willing to
exploit it. If the terminating SIP server is able to handle QoS in a
compatible way and it is willing to exploit it, it will answer positively
with proper information in the response SIP messages. A legacy SIP
server on the terminating side will not understand the QoS
information in the SIP message and will silently ignore it. Obviously,
the SIP session will be setup with no QoS.

The reference architecture for the proposed SIP QoS scenario is
depicted in Figure 3. The involved actors are the two SIP clients, the
two SIP servers and a QoS enabled network. The QoS provided by
the QoS enabled network is accessed by QoS Access Points located
at the border of the network in the ERs.

The setup of QoS session in such scenario is logically composed of
two aspects: the end-to-end signaling mechanism to exchange QoS
information and the QoS negotiation between the SIP agents and the
QoS network.

In order to design a clean and flexible solution it is important to
de-couple these two aspects as much as possible. Therefore the SIP

protocol mechanism to exchange QoS information should be generic
and independent from the actual QoS mechanisms.

Q-SIP server

QoS enabled
network

PDPPEP

SIP

Q-SIP server

SIPQ-SIP

QoS Signaling (COPS)

Application Signaling (SIP)

PDPPEP

Access network Access networkCOPS

PDP BB

COPSCOPS

Figure 3 - Q-SIP architecture based on the use of Q-SIP servers

Although the proposed QoS architecture will be kept very general
with respect to the used QoS mechanism, for completeness we will
consider a particular scenario in which the QoS aspects in the
Diffserv core network are dealt via the COPS protocol [7], with
specific extension as proposed in [9].

An important assumption in our scenario is that unidirectional
QoS reservations for IP flows are provided by the QoS enabled
network. Therefore in order to setup a bidirectional QoS
communication, two different reservations have to be requested to
the QoS network (RSVP QoS model works in this way). Extensions
to consider QoS network that can provide bi-directional reservation
are currently under study.

Note that we mainly refer to a scenario where the SIP clients are
un-aware of QoS aspects and the local SIP servers do all the QoS job.
Actually, the proposed SIP QoS mechanism can be applied to a
scenario where the SIP user applications are enhanced in order to
handle the QoS aspects by themselves. The resulting scenario is
depicted in Figure 4.

SIP server

QoS enabled
network

PDP PEP

SIP server
SIP

PDP PEP
COPS

COPS

Q-SIP Q-SIP

COPS

Figure 4 – Q-SIP architecture with Q-SIP agents on user terminals

Compared to Figure 3, note that SIP clients become Q-SIP clients
and Q-SIP servers become SIP servers. There can even be
asymmetric scenarios where one side is using a server and the other
side uses a SIP application based solution.

4. Q-SIP SIGNALING MECHANISM

In this section we provide the detailed description of the signaling
mechanisms of the proposed SIP based reservation architecture (Q-
SIP) [10].

We consider a QoS scenario in which a Diffserv backbone
network serves different access networks (Figure 1). The QoS
requests are handled at the border of the core network by the QoS
Access Points, that is, for simplicity, the Edge Routers. The ERs
should implement all the mechanisms needed to perform admission
control decisions (possibly with the aid of the BB) and policing

function. The QoS scenario can be based on COPS as the protocol
for QoS reservations.

The IP phones/terminals are located on the access networks;
standard SIP clients can be used and explicit SIP proxying
configuration is set. When a call setup is initiated, the caller SIP
client starts a SIP call setup session through the SIP proxy server. If a
Q-SIP server is encountered, this will start a QoS session interacting
with a remote Q-SIP server and with the QoS provider for the
backbone network (i.e. the access ER). Figure 3 shows the
architecture.

4.1. Q-SIP message flow

With reference to Figure 3 and Figure 5, the call setup starts with a
standard SIP INVITE message sent by the caller to the local Q-SIP
server. The message carries the callee URI in the SIP header and the
session specification within the body SDP (media, codecs, source
ports, ecc). The Q-SIP server is seen by the caller as a standard SIP
proxy server. The Q-SIP server, based on the caller id and on session
information, decides whether a QoS session has to be started or not.
If a QoS session has to be setup, it inserts the required descriptors
within the INVITE message and forwards it towards the invited
callee; the INVITE messages can be relayed by both standard SIP
proxy servers and Q-SIP servers.

