
Route discovery and caching: a way to improve the

scalability of Information-Centric Networking

N. Blefari Melazzi, A. Detti, M. Pomposini, S. Salsano

Department of Electronic Engineering

University of Rome, Tor Vergata, Roma, Italy

{blefari, andrea.detti, matteo.pomposini, stefano.salsano}@uniroma2.it

Abstract—Information Centric Networking (ICN) is a new

paradigm in which the network layer provides users with

content, instead of providing communication channels between

hosts, and is aware of the name (or identifiers) of the contents. In

this paper, we first describe what, we believe, are the main

advantages and components of an ICN infrastructure; then we

present an overall architecture for ICN, and then we focus on the

main contribution of the paper, which is a route caching

technique, designed to improve the scalability of the routing by

name functionality.

Keywords: Internet Architecture, Future Internet, Information-

Centric Networking, Routing, Caching, Sacalability

I. INTRODUCTION

Information Centric Networking (ICN) is a concept
proposed some time ago under different names [1][2], which is
attracting more and more interest, recently (see e.g. the papers
[3][4][5] and the projects [6][7][8][9][10][11]). ICN proposes a
shift from the traditional host-to-host communication to a
content-to-user paradigm, which focuses on the delivery of the
desired content to the intended users. The basic functions of an
ICN infrastructure are to: i) address contents, adopting an
addressing scheme based on names (identifiers), which do not
include references to their location; ii) route a user request,
which includes a “destination” content-name, toward the
“closest” copy of the content with such a name; this copy could
be stored in the original server, in a cache contained in a
network node or even in another user’s device; iii) deliver the
content back to the requesting host.

ICN can be seen as an evolution of network switching
modes, from circuit switching through packet switching to
content switching. In circuit switching, a PCM slot contains
only user data; in packet switching an IP datagram contains
(among other things) destination addresses and pieces of user
data; in “content switching” data units should contain (almost)
everything: a package of user data, signalling information,
meta-data describing the content and how to handle it, and
security information. As a result, in our view, an ICN would
offer the following advantages:

i) efficient content-routing. Even though today’s Content
Delivery Networks (CDNs) offer efficient mechanisms to route
contents, they cannot use network resources in an optimal way
because they operate over-the-top, i.e. without knowledge of
the underlying network topology. ICN would let ISPs perform
native content routing with improved reliability and scalability

of content access. This would be a built-in facility of the
network, unlike today’s CDNs;

ii) in-network caching. Caching enabled today by off-the-
shelf HTTP transparent proxies requires performing stateful
operations. The burden of a stateful processing makes it very
expensive to deploy caches in nodes that handle a large number
of user sessions. ICN would significantly improve efficiency,
reliability and scalability of caching, especially for video;

iii) simplified support for peer-to-peer like
communications, without the need of overlay dedicated
systems. Users could obtain desired contents from other users
(or from caching nodes) thanks to content-routing and forward-
by-name functionality, as it is done today with specialized
applications, which, once again, do not have a full knowledge
of the network and involve only a subset of possible users;

iv) simplified handling of mobile and multicast
communications. As regards handovers, when a user changes
point of attachment to the network, she will simply ask the next
chunk of the content she is interested in, without the need of
storing states; the next chunk could be provided by a different
node than the one that it would have been used before the
handover. Similar considerations apply for multicasting.
Several users can request the same content and the network
will provide the service, without the need of overlay
mechanisms;

v) content-oriented security model. Securing the content
itself, instead of securing the communications channels allows
for a stronger, more flexible and customizable protection of
content and of user privacy. In today’s network contents are
protected by securing the channel (connection-based security)
or the applications (application-based security). ICN would
protect information at the source in a more flexible and robust
way than delegating this function to the channel or the
applications [4]. In addition, this is a necessary requirement for
an ICN: in-network caching requires to embed security
information in the content data-unit, because content may
arrive from any node and we cannot trust the serving node;
thus, end users must be able to verify the validity of the
received data and caching nodes must do the same, to avoid
caching fake contents.

