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Abstract: Information-centric networking (ICN) is a novel networking paradigm 
which is attracting increasing attention by both academic and industrial researchers. 
In fact, it promises to provide technological solutions that best fit with the way in 
which Internet is actually utilized. Assessment of proposed solutions require 
appropriate experimental testbeds. In this context OpenFlow, which has been 
developed to enable the deployment of novel networking solutions in the actual 
network infrastructure, represents a valuable tool. Accordingly, we are currently 
implementing an ICN solution – called CONET – for OpenFlow networks. The 
solution will be deployed in two testbeds, part of larger experimental OpenFlow 
facility distributed across Europe realized by the EU funded OFELIA project. In 
particular one testbed will be based on the Open vSwitch platform while the other 
will be deployed on NetFPGA platforms. Our implementation has been designed to 
easily support other ICN solutions with simple modification of the code. Basic ICN 
functionality that are specifically addressed in our implementation are data naming, 
route-by-name, and in-network caching. 
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1. Introduction  
In recent years both the industrial and academic communities have focused increasing 
attention on the so called information-centric networking (ICN) paradigm, which is 
expected to be a fundamental component of the Future Internet [1], [4].  
 Motivations of the ICN paradigm lay in the evident fact that [1] “people value the 
Internet for what content it contains, but communication is still in terms of where”. In other 
words the Internet was designed to support exchange of data between hosts, whereas most 
of Internet usage relates to obtaining a desired content regardless of the specific hosts that 
store it. Such mismatch between the principal use of the Internet and the current protocols 
and architectures has several disadvantages in terms of persistence, availability, and 
authenticity of data, which become more and more critical as user mobility and importance 
of data authenticity increase [2]. 
 The large interest in the ICN paradigm, mentioned above, is demonstrated by the large 
number of ongoing research projects focusing on ICN worldwide, by the increasing number 
of workshops dedicated to ICN, and by the creation of an “Information-Centric Networking 
Research Group” (ICNRG, [5]) within the Internet Research Task Force (IRTF). 
Immediate consequence of such interest is a large volume of solutions for ICN proposed in 
the last few years [2], [1], [6]. Comparison of proposed solutions, which often are based on 
approaches significantly different one from the other, is very difficult because metrics and 
experimental settings should be uniquely defined in order to achieve fair comparisons. 
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While this is among the objectives of ICNRG [5], it must be mentioned that remarkable 
results could be achieved by deploying the experimental solutions into real network 
infrastructures. Unfortunately, this is not done usually because it is extremely complex (and 
even dangerous) to deploy experimental solution at the hearth of critical infrastructures 
such as the Internet. 
 Generally speaking, such criticality has been a major barrier to the introduction of novel 
solutions in the Internet in the last few decades, so that network architecture and protocols 
currently utilized by the Internet have been defined several decades ago. To overcome this 
problem, OpenFlow has been recently proposed [3]. OpenFlow enables researchers to 
deploy novel switching/networking solutions in the actual network infrastructure while 
preventing problems to be created to actual data traffic traversing the network. In fact, 
OpenFlow enables researchers to implement novel architectures and protocols via software 
and to deploy them in actual network switches/routers. Network resources are sliced and 
operations running in different slices do not interfere each other which guarantees a sort of 
isolation between slices and therefore, prevents novel solution to create problems to normal 
traffic.  
 Accordingly, OpenFlow can be regarded as the first significant instantiation of the so 
called Software Defined Network concept which envisions a physical separation between 
datapath (usually, realized in hardware) and network control (usually, realized via 
software). As a result of such separation new networking solutions can be tested, and cost 
of infrastructure can be reduced significantly. New products released by several network 
equipment manufacturers support OpenFlow and large OpenFlow experimental testbeds 
have been deployed worldwide – see the testbed at Stanford University 
(http://cleanslate.stanford.edu) or the OFELIA facility (http://www.fp7-ofelia.eu), for 
example. 
 In this paper we discuss an ICN solution for OpenFlow based networks and describe the 
experimental testbeds we are deploying. ICN characteristics which will be specifically 
addressed regard data naming, route-by-name, and in-network caching.  In Section 2 we 
provide a background on ICN and on OpenFlow. Section 3 introduces the CONET solution 
that we have chosen as basis for the integration with OpenFlow. Section 4 specifically 
describes how the CONET ICN solution can be implemented on top of OpenFlow. Finally 
in Section 5 some concluding remarks are drawn. 

