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Abstract—Information Centric Networking (ICN) is a new 

paradigm in which the network layer provides users with 

content, instead of providing communication channels between 

hosts, and is aware of the name (or identifiers) of the contents. In 

this paper, we first describe what, we believe, are the main 

advantages and components of an ICN infrastructure; then we 

present an overall architecture for ICN, and then we focus on the 

main contribution of the paper, which is a route caching 

technique, designed to improve the scalability of the routing by 

name functionality. 
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I.  INTRODUCTION 

Information Centric Networking (ICN) is a concept 
proposed some time ago under different names [1][2], which is 
attracting more and more interest, recently (see e.g. the papers 
[3][4][5] and the projects [6][7][8][9][10][11]). ICN proposes a 
shift from the traditional host-to-host communication to a 
content-to-user paradigm, which focuses on the delivery of the 
desired content to the intended users. The basic functions of an 
ICN infrastructure are to: i) address contents, adopting an 
addressing scheme based on names (identifiers), which do not 
include references to their location; ii) route a user request, 
which includes a “destination” content-name, toward the 
“closest” copy of the content with such a name; this copy could 
be stored in the original server, in a cache contained in a 
network node or even in another user’s device; iii) deliver the 
content back to the requesting host. 

ICN can be seen as an evolution of network switching 
modes, from circuit switching through packet switching to 
content switching. In circuit switching, a PCM slot contains 
only user data; in packet switching an IP datagram contains 
(among other things) destination addresses and pieces of user 
data; in “content switching” data units should contain (almost) 
everything: a package of user data, signalling information, 
meta-data describing the content and how to handle it, and 
security information. As a result, in our view, an ICN would 
offer the following advantages:  

i) efficient content-routing. Even though today’s Content 
Delivery Networks (CDNs) offer efficient mechanisms to route 
contents, they cannot use network resources in an optimal way 
because they operate over-the-top, i.e. without knowledge of 
the underlying network topology. ICN would let ISPs perform 
native content routing with improved reliability and scalability 

of content access. This would be a built-in facility of the 
network, unlike today’s CDNs;  

ii) in-network caching. Caching enabled today by off-the-
shelf HTTP transparent proxies requires performing stateful 
operations. The burden of a stateful processing makes it very 
expensive to deploy caches in nodes that handle a large number 
of user sessions. ICN would significantly improve efficiency, 
reliability and scalability of caching, especially for video; 

iii) simplified support for peer-to-peer like 
communications, without the need of overlay dedicated 
systems. Users could obtain desired contents from other users 
(or from caching nodes) thanks to content-routing and forward-
by-name functionality, as it is done today with specialized 
applications, which, once again, do not have a full knowledge 
of the network and involve only a subset of possible users; 

iv) simplified handling of mobile and multicast 
communications. As regards handovers, when a user changes 
point of attachment to the network, she will simply ask the next 
chunk of the content she is interested in, without the need of 
storing states; the next chunk could be provided by a different 
node than the one that it would have been used before the 
handover. Similar considerations apply for multicasting. 
Several users can request the same content and the network 
will provide the service, without the need of overlay 
mechanisms; 

v) content-oriented security model. Securing the content 
itself, instead of securing the communications channels allows 
for a stronger, more flexible and customizable protection of 
content and of user privacy. In today’s network contents are 
protected by securing the channel (connection-based security) 
or the applications (application-based security). ICN would 
protect information at the source in a more flexible and robust 
way than delegating this function to the channel or the 
applications [4]. In addition, this is a necessary requirement for 
an ICN: in-network caching requires to embed security 
information in the content data-unit, because content may 
arrive from any node and we cannot trust the serving node; 
thus, end users must be able to verify the validity of the 
received data and caching nodes must do the same, to avoid 
caching fake contents. 