vi) content-oriented quality of service differentiation (and
possibly pricing), providing different performance in terms of
both transmission and caching. Network operators (especially
mobile ones) are already trying to differentiate quality and

This work is partially founded by the EU (FP7 CONVERGENCE project)

priority of content, but they are forced to resort to complex
deep packet inspection technologies. ICN would let operators
differentiate the quality perceived by different services without
complex, high-layer procedures [12], and off-load their
networks via caching, a very handy functionality, particularly
for mobile operators who can differentiate quality and priority
of content transferred over the precious radio real estate;

vii) content-oriented access control, providing access to
specific information items as a function of time, place (e.g.
country), or profile of user requesting the item. This
functionality also allows implementing digital forgetting, to
ensure that content generated at one period in a user’s life does
not come back to haunt the user later on, and garbage
collection, deleting from the network expired information;

viii) possibility to create, deliver and consume contents in a
modular and personalized way;

ix) network awareness of transferred content, allowing
network operators to better control information and related
revenues flows, favoring competition between operators in the
inter-domain market and better balancing the equilibrium of
power towards over the top players;

x) support for time/space-decoupled model of
communications, simplifying implementations of
publish/subscribe service models and allowing “pieces” of
network, or sets of devices to operate even when disconnected
from the main Internet (e.g. sensors networks, ad-hoc
networks, vehicle networks, social gatherings, mobile networks
on board vehicles, trains, planes). This last point is maybe the
most important one, especially to stimulate early take up of
ICN in selected (and possibly isolated) environments.

On the cons side, ICN has some drawbacks and challenges.
A first, obvious, con is that it requires changes in the basic
network operation. A second con is that it raises scalability
concerns: i) the number of different contents and corresponding
names is much bigger than the number of host addresses; this
has implications on the size of routing tables and on the
complexity of lookup functions; ii) in some proposed ICN
architectures [3], delivering contents back to requesting users
requires maintaining states in network nodes.

In the rest of this paper, we first recall an architecture that
we proposed in the CONVERGENCE project [11] and in [13]
and then we propose our main contribution, which is a route
caching technique that improves scalability.

II. OVERALL ARCHITECTURE

We propose an architecture called CONET (COntent
NETwork) [13], which is defined as an inter-network that
connects CONET Sub Systems (CSSs) (see Figure 1). A CSS
contains CONET nodes and exploits an under-CONET
technology to transfer data among CONET nodes. The devices
within a CSS can use an autonomous and homogeneous under-
CONET addressing space and an interior under-CONET
routing protocol. A CSS could be: 1) a couple of nodes
connected by a point-to-point or an overlay link, like the CSS
n.1 of Figure 1; 2) a layer 2 network like Ethernet, like the CSS
n.3 of Figure 1; 3) a layer 3 network, e.g. a private IPv4/IPv6

network or a IPv4/IPv6 subnet or a whole Autonomous System
or even the whole current Internet, like the CSS n.2 of Figure 1.

CONET nodes exchange CONET Information Units
(CIUs): interest CIUs convey requests of named-data; named-
data CIUs transport chunks of named-data, e.g., parts of a file.
To best fit the transfer units of an under-CONET technology,
all CIUs are carried in smaller CONET data units named
carrier-packets.