2. Background 

2.1 Information-Centric Networking 

In the recent past several solutions have been proposed for Information-Centric 
Networking. As for their overall approach, the “clean slate” approaches aims at fully 
replacing the existing IP layer, i.e. assuming that the ICN layer will sit over layer 2 
networks like Ethernet. On the other hand, the “overlay” approaches considers to run ICN 
over the existing IP based networks. This means that ICN information units are tunnelled 
within TCP or UDP flows running over IP. Recently, an “evolutionary” approach [8] has 
been proposed which foresees to extend IPv4 and IPv6 to support ICN using a new option 
to be carried in IP packets headers. 
 While the ICN approaches can be extremely different each other, key components for 
all of them are: naming strategy, route-by-name policy, and in-network caching solutions. 
In ICN systems, data items – which can have several instantiations in the network – are 
uniquely identified by a name. Such name should be reported in messages relevant to the 
retrieval and transportation of the data item. As a consequence the policy utilized to select 
and represent such name are extremely important. In fact, mnemonic, variable length names 



provide higher flexibility and are more human-friendly. However, they also require variable 
field size in packet header (which results in slower packet handling within the network) and 
complex mechanisms to ensure name uniqueness. The alternative approach envisions, 
instead, flat, constant length, computer generated names. Such names cannot be memorized 
by humans easily and therefore, require a network service which is responsible to map a 
human friendly, descriptive name in the actual name1. 
 Route-by-name indicates the mechanisms used to retrieve a content, when a user has 
made a content request providing the name of the requested content. These mechanisms can 
be split in “forward-by-name” and “content routing”. Forward-by-name refers to the 
operation of relaying an incoming content request to an output interface, based on the name 
of target content. Instead, content routing indicates the operation of disseminating 
information about location of contents. In this context, two different approaches can be 
clearly distinguished depending on whether the routing logic is distributed in each node in 
the communication path or executed in appropriate network elements that will 
communicate their decisions to the relevant network nodes through appropriate signalling. 
 In-network caching is another key component of all ICN solutions, even if the debate 
about its effectiveness in real networking settings is still on-going [7]. Here again several 
design options can be taken. For example, storage can be distributed in some (or all) of the 
network nodes or can be centralized in one (or several) specific server farms that are 
utilized by a portion of the network. Furthermore, a large number of caching policies are 
available and the most appropriate should be identified. 
 The objective of this paper is to propose an implementation of ICN in OpenFlow that 
can potentially accommodate a large set of the solutions proposed so far for the above 
functionality. 

2.2 OpenFlow 

Software Defined Networking (SDN), which envisions a separation between the network 
components that are responsible for packet forwarding from the components that are 
responsible for the network control, is the most promising environment for implementing 
and testing open and flexible ICN solutions in real networks. Accordingly, we have focused 
our attention on OpenFlow which provides a set of standardized, open interfaces for the 
definition and management of a Software Defined Network. 
 In OpenFlow the network elements responsible for packet forwarding are denoted as 
OpenFlow Switches (OF Switches), whereas the network elements responsible for network 
control are called Controllers. OF Switches and Controller(s) interact by exploiting the 
OpenFlow Protocol which defines a set of primitives that are exchanged through an SSH 
connection.  
 Upon arrival of a data packet OF Switches check whether there is a matching between 
certain fields contained in the header2 of the data packet and the entries that are stored in its 
flow tables. If this is the case, then the appropriate action (reported in the flow table) is 
executed, otherwise the packet header is sent to the Controller and the packet is held until 
the Controller notifies what is the action to be executed on such a packet. Possible actions 
are: the forwarding through one or more switch network interfaces, the modification or 
dropping of the packet, and several others that have been defined [9]. When the Controller 
receives the header of the packet it decides the action to be executed on such packet based 
on some policies that can be programmed via software by the network managers. 
Accordingly, all intelligence is concentrated in the Controller that should have an updated 
view of what is the current status of the network elements it is responsible for. 
                                                 
1 Such servers have the same goals of the DNS, in the current Internet. 
2 OF Switches consider the headers at the second, third, and fourth level of the protocol stack. 



Communication and computing resources of network elements can be divided in several 
slices and different policies can be defined by the controller for each slice. This enables the 
coexistence of several networking policies and architectures in the same infrastructure. 
 Several implementations of OpenFlow switches are available both in software [10] and 
hardware [11]. Furthermore, several open source implementations of the controller are 
available as well (for example, see the NOX implementation [12]). Public experimentations 
of OpenFlow are ongoing, the EU funded OFELIA project has recently deployed a large 
OpenFlow based testbed across several “islands” in Europe [13], open for experiments. Our 
goal is to design and implement an ICN solution on top of the OFELIA OpenFlow testbed. 