vi) content-oriented quality of service differentiation (and 
possibly pricing), providing different performance in terms of 
both transmission and caching. Network operators (especially 
mobile ones) are already trying to differentiate quality and 
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priority of content, but they are forced to resort to complex 
deep packet inspection technologies. ICN would let operators 
differentiate the quality perceived by different services without 
complex, high-layer procedures [12], and off-load their 
networks via caching, a very handy functionality, particularly 
for mobile operators who can differentiate quality and priority 
of content transferred over the precious radio real estate; 

vii) content-oriented access control, providing access to 
specific information items as a function of time, place (e.g. 
country), or profile of user requesting the item. This 
functionality also allows implementing digital forgetting, to 
ensure that content generated at one period in a user’s life does 
not come back to haunt the user later on, and garbage 
collection, deleting from the network expired information; 

viii) possibility to create, deliver and consume contents in a 
modular and personalized way; 

ix) network awareness of transferred content, allowing 
network operators to better control information and related 
revenues flows, favoring competition between operators in the 
inter-domain market and better balancing the equilibrium of 
power towards over the top players; 

x) support for time/space-decoupled model of 
communications, simplifying implementations of 
publish/subscribe service models and allowing “pieces” of 
network, or sets of devices to operate even when disconnected 
from the main Internet (e.g. sensors networks, ad-hoc 
networks, vehicle networks, social gatherings, mobile networks 
on board vehicles, trains, planes). This last point is maybe the 
most important one, especially to stimulate early take up of 
ICN in selected (and possibly isolated) environments. 

On the cons side, ICN has some drawbacks and challenges. 
A first, obvious, con is that it requires changes in the basic 
network operation. A second con is that it raises scalability 
concerns: i) the number of different contents and corresponding 
names is much bigger than the number of host addresses; this 
has implications on the size of routing tables and on the 
complexity of lookup functions; ii) in some proposed ICN 
architectures [3], delivering contents back to requesting users 
requires maintaining states in network nodes. 

In the rest of this paper, we first recall an architecture that 
we proposed in the CONVERGENCE project [11] and in [13] 
and then we propose our main contribution, which is a route 
caching technique that improves scalability. 

II. OVERALL ARCHITECTURE 

We propose an architecture called CONET (COntent 
NETwork) [13], which is defined as an inter-network that 
connects CONET Sub Systems (CSSs) (see Figure 1). A CSS 
contains CONET nodes and exploits an under-CONET 
technology to transfer data among CONET nodes. The devices 
within a CSS can use an autonomous and homogeneous under-
CONET addressing space and an interior under-CONET 
routing protocol. A CSS could be: 1) a couple of nodes 
connected by a point-to-point or an overlay link, like the CSS 
n.1 of Figure 1; 2) a layer 2 network like Ethernet, like the CSS 
n.3 of Figure 1; 3) a layer 3 network, e.g. a private IPv4/IPv6 

network or a IPv4/IPv6 subnet or a whole Autonomous System 
or even the whole current Internet, like the CSS n.2 of Figure 1. 

CONET nodes exchange CONET Information Units 
(CIUs): interest CIUs convey requests of named-data; named-
data CIUs transport chunks of named-data, e.g., parts of a file. 
To best fit the transfer units of an under-CONET technology, 
all CIUs are carried in smaller CONET data units named 
carrier-packets.  
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Figure 1. CONET Architecture 

CONET nodes are classified as end-nodes (ENs), serving-
nodes (SNs), border-nodes (BNs), internal-nodes (INs) and 
name-routing-system nodes (NRSs). End-nodes are user 
devices that request named-data by issuing interest CIUs. 
Serving-nodes store, advertise and provide named-data by 
splitting the related sequence of bytes in one or more named-
data CIUs, which are transferred by means of carrier-packets. 
Border-nodes, located at the border between CSSs, forward 
carrier-packets by using CONET routing mechanisms (i.e. 
taking into account the requested content-name: routing-by-
name) and cache named-data CIUs. Optional Internal-Nodes 
could be deployed inside a CSS to provide in-network caches; 
differently from border-nodes, internal-nodes forward carrier-
packets by using only under-CONET routing mechanisms. 
Name-Routing-System nodes are used in a CSS to assist the 
CONET routing-by-name process. As shown in Figure 1, 
Border Nodes interconnect different CSSs, therefore the end-
to-end forward-by-name process can be seen as the process of 
finding a sequence of Border Nodes from an End-Node up to a 
Serving Node. In short, CONET is an interworking protocol, 
just like IP. 