border-nodesend-node

SN

serving-node

IN

internal-node

R

plain IP router

BN

CSS n.2
IPv4 network

Integration

approach

CSS n.3
L2 link/network

clean slate approach

CSS n.1
overlay link/network

overlay approach

SN

R
BN BN

BN

NSN

CONET

L2

CONET

IP

L2

UDP

IP
CONET

L2

IP CONET

Option

Figure 1. CONET Architecture

CONET nodes are classified as end-nodes (ENs), serving-
nodes (SNs), border-nodes (BNs), internal-nodes (INs) and
name-routing-system nodes (NRSs). End-nodes are user
devices that request named-data by issuing interest CIUs.
Serving-nodes store, advertise and provide named-data by
splitting the related sequence of bytes in one or more named-
data CIUs, which are transferred by means of carrier-packets.
Border-nodes, located at the border between CSSs, forward
carrier-packets by using CONET routing mechanisms (i.e.
taking into account the requested content-name: routing-by-
name) and cache named-data CIUs. Optional Internal-Nodes
could be deployed inside a CSS to provide in-network caches;
differently from border-nodes, internal-nodes forward carrier-
packets by using only under-CONET routing mechanisms.
Name-Routing-System nodes are used in a CSS to assist the
CONET routing-by-name process. As shown in Figure 1,
Border Nodes interconnect different CSSs, therefore the end-
to-end forward-by-name process can be seen as the process of
finding a sequence of Border Nodes from an End-Node up to a
Serving Node. In short, CONET is an interworking protocol,
just like IP.

The operation in a CONET internetwork can be described
as follows. A Border Node checks if the content requested is
available in its cache; if not it performs forward-by-name. If
the CSS is an IP network, the result of the forward-by-name
operation is the IP address of the upstream Border Node,
therefore the content request can be sent using this destination
IP address. An Internal Node in the path between the two
border nodes “intercepts” the content request, it checks if the
requested content is available in its cache, if not it forwards the
packet using the IP destination address. A plain IP Router in

the path between the two Border Nodes will simply forward the
packet looking at the IP destination address. When data packets
providing the requested content are generated by the Serving
Node towards the End-node (or by any Border or Intermediate
Node that had cached the content), the crossed downstream
Border Nodes and Internal Node can in turn cache the content
while forwarding it. In this way, further content requests for the
same content will not need to travel up to the Server Node.

The three typologies of CSSs depicted in Figure 1
correspond to different deployment scenarios: i) overlay:
CONET on top of the IP layer, as it occurs in the CSS n.1 of
Figure 1; ii) clean slate: CONET on top of layer-2, as it occurs
in the CSS n.3 of Figure 1; iii) integration: CONET integrated
in the IP layer, as it occurs in the CSS n.2 of Figure 1.

The first two approaches are known in the literature. The
integration approach supports CONET in a CSS that is an IP
network (IP-CSS). Depending on where CONET routing
protocols are deployed (i.e. where we deploy Border Nodes)
we have different scenarios: if CONET protocols are
implemented only in user equipments, interconnected by the
current Internet, then we have only one CSS: the current
Internet. If they are implemented in current border gateways
(i.e. where BGP runs), then CSSs coincide with current
Autonomous Systems. If they are implemented in all current
routers, then CSSs coincide with current IP subnets.

Additionally (but optionally), we propose to make IP itself
content-aware, by transporting the identifier (name) of a
CONET carrier-packet in a novel IPv4 or IPv6 option, which
we name CONET option [15]. The advantages of this approach
with respect to the overlay one is that it allows nodes to quickly
forward carrier-packets, without the need of terminating upper
layer protocols or performing a “deep packet inspection”. This
is a major requirement to deploy information-centric features in
nodes where a high packet rate demands a fast forwarding
operation. In addition, this approach allows deploying CONET
routing-by-name functions only in a subset of nodes (i.e.
Border-nodes and End-nodes) while allowing caching in all
nodes running the new IP option (i.e. Internal nodes). On the
contrary, in the overlay approach, caching in all nodes would
require to deploy routing-by-name functionality in all nodes.
The disadvantage is that we require a new IP option, but this is
much less disruptive than the clean-slate approach.