When the callee responds with a 200 OK message, it is passed
back to the last Q-SIP server that is the Q-SIP server that controls the
callee access network.

At this point the Q-SIP server on the callee side has all the
information to request a specific QoS reservation to the ER on the
callee access network for the callee-to-caller traffic flow. When the
callee Q-SIP receive the response for the QoS reservation request, if
it is positive, it stores such QoS information and send it within the
200 OK message toward the caller. The QoS information data
should be stored by the Q-SIP server in order to maintain trace of the
current QoS session (see also later); we call such data "QoS state". If
the response for the reservation is negative, the Q-SIP server does not
set a new QoS state, but it still inserts in the 200 OK response the
fields needed for the caller-to-callee reservation in order to give the
possibility to the caller Q-SIP server to make the reservation.

When the caller Q-SIP server receives the 200 OK message with
the complete QoS session indicators, it completes the QoS session
setup by performing the QoS request to the ER on the caller access
network for the caller-to-callee traffic flow. If the response for this
flow is negative, the caller-to-callee flow will not have QoS support.
The handling of these reservations refusals is different depending on
QoS service model (i.e. QoS-Assured or QoS-Enabled services see
[2]). Assuming a QoS-Enabled service, the Q-SIP server will simply
continue with the signaling.

When a call is terminated all resources that have been reserved
must be released. This action is triggered by the BYE messages;
when a BYE matching an installed QoS state is received, the Q-SIP
server sends a release request to the QoS provider and removes the
QoS state.

It is important to note that the proposed architecture keeps the
compatibility with standard SIP clients and standard SIP servers. As
we will see in the rest of this section, all the information needed by
the Q-SIP servers to perform the QoS session setup is inserted within
the SIP messages in such a way that non Q-SIP aware agents can
transparently manage the messages.

4.2. Q-SIP protocol

When the first Q-SIP server (i.e. the caller Q-SIP server) is
encountered, it inserts a new field in the SIP header that is:

CallerER: <caller ER address>

By means of the CallerER field the other Q-SIP servers know the
IP address of the caller ER; this information is used by the callee Q-
SIP server to specify the remote endpoint of the reservation in the
reservation request to the QoS provider.

Moreover, the caller Q-SIP server add its VIA field (as every SIP
proxy), in which it includes some specific information (considered as
SIP "comments") that will be not visible to any other SIP or Q-SIP
server, since they are within its own VIA field. This information will
be used by the same Q-SIP server while processing the 200 OK
responses. The VIA field is structured as follows:

VIA: SIP/2.0/udp <SIP server address>[:<port>]
(FirstQSIP/CallerER:<caller ER address>[/<next comment>])

Note that according to the standard SIP protocol processing rules
each SIP proxy that manages the INVITE message adds a new VIA
field; while all the other field, as the CallerER field should be
forwarded. Each Q-SIP server that manages an INVITE message
containing the CallerER field, will also copy the caller ER address
within its VIA field, as follows:

VIA: SIP/2.0/udp <SIP server address>[:<port>]
(CallerER:<caller ER address>[/<next comment>])

When the INVITE message reaches the callee host, the user client
processes the call, and, at last, generates the 200 OK response (if the
call is accepted).

If the client is not aware of Q-SIP it simply discards each Q-SIP
field (i.e. the CallerER) when forming the new response message.
According to the SIP protocol, the fields that it has to copy from the
INVITE message are the Via, To, From, CSeq and Call-ID fields.

When the 200 OK reaches the callee Q-SIP server, the
corresponding VIA field is read, the QoS session information are
extracted (including the caller ER address) and a QoS request for the
IP flow in the callee-to-caller direction can be started. (As we are
considering only unidirectional reservations, two reservations in the
two directions are needed)When this QoS reservation
request/response phase is concluded and the resource is reserved, the
QoS state is stored and the 200 OK messages is relayed toward the
caller.

Within this new response message, the corresponding VIA field is
dropped (as required by SIP) and a new field specifying the callee
ER address is inserted, that is:

CalleeER: <callee ER address>

Even if the QoS reservation for the callee-to-caller flow was not
successful, this field is still inserted to make possible to reserve the
QoS for the caller-to-callee flow in a "QoS-Enabled" scenario. For a
"QoS-Assured" one a different behavior should be performed but this
is outside the scope of this document.