The operation in a CONET internetwork can be described 
as follows. A Border Node checks if the content requested is 
available in its cache; if not it performs forward-by-name. If 
the CSS is an IP network, the result of the forward-by-name 
operation is the IP address of the upstream Border Node, 
therefore the content request can be sent using this destination 
IP address. An Internal Node in the path between the two 
border nodes “intercepts” the content request, it checks if the 
requested content is available in its cache, if not it forwards the 
packet using the IP destination address. A plain IP Router in 



the path between the two Border Nodes will simply forward the 
packet looking at the IP destination address. When data packets 
providing the requested content are generated by the Serving 
Node towards the End-node (or by any Border or Intermediate 
Node that had cached the content), the crossed downstream 
Border Nodes and Internal Node can in turn cache the content 
while forwarding it. In this way, further content requests for the 
same content will not need to travel up to the Server Node. 

The three typologies of CSSs depicted in Figure 1 
correspond to different deployment scenarios: i) overlay: 
CONET on top of the IP layer, as it occurs in the CSS n.1 of 
Figure 1; ii) clean slate: CONET on top of layer-2, as it occurs 
in the CSS n.3 of Figure 1; iii) integration: CONET integrated 
in the IP layer, as it occurs in the CSS n.2 of Figure 1. 

The first two approaches are known in the literature. The 
integration approach supports CONET in a CSS that is an IP 
network (IP-CSS). Depending on where CONET routing 
protocols are deployed (i.e. where we deploy Border Nodes) 
we have different scenarios: if CONET protocols are 
implemented only in user equipments, interconnected by the 
current Internet, then we have only one CSS: the current 
Internet. If they are implemented in current border gateways 
(i.e. where BGP runs), then CSSs coincide with current 
Autonomous Systems. If they are implemented in all current 
routers, then CSSs coincide with current IP subnets.  

Additionally (but optionally), we propose to make IP itself 
content-aware, by transporting the identifier (name) of a 
CONET carrier-packet in a novel IPv4 or IPv6 option, which 
we name CONET option [15]. The advantages of this approach 
with respect to the overlay one is that it allows nodes to quickly 
forward carrier-packets, without the need of terminating upper 
layer protocols or performing a “deep packet inspection”. This 
is a major requirement to deploy information-centric features in 
nodes where a high packet rate demands a fast forwarding 
operation. In addition, this approach allows deploying CONET 
routing-by-name functions only in a subset of nodes (i.e. 
Border-nodes and End-nodes) while allowing caching in all 
nodes running the new IP option (i.e. Internal nodes). On the 
contrary, in the overlay approach, caching in all nodes would 
require to deploy routing-by-name functionality in all nodes. 
The disadvantage is that we require a new IP option, but this is 
much less disruptive than the clean-slate approach.  

To transform this conceptual architecture into a fully 
fledged system we need to define (at least) the following 
fundamental components:  

i) primitives & interfaces, which define the relationship of 
the ICN protocols with the overall architecture 

ii) the naming scheme, which specifies the identifiers for 
the contents addressed by ICN. 

iii) the forward-by-name (or route-by-name) mechanism, 
used by ICN nodes to relay an incoming content request to an 
output interface. The output interface is chosen by looking up a 
“name-based” forwarding table 

iv) the routing protocols used to disseminate information 
about location of contents, so as to properly setup the name-
based forwarding tables 

v) the data forwarding mechanism that allows the content to 
be sent back to the device that issued a content request. Data 
forwarding cannot use the forward-by-name mechanisms, 
because, typically, devices/interfaces are not addressed by the 
content routing plane of an ICN 

vi) in-network caching, which concerns the ability of ICN 
nodes to cache data and to reply to incoming content requests 

vii) segmentation & transport mechanisms (see e.g. [14]) 
needed to: 1) split a content in different chunks (each chunk is 
an autonomous data unit with embedded security and 
addressable by the routing plane); ii) ensure a reliable transfer 
of chunks from the origin node (or from a cache node) towards 
the requesting node; iii) counteract congestion 

viii) security & privacy issues tackling (at least) three 
specific aspects: 1) how to guarantee content authenticity and 
protect the network from fake content, which could also pollute 
network caches; 2) how to guarantee that content be accessed 
only by intended end users, and 3) how to protect information 
consumers from profiling or censorship of their requests. 