To transform this conceptual architecture into a fully
fledged system we need to define (at least) the following
fundamental components:

i) primitives & interfaces, which define the relationship of
the ICN protocols with the overall architecture

ii) the naming scheme, which specifies the identifiers for
the contents addressed by ICN.

iii) the forward-by-name (or route-by-name) mechanism,
used by ICN nodes to relay an incoming content request to an
output interface. The output interface is chosen by looking up a
“name-based” forwarding table

iv) the routing protocols used to disseminate information
about location of contents, so as to properly setup the name-
based forwarding tables

v) the data forwarding mechanism that allows the content to
be sent back to the device that issued a content request. Data
forwarding cannot use the forward-by-name mechanisms,
because, typically, devices/interfaces are not addressed by the
content routing plane of an ICN

vi) in-network caching, which concerns the ability of ICN
nodes to cache data and to reply to incoming content requests

vii) segmentation & transport mechanisms (see e.g. [14])
needed to: 1) split a content in different chunks (each chunk is
an autonomous data unit with embedded security and
addressable by the routing plane); ii) ensure a reliable transfer
of chunks from the origin node (or from a cache node) towards
the requesting node; iii) counteract congestion

viii) security & privacy issues tackling (at least) three
specific aspects: 1) how to guarantee content authenticity and
protect the network from fake content, which could also pollute
network caches; 2) how to guarantee that content be accessed
only by intended end users, and 3) how to protect information
consumers from profiling or censorship of their requests.

In this paper we focus on the forwarding and routing
components.

III. ROUTE DISCOVERY AND CACHING AND RELATED WORK

In our scenario, we may need to handle tens of billions of
name-based routes, due to the high numbers of possible
contents and the limited aggregability of their names.
Consequently, if we reused the current architecture of an IP
router based on Forwarding Information Bases (FIB) and
Routing Information Bases (RIB), we would face two severe
problems: first, the current FIB technology is unable to contain
all possible ICN routes; second, realizing a so large Routing
Information Base (RIB) requires a costly hardware. To
overcome these problems, we propose a routing-by-name
functionality, named Lookup-and-Cache, where the FIB of a
node is used as cache of routes, while the RIB is stored in a
remote and centralized routing engine. Due to the Zipf nature
of the statistical distribution of Web contents by their
popularity [16], the Lookup-and-Cache architecture seems
feasible since the number of routes concurrently needed by a
node to forward traffic is rather small and lower than the
capacity provided by current FIB technology (see below).

The use of the FIB as a route cache and the centralization of
the Routing Engine have been already investigated in the
context of traditional IP networking. However, we did not find
a proposal of an architecture that puts together these two
techniques. In 1988, Feldmeier [17] proposed adding a route-
cache to a router. The cache was used to speed up the lookup
operation of forwarding process. The router however had a
local RIB, looked up in cases of route-cache miss. The
decoupling between the FIB and the RIB imposes a careful
rethinking of route replacement algorithms. In [18] the Authors
revised route caching as an instrument to face the growing of
IP routing tables with limited FIB memories. As in [17], they
supposed to have a local RIB. In [19], the authors proposed to
separate IP routing from routers. The routers would simply
forward packets while a centralized Routing Engine would
select routes on behalf of the IP routers in each AS and
exchange reachability information with other Routing Engine

of other autonomous systems (AS). This approach was
proposed to reduce the complexity of the distributed
computation of the routes, since only one entity per AS
participates to the routing plane. When a Routing Engine
computes a new route, it pushes the route in the FIBs of the AS
routers. Differently, in our architecture, the FIBs pulls the
routes from the Routing Engine. Separating packet forwarding
from control decisions is also at the basis of the SDN (Software
Defined Networking) paradigm [20], which has been proposed
quite recently. Our Lookup-and-Cache does not require SDN to
be implemented, even if the node-to-NRS interface could be
remapped into the OpenFlow [20] switch-to-controller API.

IV. WORKING ASSUMTPIONS

Before presenting the details of our solution we introduce
some working assumptions. Our solution can be of course
applied to our own architecture but also in other ICN systems
that route-by-name content requests such as CCN [3] [4].