3. The CONET solution for Information Centric Networking 
Among the different ICN proposals, we have selected CONET [6] and worked on its 
implementation on OpenFlow infrastructure. This section provides an overview of the 
CONET network architecture and protocols. 

Figure 1: CONET network architecture. 
 

 As shown in Figure 1, a CONET network consists of a set of end nodes and serving 
nodes interconnected by CONET Sub Systems (CSS). A CSS is defined as a generic 
network with homogeneous networking technology and homogeneous native addressing 
space. In our case one of the CSS will be an OpenFlow network. 
 CONET nodes exchange CONET Information Units (CIUs), which are used to convey 
both requests of named-resources, called interest CIUs, and chunks of named-resources 
themselves (i.e., part of files, videos, etc.), called named-data CIUs. A CONET SubNet 
interconnects two or more CONET nodes, providing transfer of CIUs by using an under-
CONET technology, such as point-to-point Layer 2 links, Layer 2 networks or overlay links 
(e.g. UDP over IP). To best fit the transfer units of an under-CONET technology, both 
interest-CIUs and named-data CIUs are carried in small CONET data units named carrier-
packets. 
 In a CSS we can find Border Nodes and Internal Nodes. Border-Nodes interconnect 
different CSSs and forward carrier-packets by using CONET routing mechanisms, 
reassemble carrier-packets, cache the related named-data CIU, and may send back cached 
named-data CIUs. Optionally, Internal Nodes can be deployed inside a CSS to provide 
additional in-network caching facilities. A Name Routing System (NRS) Node is needed in 
order to assist CONET in performing routing operations. 
 Hereafter we describe the operations executed in order to deliver a chunk of named data 
to the end node that has requested it. Operations begin with the end node that generates an 
interest CIU which includes the network-identifier – i.e., the name of the resource – named 
NID; the interest CIU is encapsulated in a carrier-packet, which we denote as iCPx (Interest 
Carrier Packet x). Name-based forwarding engines in the End-Node and intermediate 
Border-Nodes forward-by-name the packet iCPx upward the proper Serving-Node. 



Forward-by-name means that, on the base of the network-identifier contained in the carrier-
packet iCPx, a name-based routing-engine singles out the CSS address3 of the next upward 
Border-Node toward the Serving-Node. Then, the name-based routing engine encapsulates 
the carrier-packet iCPx in a data-unit of the underlying CSS technology and uses the CSS 
address as the destination address. The internal-nodes (if any) receiving the Carrier Packet 
iCPx forward it by using the underlying routing (e.g. IP RIB). Nevertheless, before 
forwarding the packet, they parse it and send back the requested named-data CIU if this is 
available in their cache. Note that this is executed by border nodes as well. When a node 
storing the content is reached (it can be the origin Serving Node or a caching Border Node 
or Internal Node), the named-data CIU is encapsulated in a carrier-packet, here denoted 
ndCPx (named data Carrier Packet x). The carrier-packet ndCPx follows the same path of 
the carrier-packet iCPx, but in the downward direction and will reach the requesting end-
node. The Interest CIUs can designate the reverse path for the named-data CIU using two 
mechanisms. The first mechanism is the same used in in CCN [1]: the Border Nodes store 
the “pending” requests in a table called “Pending Interest Table”, recording for each 
Interest CIU the previous hop. The second mechanism is based on a field named path-state 
that can be inserted in the Interest CIUs. The path state can be used by a border node to 
record the CSS address of previous hop in the “upward” path toward the serving-node. The 
recorded path state will be copied in the data CIU so that a source routing is used for the 
downward path. Note that in general a combination of information stored in the Pending 
Interest Table and in the path state can be used. Finally we note that when the named-data 
CIUs are sent, all the border-nodes and internal-nodes in the downward path may cache 
them, according to their policies and available resources. 
 CONET functionality can be integrated in IP networks by using the IP options, which 
have been defined for both the IPv4 and IPv6 in [8]. The CONET IP option carries the 
name of the data and allows IP routers to be extended with ICN functionality in a backward 
compatible way. 