If there are additional SIP servers handling this response in the
path between the callee Q-SIP and the caller Q-SIP servers, they will
only drop their own VIA field according to standard SIP rules. The
Q-SIP servers recognize that they are not the callee Q-SIP server
because the CalleeER field is already present in the message. When
the first Q-SIP server is encountered (i.e. the caller Q-SIP server), it
recognizes the field FirstQSIP within its VIA field and extracts the

QoS session information (including the callee ER address). Then, it
starts the QoS request for the IP flow in the caller-to-callee direction
and stores the "QoS state" for this flow (if the reservation has
success).

It is very important to note that the use of the previously defined
VIA fields lets each Q-SIP server extract all information needed for
the QoS reservation directly from the SIP message that it is
processing. This mechanism allows the Q-SIP not to keep per
session information until a QoS call is completely installed and can
be used in light Q-SIP implementations.

This "QoS state" is instead needed when the call setup is
completed for a correct tear-down procedure, for accounting and for
resource control.

In the Q-SIP, a key rule is played by the capacity of the Q-SIP
servers (both the caller and the callee servers) to gather the necessary
information from SIP messages in order to select the appropriate
QoS reservation. Particularly the Q-SIP servers have to specify the
bandwidth parameters and the flow characterization parameters (i.e.
for traffic policing) in the QoS reservation request messages. The Q-
SIP servers have to select the appropriate level of bandwidth, the
ingress and egress ERs, and the session identification parameters
(i.e. the socket identifiers). Let us now consider how the Q-SIP
servers can obtain this information.

As for the bandwidth that has to be requested to the QoS provider,
this is selected on the base of the type of codecs specified by the end
clients for the RTP streaming traffic, and found within the SIP
INVITE and 200 OK messages. In Appendix B, it is reported an
example of mapping table that can be used to derive the required
bandwidth for well known audio codecs. It reports both the payload
bit rates and the required bandwidths (taking into account the IPv4
and IPv6 headers).

As for the session identification, in general different filters can be
used. For example, RSVP defines for basic flow filter the destination
IP address, the transport protocol identifier and (optionally) a
transport address, i.e., in case of UDP/TCP, the destination port.

In our architecture we use a three-fields filter composed by the
source address, the destination address and the destination port. This
information can be extracted from the INVITE/200 OK messages
directly by the caller/callee Q-SIP servers.

Note that the caller address and port information needed to setup
the QoS for both directions are found within INVITE messages. The
reservation is made by the caller and callee Q-SIP servers when they
receive the 200 OK message. The mechanism, similarly to that used
to take trace of ER information, uses a new field within the VIA field
added during the processing of the INVITE message.

For the caller Q-SIP server the VIA field becomes:

VIA: SIP/2.0/udp <SIP server address>[:<port>]
(FirstQSIP/CallerER:<caller ER address>/Caller-<media>-
endpoint:<caller address>:<caller port>[/<next comment>])

Where the parameter <media> indicates which media uses the
specified caller address; the address is used as source address for the
caller-to-callee flow.

For the other Q-SIP server (hence also for the callee Q-SIP server)
the VIA field becomes:

VIA: SIP/2.0/udp <SIP server address>[:<port>]
(CallerER:<caller ER address>/Caller-<media>-
endpoint:<caller address>:<caller port>[/<next comment>])

Where the parameter <media> indicates which media uses the
specified caller address and port, as destination for the callee-to-caller
flow.

The remaining information is extracted directly from the 200 OK
message (the callee address from the callee Q-SIP server and the
callee address and port from the caller Q-SIP server).

The Q-SIP call setup flow is shown in Figure 5.
The tear down procedure is triggered at the caller/callee Q-SIP

servers by the receiving of the BYE and 200 OK messages. When a
Q-SIP server receives the BYE request associated to a session with
QoS, it requests the releasing of the bandwidth for that session to the
QoS provider. If required, the resource details could be retrieved
from the stored QoS state. In appendix A there is a sample of the
QoS state that can be associated with each QoS call.

When a BYE request matches one of the stored call-leg, the Q-SIP
server releases the resources by interacting with the QoS provider
and frees the QoS state. If a BYE message gets lost due to a terminal
failure, the session tear-down should be initiated (automatically) by
the other SIP terminal as a result of a session time-out.