A. Network model

To provide a content, a server splits the content in blocks of
data, named chunks, and assigns a unique network identifier to
each chunks. A network identifier is a string like
“cnn.com/text1.txt/chunk1”, which is said to be the “name” of
the chunk. The role of the ICN protocols is to discover and
deliver named chunks. In order to fetch a chunk, a user issues a
data unit, named interest CIU or simply Interest, that contains
the name of the chunk. ICN nodes route-by-name the Interest,
by using a longest prefix matching forwarding strategy and a
name-based routing table. We name the entries of the name-
based routing table as ICN routes. An ICN route has a format
like <name-prefix, output port identifier, next hop
information>. A name-prefix should be either the full name of
a chunk, e.g. “cnn.com/text1.txt/chunk1”, or a continuous part
of it, starting from the first left character e.g. “cnn.com/”.

The first en-route device that has the chunk sends it back in
a named-data CIU, or simply Data. Network nodes forward
Data towards the client, through the same sequence of ICN
nodes previously traversed by the Interest message. The Data
forwarding process exploits reverse-path information either
temporarily leaved in the traversed nodes during the Interest
forwarding process (see Pending Interest Table of [3]), or
contained in the header of Data message, as previously
collected in the Interest message during its forwarding process
(see reverse-path source-routing in [13]). Therefore, the
routing-by-name process does not involve Data messages, but
only Interest messages. Downloading a whole content is
achieved by sending a flow of Interest messages to retrieve all
the chunks of the content. The sending rate of Interest
messages is regulated by a receiver-centric congestion control
mechanism [17] [21], which could be based on the same logic
used by TCP.

B. Naming scheme

As regards the naming scheme, several proposals (e.g.
[2][3][4][22]) agree in adopting a hierarchical naming. Here we
assume a rather general hierarchical naming scheme where a
name is formed by a sequence of Components: a name has the
form “Component_1/Component_2/../Component_n”. This

scheme supports current Web URL, where Component_1 is the
domain name (e.g., “cnn.com”) and next Components represent
the path of the local resource (e.g., /text1.txt). In addition to
these Components, which represent the content-name, ICN
requires other specific Components, e.g. to represent the chunk
number (“/chunk1”), version, etc. A hierarchical naming is also
able to support human readable names [3][4] and self-
certifying names [2][22] (where Component_1 is the Principal
and Component_2 is the Label). The full sequence of
Components is referred to as the chunk-name.

C. Number of ICN routes

We assess the number of possible ICN routes by assuming
that: i) the ICN network will serve current Web contents; ii)
current Web servers will become ICN servers, iii) the ICN
adopts the hierarchical naming scheme previously presented,
iv) as a worst case, a node is within the “default-free” zone of
the network, i.e. it does not use a default route. With these
assumptions, in [23] we conclude that the expected number of
ICN routes a node should handle is close to the number of
name-prefixes advertised by ICN servers, equal to about 10

9
. A

name-prefix is the first component of a content-name, i.e. the
domain name of the server. An ICN route has the form
<domain name, output port identifier, next hop information>.

If we change the assumptions stated above, these numbers
would obviously change. For example, using a “flat” non-
hierarchical naming, the number of ICN routes would be higher
and likely close to the number of content-names, i.e. 10

11
. If we

allow more than one route per name-prefix, e.g. for routing
redundancy or multi-homing purposes, the number of ICN
routes would be higher than 10

9
. In case of a node that has a

default route, e.g. corresponding to a tier-2 or a tier-3 node in
current Internet, the number of ICN route might be radically
lower than 10

9
, and so forth.

V. THE LOOKUP-AND-CACHE ROUTING ARCHITECTURE

In [23] we show that if we used the current IP router
architecture to support ICN, under the above assumptions, the
size of current FIBs should be increased by a factor of 10

3
,

while RIBs should be larger by a factor of 10
2
. To avoid this

(significant) increase of capacity and cost, we propose our
Lookup-and-Cache architecture, which uses the FIB of a
Forwarding Engine as a route cache and exploits a centralized
routing engine that serves all the nodes of a sub-system.