4. CONET implementation in OpenFlow networks 
In this section we describe the solution we have designed to experiment CONET in 
OpenFlow networks and the preliminary development and testbed results. We based our 
work on the assumption to use the OpenFlow 1.0 specification, which is available in several 
equipment and in particular in the testbed offered by the OFELIA project. Note that 
OpenFlow 1.2 specification has just been announced by Open Networking Forum, however 
it has not been officially released, and no equipment is currently available in the OFELIA 
testbed. We will take into account OpenFlow 1.2 in future researches. The assumption to 
consider OpenFlow 1.0 rules out the possibility to inspect the packet header at arbitrary 
positions, for example taking into account the newly defined IP options. On the contrary, 
only a predefined set of fields in the packet headers can be inspected. The solution we 
envisaged is to map the content name carried in the IP option (denoted as ICN-ID) into a 
tag transported in a field that can be inspected in OpenFlow 1.0 equipment. We choose the 
“transport level” ports field that is the 4 bytes that in TCP and UDP identify the source and 
destination port. Note that the CONET Carrier Packets are transported with a newly defined 
IP transport protocol, different from UDP and TCP. This approach foresees to have 
gateway nodes between a non-OpenFlow CONET network and OpenFlow based CONET 
network, that opportunely adapts ICN CPs. For simplicity we can assume that an OpenFlow 
based CONET network corresponds to a CONET CSS as shown in Figure 1. A “gateway” 
Border Node that receives an Interest Carrier Packet will implement the mapping between 

                                                 
3 A “CSS address” is an interface address consistent with the CSS underlying technology (for example, it is 

an IP address if the CSS is an IP network. 



the ICN-ID (which could be of fixed or variable length depending on the ICN naming 
schema) into a 4 byte tag to be carried in the “transport level” ports field. This mapping 
does not need to be reverted in the outgoing gateway border node, because the full name is 
still carried in the ICN-ID field in the IP option, so the outgoing border node only need to 
remove the tag. The mapping between ICN-IDs (the content names) and the 4 bytes tag 
must be identical in all border nodes, therefore we assume that a NRS node can perform it. 
The mapping will be dynamic, therefore the tags can be reused and will expire if not used. 
Therefore, the number of 2^32 different tags (as the tag is 4 bytes long) does not define the 
maximum number of different content names available, but the number of “active” contents 
that are being requested and distributed in a CONET Subsystem, which can be reasonable. 
The mapping between ICN-IDs and tags will be cached in the border nodes, therefore only 
the first request for a content will be subject to the mapping request to the NRS. Note also 
that in the proposed CONET solution the border nodes will request to the NRS the next hop 
when receiving the first request for a content. The same message used for route-by-name 
lookup can be used to request the ICN-ID to tag mapping. 
 This approach can also be applied to support other ICN solutions in an OpenFlow based 
network section. Considering for example the CCN [1] solution, it would require to 
introduce a CCN gateway node that is able to map the CCN content name into the fixed 
size tag (possibly with the help of a server/controller) and then to carry the CCN interests 
and data packets in the newly defined IP transport protocol. 

4.1 Protocol operations 

In this section we report the operations executed when an Interest Carrier Packet (CP) or a 
Named-data CP traverse an OpenFlow-based CSS. Let us suppose that a Border Node 
(BNIn) of an OpenFlow CSS receives a packet. If it is not a CONET packet (the IP protocol 
is not “CONET”), then the packet is managed by the OpenFlow network using OpenFlow 
standard mechanisms. In case it is a CONET packet (the IP protocol is set to “CONET”), 
two cases are possible: i) it is an Interest CP or ii) it is a Named-data CP. 
 If it is an Interest CP, the Border Node BNIn has to identify the Border Node towards 
which the Interest CP should be forwarded (let us denote such Border Node as BNOut) and 
has to give the Interest CP an appropriate format so that it can be processed by OpenFlow 
switches rapidly. In order to achieve the first goal, BNIn queries the NRS which runs in the 
node executing the Controller, that we call node C.  
 To this purpose the header of the packet (containing the IP options) is sent to the node 
C. The NRS running in C determines whether the same interest has been issued by some 
other end node recently. If this is not the case then, the NRS assigns a 32 bit flow identifier 
f to such interest and identifies the most appropriate output border BNOut. Otherwise, the 
node C assigns the flow identifier which has been already assigned to the interest as well as 
the same output border node, BNOut. Then a rule is set with flow identifier equal to f 
towards BNOut, and an entry in the flow table of node BNIn is created that forwards the 
Interest CP through the network interface towards BNOut or towards the Cache Server if the 
requested content is stored in the local cache. 
 The input Border Node BNIn uses the information received by the NRS to encapsulate 
the Interest CP in a packet with a format that can be processed by OpenFlow Switches 
rapidly. BNIn encapsulates the Interest CP in an IP packet in which the IP protocol is set to 
“CONET”, the “transport layer ports” are set equal to the flow identifier f and the 
destination IP address is set equal to the IP address of BNOut. 
 Then such new packet is forwarded to the OF Switch hosted in BNIn. The OF Switch 
will forward the Interest CP packet along the appropriate network interface, or towards the 
local cache server. More specifically, if the content is stored in the cache, the content is 