In this paper we focus on the forwarding and routing 
components.  

III. ROUTE DISCOVERY AND CACHING AND RELATED WORK 

In our scenario, we may need to handle tens of billions of 
name-based routes, due to the high numbers of possible 
contents and the limited aggregability of their names. 
Consequently, if we reused the current architecture of an IP 
router based on Forwarding Information Bases (FIB) and 
Routing Information Bases (RIB), we would face two severe 
problems: first, the current FIB technology is unable to contain 
all possible ICN routes; second, realizing a so large Routing 
Information Base (RIB) requires a costly hardware. To 
overcome these problems, we propose a routing-by-name 
functionality, named Lookup-and-Cache, where the FIB of a 
node is used as cache of routes, while the RIB is stored in a 
remote and centralized routing engine. Due to the Zipf nature 
of the statistical distribution of Web contents by their 
popularity [16], the Lookup-and-Cache architecture seems 
feasible since the number of routes concurrently needed by a 
node to forward traffic is rather small and lower than the 
capacity provided by current FIB technology (see below). 

The use of the FIB as a route cache and the centralization of 
the Routing Engine have been already investigated in the 
context of traditional IP networking. However, we did not find 
a proposal of an architecture that puts together these two 
techniques. In 1988, Feldmeier [17] proposed adding a route-
cache to a router. The cache was used to speed up the lookup 
operation of forwarding process. The router however had a 
local RIB, looked up in cases of route-cache miss. The 
decoupling between the FIB and the RIB imposes a careful 
rethinking of route replacement algorithms. In [18] the Authors 
revised route caching as an instrument to face the growing of 
IP routing tables with limited FIB memories. As in [17], they 
supposed to have a local RIB. In [19], the authors proposed to 
separate IP routing from routers. The routers would simply 
forward packets while a centralized Routing Engine would 
select routes on behalf of the IP routers in each AS and 
exchange reachability information with other Routing Engine 



of other autonomous systems (AS). This approach was 
proposed to reduce the complexity of the distributed 
computation of the routes, since only one entity per AS 
participates to the routing plane. When a Routing Engine 
computes a new route, it pushes the route in the FIBs of the AS 
routers. Differently, in our architecture, the FIBs pulls the 
routes from the Routing Engine. Separating packet forwarding 
from control decisions is also at the basis of the SDN (Software 
Defined Networking) paradigm [20], which has been proposed 
quite recently. Our Lookup-and-Cache does not require SDN to 
be implemented, even if the node-to-NRS interface could be 
remapped into the OpenFlow [20] switch-to-controller API. 

IV. WORKING ASSUMTPIONS 

Before presenting the details of our solution we introduce 
some working assumptions. Our solution can be of course 
applied to our own architecture but also in other ICN systems 
that route-by-name content requests such as CCN [3] [4]. 

A. Network model 

To provide a content, a server splits the content in blocks of 
data, named chunks, and assigns a unique network identifier to 
each chunks. A network identifier is a string like 
“cnn.com/text1.txt/chunk1”, which is said to be the “name” of 
the chunk. The role of the ICN protocols is to discover and 
deliver named chunks. In order to fetch a chunk, a user issues a 
data unit, named interest CIU or simply Interest, that contains 
the name of the chunk. ICN nodes route-by-name the Interest, 
by using a longest prefix matching forwarding strategy and a 
name-based routing table. We name the entries of the name-
based routing table as ICN routes. An ICN route has a format 
like <name-prefix, output port identifier, next hop 
information>. A name-prefix should be either the full name of 
a chunk, e.g. “cnn.com/text1.txt/chunk1”, or a continuous part 
of it, starting from the first left character e.g. “cnn.com/”. 

The first en-route device that has the chunk sends it back in 
a named-data CIU, or simply Data. Network nodes forward 
Data towards the client, through the same sequence of ICN 
nodes previously traversed by the Interest message. The Data 
forwarding process exploits reverse-path information either 
temporarily leaved in the traversed nodes during the Interest 
forwarding process (see Pending Interest Table of [3]), or 
contained in the header of Data message, as previously 
collected in the Interest message during its forwarding process 
(see reverse-path source-routing in [13]). Therefore, the 
routing-by-name process does not involve Data messages, but 
only Interest messages. Downloading a whole content is 
achieved by sending a flow of Interest messages to retrieve all 
the chunks of the content. The sending rate of Interest 
messages is regulated by a receiver-centric congestion control 
mechanism [17] [21], which could be based on the same logic 
used by TCP. 