Figure 2 reports an example of the Lookup-and-Cache
operations. Node N receives an Interest message for
“ccn.com/text1.txt/chunk1”. Since the FIB lacks the related
route, the node temporarily queues the Interest message, looks
up the route in a remote RIB, inserts the replied information in
the FIB, de-queues and forwards the Interest message. In what
follows, we discuss the rationale underlying the Lookup-and-
Cache architecture and its main components.

A. FIB as a route cache

It is argued that the relative frequency with which Web
contents are requested follows the Zipf’s law [16]. Therefore, a
many flows of Interest messages that an ICN node has to
concurrently route-by-name refer to a small set of contents.
More important, these flows use an even smaller set of ICN

routes, since ICN routes address servers rather than single
contents (see below). In [23] we show that this set of, so called,
active-routes can be comfortably stored in a SRAM memory.
Therefore, we propose to use the FIB as a route cache, which
should contain, at least, the entire set of active-routes. When
the FIB lacks a route, the node lookups the route in a “remote”
RIB and then caches the route in the FIB. When all FIB rows
are filled in, new routing entries may substitute old ones,
according to a route replacement algorithm.

Figure 2. Lookup-and-Cache concept

B. Centralized Routing Engine

All the ICN routes are contained in the RIB of a Routing
Engine, which serves all nodes of a CONET Sub-System
(CSS) and runs on a centralized server, named Name Routing
System (NRS) node. Thus, the cost of an expensive Routing
Engine able to handle 10

10
 of routes is taken only for a single

network device, rather than for all network nodes. Furthermore,
since many Interest flows use a small set of active-routes, the
temporal dynamics of active-routes is slower than the flow
ones. Indeed, a route is used for a period of time that is greater
than or, at least equal to, the duration of a single flow. This
limits the lookup rate that a centralized Routing Engine should
deal with; below we show that this rate is easily supported by
current database technologies.

So far we have described the “forwarding-plane” of the
Lookup-and-Cache architecture. The routing-plane, i.e. how
NRS nodes disseminate name-prefixes in order to properly
setup their RIB, is described in [23]. However, our proposal is
simply to adapt and reuse the REGISTER and UNREGISTER
functions of the DONA architecture, whose feasibility and
performances have been already fully discussed in [2].

C. Route Replacement Algorithm

When a node receives an Interest message for a given
content and it is not possible to find a matching route in the
FIB, we have a route-cache-miss event. In this case: i) if the
FIB is not full, the node performs a lookup in the remote RIB
and store the new route in the FIB; ii) the forwarding of the
Interest messages is subject to a route-lookup delay. When the
FIB is full, the insertion of a new route implies the replacement
of an old route. In this case, a route replacement algorithm
decides whether to lookup the new route or not. In the first case
it also decides which old route has to be replaced. In the second
case, the Interest message is dropped and subsequently
retransmitted by transport level mechanisms.

An inefficient design of the route replacement algorithm
would result in an excessive rate of route lookups, with a
consequent worsening of delay performance (as more Interest
messages will be subject to the route-lookup delay) and an
increase of the load of the NRS node. To mitigate these
inconveniences, it would be desirable to replace inactive
routes. Consequently, the design of the route replacement
algorithm aims at solving two problems: first, how to identify
inactive routes and, second, how to behave in case of FIB
overload, i.e. when there are no inactive routes and a new route
needs to be added in the FIB. We propose a route replacement
algorithm, based on the estimation of an Inactivity Time Out
(ITO); its performance are compared with the Least Recently
Used (LRU) policy. For lack of space, further, important
details on our route replacement algorithm are reported in [23]
and include: consistency issue of cached routes in FIB,
invalidation mechanisms, and a more complete performance
evaluation.

How to identify inactive routers - The ITO algorithm
assumes that each route contained in the FIB has an inactivity
time out (ITO), after which the route is considered inactive.
The timeout value is calculated by the same algorithm used for
the TCP retransmission time out, where, instead of using
round-trip-time measurements as inputs, we use measurements
of inter-arrival times between two consecutive Interest
messages of the same route.