In order to ensure that the SIP signaling will cross the Q-SIP
servers, the Record-Route and Route headers are used as defined by
SIP [1]. The Q-SIP server inserts the Record-Route header for the
sessions with QoS requests, making sure that further signaling will
cross the Q-SIP server itself.

SIP
Terminal ER

INVITE

Q-SIP
Server

INVITE

<Traffic Stream> <Traffic Stream>

Bandwidth
Broker

INVITE

180 ringing180 ringing 180 ringing

200 OK

200 OK

200 OK

ACK ACKACK

copscops

copscops

cops

copscops

cops

BB

Q-SIP
ServerER SIP

Terminal

Figure 5 – Q-SIP call signaling flow

A set of example Q-SIP messages is reported in Appendix C.

5. SIP TERMINALS

Although it has been supposed that the SIP user clients are not
aware of the Q-SIP reservation mechanism, Q-SIP aware clients can
be also considered (Figure 4).

Q-SIP aware clients should simply include Q-SIP as described in
the previous sections. In that case, the clients could directly request
QoS reservation to the QoS providers and the Q-SIP signaling would
transparently bypass any SIP or Q-SIP proxy server. Moreover the
architecture is fully compatible also for calls starting from Q-SIP
aware clients and directed to standard SIP clients with Q-SIP proxy
servers, and vice-versa.

6. Q-SIP SERVERS

A basic design choice in the design of a SIP proxy server is
whether to make it stateful or stateless. Being stateful means that it
keeps a record of active SIP session and the processing of SIP

messages can depend on the session status. Being stateless means
that each message is processed by itself with no relations with
previous messages of the same session. A stateful server of course is
more powerful as it can better handle additional aspects (like for
example policy and accounting), but the SIP protocol has been
designed so that stateless server can work as well.

Looking at our approach, we note that the Q-SIP server handles
the QoS for a SIP session, by making a reservation in the QoS
enabled network. The Q-SIP server has to care about this reservation,
for example the resources must be properly released when the
session is closed. For this reason we believe that the Q-SIP server
must be stateful once the session has been established.

Nevertheless, we have designed our Q-SIP extensions preserving
the SIP design goals: there is no need to store state information
during the session establishment and all the needed information is
carried by the SIP messages itself.

7. IMPLEMENTATION OF THE Q-SIP PROXY SERVER

The proposed architecture has been implemented in a test-bed
compposed of a set of Linux PCs. The Diffserv components of the
test-bed have already been discussed in [11]. The overall picture of
the test-bed is described in Figure 6.

Here we focus on the design of the Q-SIP proxy server and on its
interaction with the COPS protocol for admission control.

A SIP proxy server has basically two (related) tasks: 1) to receive
message destined to a client which is registered and to forward them
to the client itself; 2) to receive messages coming from a user in its
domain and to propagate them outbound. A basic design choice in
the design of a SIP proxy server is whether to make it stateful or
stateless. Being stateful means that it keeps a record of active SIP
session and the processing of SIP message can depend on the session
status. Being stateless means that each message is processed by itself
with no relations with previous session messages (only the
registration status of clients is taken into account). A stateful server of
course is more powerful as it can better handle additional aspects
(like for example usage accounting). In our implementation we
chose to design a quasi-stateless server that takes trace only of
already established QoS sessions; no information of ongoing call
setup sessions or of non-QoS sessions is kept. Note that such server
imposes more stringent requirements on the correctness of SIP
protocol mechanism, since it is not possible to rely on information
previously exchanged during the SIP session. In our test-bed we
demonstrated that the proposed SIP enhancement works with such a
quasi-stateless server, hence verifying the robustness of the protocol.
A real life implementation could be based on a stateful server.

The Q-SIP proxy server has been realized on a PC running the
Linux Redhat 6.2 operating system. The Q-SIP server is developed
in Java (running on Sun JDK 1.2.2 virtual machine) and a COPS
DRA client and server are developed in C. The internal architecture
of the test bed elements is shown in Figure 7.