B. Naming scheme 

As regards the naming scheme, several proposals (e.g. 
[2][3][4][22]) agree in adopting a hierarchical naming. Here we 
assume a rather general hierarchical naming scheme where a 
name is formed by a sequence of Components: a name has the 
form “Component_1/Component_2/../Component_n”. This 

scheme supports current Web URL, where Component_1 is the 
domain name (e.g., “cnn.com”) and next Components represent 
the path of the local resource (e.g., /text1.txt). In addition to 
these Components, which represent the content-name, ICN 
requires other specific Components, e.g. to represent the chunk 
number (“/chunk1”), version, etc. A hierarchical naming is also 
able to support human readable names [3][4] and self-
certifying names [2][22] (where Component_1 is the Principal 
and Component_2 is the Label). The full sequence of 
Components is referred to as the chunk-name. 

C. Number of ICN routes 

We assess the number of possible ICN routes by assuming 
that: i) the ICN network will serve current Web contents; ii) 
current Web servers will become ICN servers, iii) the ICN 
adopts the hierarchical naming scheme previously presented, 
iv) as a worst case, a node is within the “default-free” zone of 
the network, i.e. it does not use a default route. With these 
assumptions, in [23] we conclude that the expected number of 
ICN routes a node should handle is close to the number of 
name-prefixes advertised by ICN servers, equal to about 10

9
. A 

name-prefix is the first component of a content-name, i.e. the 
domain name of the server. An ICN route has the form 
<domain name, output port identifier, next hop information>. 

If we change the assumptions stated above, these numbers 
would obviously change. For example, using a “flat” non-
hierarchical naming, the number of ICN routes would be higher 
and likely close to the number of content-names, i.e. 10

11
. If we 

allow more than one route per name-prefix, e.g. for routing 
redundancy or multi-homing purposes, the number of ICN 
routes would be higher than 10

9
. In case of a node that has a 

default route, e.g. corresponding to a tier-2 or a tier-3 node in 
current Internet, the number of ICN route might be radically 
lower than 10

9
, and so forth. 

V. THE LOOKUP-AND-CACHE ROUTING ARCHITECTURE 

In [23] we show that if we used the current IP router 
architecture to support ICN, under the above assumptions, the 
size of current FIBs should be increased by a factor of 10

3
, 

while RIBs should be larger by a factor of 10
2
. To avoid this 

(significant) increase of capacity and cost, we propose our 
Lookup-and-Cache architecture, which uses the FIB of a 
Forwarding Engine as a route cache and exploits a centralized 
routing engine that serves all the nodes of a sub-system. 

Figure 2 reports an example of the Lookup-and-Cache 
operations. Node N receives an Interest message for 
“ccn.com/text1.txt/chunk1”. Since the FIB lacks the related 
route, the node temporarily queues the Interest message, looks 
up the route in a remote RIB, inserts the replied information in 
the FIB, de-queues and forwards the Interest message. In what 
follows, we discuss the rationale underlying the Lookup-and-
Cache architecture and its main components.  

A. FIB as a route cache 

It is argued that the relative frequency with which Web 
contents are requested follows the Zipf’s law [16]. Therefore, a 
many flows of Interest messages that an ICN node has to 
concurrently route-by-name refer to a small set of contents. 
More important, these flows use an even smaller set of ICN 



routes, since ICN routes address servers rather than single 
contents (see below). In [23] we show that this set of, so called, 
active-routes can be comfortably stored in a SRAM memory. 
Therefore, we propose to use the FIB as a route cache, which 
should contain, at least, the entire set of active-routes. When 
the FIB lacks a route, the node lookups the route in a “remote” 
RIB and then caches the route in the FIB. When all FIB rows 
are filled in, new routing entries may substitute old ones, 
according to a route replacement algorithm. 