How to behave in case of FIB overload – The ITO
algorithm is non-preemptive, i.e. an active-route cannot be
removed from the FIB. When a new route needs to be inserted
there are two options: i) in presence of inactive-routes (FIB
underload), the least recently used inactive route is replaced by
the new route; ii) in absence of inactive-routes (FIB overload),
the new route is not inserted, and the incoming Interest
message is discarded. The non-preemptive approach needs to
be carefully evaluated, because it may prevent the forwarding
of traffic. Nevertheless, in case of route overload the non-
preemptive approach avoids in/out flapping of routes in the
FIB. In/out flapping is harmful, since it overwhelms the NRS
node, increases the time required by users to download
contents, and disfavours long downloads.

VI. NUMBER OF ACTIVE ROUTES AND LOOKUP RATE

In this section we report our findings about expected
number of active-routes and lookup rate, to check if these
figures are compatible with current technology.

On a given node and at a given time, an ICN route is
“active” if there is at least one flow of Interest messages using
that route. In the current Internet, a client sends TCP ACK and
receives TCP segments from the Web server. In an ICN, a
client sends Interest messages and receives Data messages
from the ICN server, or from an en-route cache. So, if a client
used the ICN to download Web contents, then the traditional
flows of TCP ACK messages would be replaced by a flow of
Interest messages. Furthermore, on the base of our hierarchical
naming assumption, the couple < IP destination address,
destination Port> contained in TCP ACK messages would be
replaced by a chunk-name that contains the name-prefix
advertised by the Web server. As a consequence, we can

“remap” a trace of TCP ACKs, captured from the current
Internet, in an “equivalent” trace of ICN Interest messages, as
it would be generated in a “real” ICN. This we did in [23] for
several real traces. In the worst case (Equinix-sanjose-dirA
trace, of a tier-1 node [23]), the maximum number of active-
routes is in the order of 10

3
; such a value is much lower (by a

factor of 10
3
) than the capacity provided by of an off-the-shelf

SRAM-based FIB. This small value is the result of the Zipf
nature of the Web [16], for which a wide set of flows refer to a
limited set of “popular” contents and use an even more limited
set of ICN routes. In facts, a flow-level analysis revealed that
the whole trace contains about 2.6 millions of Interest flows,
i.e. of content downloads. Nevertheless, these 2.6 millions of
Interest flows use only 11000 routes.

As regards the lookup rate, an analysis of the same traces
shows that the average inter-arrival time between the start of
two consecutive active-routes is in the order of milliseconds.
When the FIB memory is properly dimensioned for containing
all active-routes, the inverse of the active-routes inter-arrival
time represents an upper bound of the lookup rate. Indeed, we
have a lookup at the start of the route activity only if the route
is not already cached in the FIB. Therefore, an average active-
route inter-arrival time in the order of few ms implies, in the
worst case, a lookup rate in the order of 1000 lookups per
second, which is by far supported by current database
technology. For instance, we implemented the functionality of
the NRS node with a Bind9 server, running on a Linux laptop
with an Intel Pentium Processor M at 1.4 Ghz and, even using
this dated hardware, we measured a sustainable rate of about
15000 lookups per second.

We investigated also the effectiveness of FIB over-
provisioning, to reduce the lookup rate. We say that a FIB is
over-provisioned, when it has a capacity greater than the
maximum number of expected active-routes. We observed a
significant decrease of the lookup rate as the FIB size
increases. This occurs because each route frequently switches
on and off, during the whole trace. For instance, the Equinix-
sanjose-dirA trace contains a number of route
activations/deactivations equal about to 54000, whereas the
number of unique routes is about 11000. Due to this strong
temporal correlation among route activities, the increase of the
FIB size has a relevant impact on the cache hit-ratio and,
hence, on the lookup rate. When the FIB size increases from
the minimum value of 2700 (required to operate in over-
provisioning conditions) to about 9000 entries, the lookup rate
decreases from 1000 to 200 lookups per second.