The SIP server and the COPS DRA client are two different Unix
processes communicating through a socket interface. The Edge
Routers, that act as QoS Access Points, include a COPS DRA server
that communicate through a socket interface with a process
implementing the Local Decision Server and the COPS DRA client.
This process communicates with the Diffserv traffic control
mechanism provided by the Linux kernel. The PDP/BB is composed
by a COPS DRA server and a Decision Server, that interact through
a socket based interface.

SIP Client

DiffServ

DiffServ DiffServ

DiffServ

SIP Client

Bandwidth Broker
(COPS DRA Server)

Edge Router

Edge Router

Q-SIP
Proxy Server

SIP

COPS
DRA

COPS
DRA

COPS
DRA

COPS
DRA

Q-SIP

BB

Q-SIP
Proxy Server

SIP

Figure 6 – Overall test bed scenario

SIP server

COPS DRA client

API

API
COPS DRA

server

Diffserv traffic control:
policer , classifier

Local Decision Server

COPS DRA client

COPS messages

Edge Router
(QoS Access Point)

Q-SIP server

JAVA

SIP messagesSIP messages

COPS messages

C
socket

COPS DRA server

Bandwidth Broker
Decision Server

socket

socket

Linux
kernel

Kernel
socket

Figure 7 – Q-SIP server, ER, and BB internal architectures

8. CONCLUSIONS

In this paper we propose some simple extensions of the SIP
protocol in order to interact with QoS mechanisms for QoS support
in Diffserv networks. The enhancement to the SIP protocol is
basically independent from the specific QoS scenario. A possible
deployment scenario based on Q-SIP proxy servers is proposed,
having the advantage that “legacy” SIP user application can be fully
reused. The solution is also fully backward compatible with current
SIP based equipment that does not support QoS, allowing a smooth
migration. Finally the testbed implementation of the proposed
solution, including the internal architecture of the Q-SIP proxy
server has been described.

9. REFERENCES

[1] M. Handley, H. Schulzrinne, E. Schooler, J. Rosenberg, “ SIP: Session
Initiation Protocol”, IETF Internet Drafts < draft-ietf-sip-rfc2543bis-
02.txt>, November 2000.

[2] W. Marshall et al. "Integration of Resource Management and SIP", IETF
Internet Draft <draft-ietf-sip-manyfolks-resource-02.txt>, August 2001,
Work in Progress.

[3] X. Xiao, L.M. Ni “Internet QoS: A Big Picture”, IEEE Networks, March
1999

[4] W. Zhao, D. Olshefski and H. Schulzrinne, “Internet Quality of Service:
an Overview” Columbia University, New York, New York, Technical
Report CUCS-003-00, Feb. 2000.

[5] A. Detti, M. Listanti, S. Salsano, L. Veltri, “Supporting RSVP in a
Differentiated Service Domain: an Architectural Framework and a
Scalability Analysis”, IEEE International Communication Conference
(ICC’99), June 1999, Vancouver, pp. 204-210.

[6] Y. Bernet, R. Yavatkar, F. Baker, L. Zhang, M. Speer, R. Braden, B.
Davie, J. Wrocklaski, E. Felstaine, “A Framework for Integrated
Services Operation Over Diffserv Networks”, IETF RFC 2998,
November 2000.

[7] D. Durham, Ed., J. Boyle, R. Cohen, S. Herzog, R. Rajan, A. Sastry, The
COPS (Common Open Policy Service) Protocol, IETF RFC 2748,
January 2000.

[8] R. Mameli, S. Salsano “Use of COPS for Intserv operations over
Diffserv: Architectural issues, Protocol design and Test-bed
implementation”, ICC2001, Helsinki

[9] S. Salsano "COPS usage for Diffserv Resource Allocation (COPS-
DRA)", <draft-salsano-cops-dra-00.txt>, September 2001, Work in
Progress, http://www.coritel.it/projects/cops-bb [Note to the reviewer: the
draft will be submitted in September, but it is already available at the
given URL]

[10]L. Veltri, S. Salsano, “ SIP Extensions for QoS support in Diffserv
Networks”, <draft-veltri-sip-qsip-00.txt>, October 2001, Work in
Progress, http://www.coritel.it/projects/qsip

[11]W.Almesberger, S.Giordano, R. Mameli, S. Salsano, F.Salvatore “A
prototype implementation for Intserv operation over Diffserv Networks”,
IEEE Globecom 2000, S. Francisco, December 2000.