 

Figure 2. Lookup-and-Cache concept 

B. Centralized Routing Engine 

All the ICN routes are contained in the RIB of a Routing 
Engine, which serves all nodes of a CONET Sub-System 
(CSS) and runs on a centralized server, named Name Routing 
System (NRS) node. Thus, the cost of an expensive Routing 
Engine able to handle 10

10
 of routes is taken only for a single 

network device, rather than for all network nodes. Furthermore, 
since many Interest flows use a small set of active-routes, the 
temporal dynamics of active-routes is slower than the flow 
ones. Indeed, a route is used for a period of time that is greater 
than or, at least equal to, the duration of a single flow. This 
limits the lookup rate that a centralized Routing Engine should 
deal with; below we show that this rate is easily supported by 
current database technologies. 

So far we have described the “forwarding-plane” of the 
Lookup-and-Cache architecture. The routing-plane, i.e. how 
NRS nodes disseminate name-prefixes in order to properly 
setup their RIB, is described in [23]. However, our proposal is 
simply to adapt and reuse the REGISTER and UNREGISTER 
functions of the DONA architecture, whose feasibility and 
performances have been already fully discussed in [2]. 

C. Route Replacement Algorithm 

When a node receives an Interest message for a given 
content and it is not possible to find a matching route in the 
FIB, we have a route-cache-miss event. In this case: i) if the 
FIB is not full, the node performs a lookup in the remote RIB 
and store the new route in the FIB; ii) the forwarding of the 
Interest messages is subject to a route-lookup delay. When the 
FIB is full, the insertion of a new route implies the replacement 
of an old route. In this case, a route replacement algorithm 
decides whether to lookup the new route or not. In the first case 
it also decides which old route has to be replaced. In the second 
case, the Interest message is dropped and subsequently 
retransmitted by transport level mechanisms. 

An inefficient design of the route replacement algorithm 
would result in an excessive rate of route lookups, with a 
consequent worsening of delay performance (as more Interest 
messages will be subject to the route-lookup delay) and an 
increase of the load of the NRS node. To mitigate these 
inconveniences, it would be desirable to replace inactive 
routes. Consequently, the design of the route replacement 
algorithm aims at solving two problems: first, how to identify 
inactive routes and, second, how to behave in case of FIB 
overload, i.e. when there are no inactive routes and a new route 
needs to be added in the FIB. We propose a route replacement 
algorithm, based on the estimation of an Inactivity Time Out 
(ITO); its performance are compared with the Least Recently 
Used (LRU) policy. For lack of space, further, important 
details on our route replacement algorithm are reported in [23] 
and include: consistency issue of cached routes in FIB, 
invalidation mechanisms, and a more complete performance 
evaluation. 

How to identify inactive routers - The ITO algorithm 
assumes that each route contained in the FIB has an inactivity 
time out (ITO), after which the route is considered inactive. 
The timeout value is calculated by the same algorithm used for 
the TCP retransmission time out, where, instead of using 
round-trip-time measurements as inputs, we use measurements 
of inter-arrival times between two consecutive Interest 
messages of the same route.  

How to behave in case of FIB overload – The ITO 
algorithm is non-preemptive, i.e. an active-route cannot be 
removed from the FIB. When a new route needs to be inserted 
there are two options: i) in presence of inactive-routes (FIB 
underload), the least recently used inactive route is replaced by 
the new route; ii) in absence of inactive-routes (FIB overload), 
the new route is not inserted, and the incoming Interest 
message is discarded. The non-preemptive approach needs to 
be carefully evaluated, because it may prevent the forwarding 
of traffic. Nevertheless, in case of route overload the non-
preemptive approach avoids in/out flapping of routes in the 
FIB. In/out flapping is harmful, since it overwhelms the NRS 
node, increases the time required by users to download 
contents, and disfavours long downloads.  

VI. NUMBER OF ACTIVE ROUTES AND LOOKUP RATE 

In this section we report our findings about expected 
number of active-routes and lookup rate, to check if these 
figures are compatible with current technology. 