transmitted towards the requesting end node and the Interest CP is no longer propagated. 
All OF Switches in the path towards the output Border Node BNOut will handle the same 
packet in analogous way. The Border Node will restore the original Interest CP from the 
received packet by removing the tag and will forward it in the following CSS towards the 
Serving Node. 
 If the packet entering the OpenFlow-based CSS is a Named-data CP either it contains 
information about the address of the most appropriate output Border Node (BNOut) or a 
“Pending Interest Table” in the node will provide this information, as discussed in Section 
3. Accordingly, the Border Node BNIn encapsulates the named data CP in an IP packet and 
sets the IP destination address equal to the address of the output Boder Node, BNOut.  
 Internal Nodes in the path between the input and output Border Nodes may decide to 
store copy of such data in their local cache. To this purpose appropriate caching strategies 
are possible. We assume that content of the cache is updated according to the Least 
Recently User (LRU) algorithm. Also in this case, the output Border Node will restore the 
original named data CP from the packet and forward it towards the requesting end node. 

4.2 Software architecture 

As shown in Figure 2(a) the architectural components of our prototype are: 

• Forward-by-name: it is applied to Interest packets, it is the mechanism used by ICN 
nodes to relay an incoming content request to an output interface. The output interface is 
chosen by looking up a “name-based” forwarding table. 

• Data Forwarding: it is the mechanism that allows the content to be sent back to the 
device that issued a content request. Data forwarding cannot use the Forward-by-name 
mechanisms, because the devices are not addressed by the content routing plane of an 
ICN. Therefore, an ICN requires two different forwarding strategies to forward content 
requests and to deliver the data. 

• Content Routing: it is the mechanism used to disseminate information about location of 
contents, so as to properly setup the name-based forwarding tables. For instance, content 
routing could re-use IP routing mechanisms, where name prefixes are distributed instead 
of IP prefixes. Content routing is one of the assets of ICN, as a provider could use 
content routing to improve the efficiency and reliability of content access in its network. 

• Caching: it concerns the ability of ICN nodes to cache data and to directly reply to 
incoming content requests rather than forwarding them towards a serving node. 

  (a)      (b) 
Figure 2: Implementation architecture (a) and testbed configuration (b). 
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4.3 Experimental testbed 

In Figure 2(b) we show the testbed configuration. Each of the two testbeds consists of three 
fully meshed OpenFlow Switches (in one island we have NetFPGA OpenFlow switches in 
the other we have Open vSwitch). Such switches are connected to a server where the 
OpenFlow NOX Controller is executed. In order to achieve higher flexibility we run the 
NOX Controller (and the FlowVisor [9]) in a virtual environment. The islands will be fully 
operational OFELIA islands, connected to the OFELIA experimental testbed [13]. 

5. Conclusions 
Assessment and comparison of ICN solutions require appropriate experimental testbeds. 
Accordingly, we are developing a framework that consists of a prototype of an ICN 
solution called CONET and an experimental platform of OpenFlow switches. The 
experimental platform includes two different OpenFlow islands connected with each other 
through our national academic network. The two islands will be connected to other 
OpenFlow islands distributed across Europe by means of the GEANT network. Our ICN 
prototype has been designed in such a way that it can be easily modified to assess other 
solutions proposed for ICN systems. 
 On-going work includes the identification of the most appropriate caching strategy, the 
definition of a methodology which enables the serving node to signal the priority that 
should be considered when taking decisions about caching of a given content, and the 
design of scalable solutions for the Name Routing System. An additional interesting thread 
of research is related to the evolution of OpenFlow API to explicitly support ICN. When 
new OpenFlow releases will support full packet inspection, we will be able to map the ICN 
based operations of a future ICN enabled switch into new OpenFlow notifications and 
commands exchanged between the OpenFlow switch and controller. 
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