On a given node and at a given time, an ICN route is 
“active” if there is at least one flow of Interest messages using 
that route. In the current Internet, a client sends TCP ACK and 
receives TCP segments from the Web server. In an ICN, a 
client sends Interest messages and receives Data messages 
from the ICN server, or from an en-route cache. So, if a client 
used the ICN to download Web contents, then the traditional 
flows of TCP ACK messages would be replaced by a flow of 
Interest messages. Furthermore, on the base of our hierarchical 
naming assumption, the couple < IP destination address, 
destination Port> contained in TCP ACK messages would be 
replaced by a chunk-name that contains the name-prefix 
advertised by the Web server. As a consequence, we can 



“remap” a trace of TCP ACKs, captured from the current 
Internet, in an “equivalent” trace of ICN Interest messages, as 
it would be generated in a “real” ICN. This we did in [23] for 
several real traces. In the worst case (Equinix-sanjose-dirA 
trace, of a tier-1 node [23]), the maximum number of active-
routes is in the order of 10

3
; such a value is much lower (by a 

factor of 10
3
) than the capacity provided by of an off-the-shelf 

SRAM-based FIB. This small value is the result of the Zipf 
nature of the Web [16], for which a wide set of flows refer to a 
limited set of “popular” contents and use an even more limited 
set of ICN routes. In facts, a flow-level analysis revealed that 
the whole trace contains about 2.6 millions of Interest flows, 
i.e. of content downloads. Nevertheless, these 2.6 millions of 
Interest flows use only 11000 routes. 

As regards the lookup rate, an analysis of the same traces 
shows that the average inter-arrival time between the start of 
two consecutive active-routes is in the order of milliseconds. 
When the FIB memory is properly dimensioned for containing 
all active-routes, the inverse of the active-routes inter-arrival 
time represents an upper bound of the lookup rate. Indeed, we 
have a lookup at the start of the route activity only if the route 
is not already cached in the FIB. Therefore, an average active-
route inter-arrival time in the order of few ms implies, in the 
worst case, a lookup rate in the order of 1000 lookups per 
second, which is by far supported by current database 
technology. For instance, we implemented the functionality of 
the NRS node with a Bind9 server, running on a Linux laptop 
with an Intel Pentium Processor M at 1.4 Ghz and, even using 
this dated hardware, we measured a sustainable rate of about 
15000 lookups per second.  

We investigated also the effectiveness of FIB over-
provisioning, to reduce the lookup rate. We say that a FIB is 
over-provisioned, when it has a capacity greater than the 
maximum number of expected active-routes. We observed a 
significant decrease of the lookup rate as the FIB size 
increases. This occurs because each route frequently switches 
on and off, during the whole trace. For instance, the Equinix-
sanjose-dirA trace contains a number of route 
activations/deactivations equal about to 54000, whereas the 
number of unique routes is about 11000. Due to this strong 
temporal correlation among route activities, the increase of the 
FIB size has a relevant impact on the cache hit-ratio and, 
hence, on the lookup rate. When the FIB size increases from 
the minimum value of 2700 (required to operate in over-
provisioning conditions) to about 9000 entries, the lookup rate 
decreases from 1000 to 200 lookups per second. 

It is important to note that we assumed a one-to-one 
relationship between an IP address and a domain-name. In 
Appendix II of [23], we present a simulation model that takes 
into account Web Hosting services. Results show that Web 
hosting services increase the number of active-routes and the 
lookup rate with respect to the values computed with the one-
to-one assumption; nevertheless the order of magnitude 
remains the same, and our conclusions remain valid. 

VII. TEST-BED ANALYSIS 

In Figure 3 we show a test-bed that we used to demonstrate 
our solution. We have two sub-systems; each sub-system is an 

IP network connected by a 100 Mbit/s Ethernet switch. Sub-
system A contains three ICN clients. Sub-system B contains an 
ICN server and an NRS node. The sub-systems are 
interconnected by a node BN, equipped with two network 
interfaces. All devices run the Linux OS. 

sub-system B

(IP eth)sub-system A

(IP eth)
SN
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Figure 3. Testbed setup 

The FIBs of the clients have a single default route toward 
node BN; hence, a client does not perform Lookup-and-Cache 
procedures. Node BN does not have a default route, but uses 
the Lookup-and-Cache mechanism to feed its FIB, up to a 
fixed size of 100 routing entries. The server has a repository 
containing 10000 contents, the content size follows a Pareto 

distribution (k = 133k , α = 1.1) and each content is divided in 
chunks of 4 kBytes. The NRS node has a RIB indexing all the 
10000 contents and the next-hop value of each RIB entry is the 
IP address of the server.  

The RIB has been implemented by means of a Bind-9 DNS 
server. To emulate the delay of a wide area network, we 
artificially set up a two-ways delay of 100ms between node N 
and the NRS node. In addition to this network delay, we 
measured, a-posteriori, an average delay of 60 ms, spent to 
accomplish local lookup-and-cache procedures, such as 
inserting the route in the FIB, de-queuing the waiting Interest 
message, etc.. Summing up, a lookup-and-cache operation adds 
an average delay of 160 ms to an incoming Interest message 
that does not find the route in the FIB.  

We analyze the performance of Lookup-and-Cache as a 
function of the number of active-routes. The workload 
generates a constant number of active-routes, by keeping fixed 
the number of concurrent downloads performed by clients. The 
reason for this choice is that the number of active-routes is a 
crucial variable to highlight performance limits of the Lookup-
and-Cache routing. Each download fetches a content never 
downloaded before, so the number of downloads is equal to the 
number of active-routes. Each time a download ends, after 50 
ms a new download is started. In case the first Interest message 
is dropped, the message is periodically resent each 2 seconds. 
This delay is duly taken into account in the performance 
evaluation and in the comparison with LRU. 

We measured the performance with a FIB of 100 entries, by 
using both ITO and LRU caching replacement policies. As a 
benchmark, we compare these performances with the case of 
an unlimited FIB, where all routes are properly preloaded. Each 
test is repeated 5 times and we measured both average 
performances and 95% confidence intervals. Figure 4 reports 
the average download time. Figure 5 reports the average 
number of lookups per download, that is the ratio between the 
number of lookups performed by node N and the overall 



number of downloads. We first analyze the cases where the 
FIB is under-loaded, i.e. the number of active-routes is lower 
than 100, and then the cases where the FIB is overloaded. 

 

Figure 4. Average download time versus number of active-routes 

 

Figure 5. Lookup rate versus number of active-routes 

Underloaded FIB. Lookup-and-Cache works well when the 
number of active-routes is lower than the FIB size (100 routes). 
In these conditions, download times are comparable with the 
ones measured in the unlimited-FIB case and the number of 
lookups per download is close to one. This means that after a 
first lookup-and-cache cycle, a route is correctly held in the 
FIB for the download time. The download time is composed of 
the initial lookup delay (160 ms, if the route is not already in 
the cache) plus the content download time. The latter depends 
on the sharing of the available link capacity among the 
downloads, therefore it linearly increases with the number of 
downloads (active routes). In these underloaded conditions, 
ITO and LRU do not show noticeable differences: both 
algorithms succeed in replacing inactive routes. 

Overloaded FIB. Performances start to decrease when the 
number of active-routes gets close to, or overcomes, the FIB 
size. In these conditions, the greater the overloading, the 
greater the performance degradation with respect to the 
unlimited-FIB case. In addition, the differences between the 
route replacement algorithms shows up. With the ITO 
algorithm, the download delay is a bit greater than the 
unlimited-FIB case and the number of lookups per download 
remains quite limited. We argue that these promising results 
are the consequence of the non-preemptive policy adopted by 
ITO algorithm. Figure 5 shows that the ITO algorithm limits 
the number of lookups per download to 1.5, also in overloaded 
conditions. The rise of the lookup rate is due to the presence of 
transport level time outs, during which a route timeout set by 
ITO may wrongly elapse. In these cases, the route is removed 
from the FIB, and briefly reinserted; this increases the number 

of lookup per content. With the LRU algorithm, we observe a 
significant increase of the number of lookups per download 
and longer download times. When the number of active routes 
gets close to and overcomes the FIB size, the LRU algorithm is 
pre-emptive, as it replaces FIB entries associated to active 
routes. This yields a dramatic in/out flapping of the routes in 
the FIB, which increases download delay and number of 
lookups per content.  
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