It is important to note that we assumed a one-to-one
relationship between an IP address and a domain-name. In
Appendix II of [23], we present a simulation model that takes
into account Web Hosting services. Results show that Web
hosting services increase the number of active-routes and the
lookup rate with respect to the values computed with the one-
to-one assumption; nevertheless the order of magnitude
remains the same, and our conclusions remain valid.

VII. TEST-BED ANALYSIS

In Figure 3 we show a test-bed that we used to demonstrate
our solution. We have two sub-systems; each sub-system is an

IP network connected by a 100 Mbit/s Ethernet switch. Sub-
system A contains three ICN clients. Sub-system B contains an
ICN server and an NRS node. The sub-systems are
interconnected by a node BN, equipped with two network
interfaces. All devices run the Linux OS.

sub-system B

(IP eth)sub-system A

(IP eth)
SN

NRS

Clients Lookup

and Cache

RIB with

10000 routes

FIB

Server with

10000 contents

BN

Figure 3. Testbed setup

The FIBs of the clients have a single default route toward
node BN; hence, a client does not perform Lookup-and-Cache
procedures. Node BN does not have a default route, but uses
the Lookup-and-Cache mechanism to feed its FIB, up to a
fixed size of 100 routing entries. The server has a repository
containing 10000 contents, the content size follows a Pareto

distribution (k = 133k , α = 1.1) and each content is divided in
chunks of 4 kBytes. The NRS node has a RIB indexing all the
10000 contents and the next-hop value of each RIB entry is the
IP address of the server.

The RIB has been implemented by means of a Bind-9 DNS
server. To emulate the delay of a wide area network, we
artificially set up a two-ways delay of 100ms between node N
and the NRS node. In addition to this network delay, we
measured, a-posteriori, an average delay of 60 ms, spent to
accomplish local lookup-and-cache procedures, such as
inserting the route in the FIB, de-queuing the waiting Interest
message, etc.. Summing up, a lookup-and-cache operation adds
an average delay of 160 ms to an incoming Interest message
that does not find the route in the FIB.

We analyze the performance of Lookup-and-Cache as a
function of the number of active-routes. The workload
generates a constant number of active-routes, by keeping fixed
the number of concurrent downloads performed by clients. The
reason for this choice is that the number of active-routes is a
crucial variable to highlight performance limits of the Lookup-
and-Cache routing. Each download fetches a content never
downloaded before, so the number of downloads is equal to the
number of active-routes. Each time a download ends, after 50
ms a new download is started. In case the first Interest message
is dropped, the message is periodically resent each 2 seconds.
This delay is duly taken into account in the performance
evaluation and in the comparison with LRU.

We measured the performance with a FIB of 100 entries, by
using both ITO and LRU caching replacement policies. As a
benchmark, we compare these performances with the case of
an unlimited FIB, where all routes are properly preloaded. Each
test is repeated 5 times and we measured both average
performances and 95% confidence intervals. Figure 4 reports
the average download time. Figure 5 reports the average
number of lookups per download, that is the ratio between the
number of lookups performed by node N and the overall

number of downloads. We first analyze the cases where the
FIB is under-loaded, i.e. the number of active-routes is lower
than 100, and then the cases where the FIB is overloaded.

Figure 4. Average download time versus number of active-routes

Figure 5. Lookup rate versus number of active-routes

Underloaded FIB. Lookup-and-Cache works well when the
number of active-routes is lower than the FIB size (100 routes).
In these conditions, download times are comparable with the
ones measured in the unlimited-FIB case and the number of
lookups per download is close to one. This means that after a
first lookup-and-cache cycle, a route is correctly held in the
FIB for the download time. The download time is composed of
the initial lookup delay (160 ms, if the route is not already in
the cache) plus the content download time. The latter depends
on the sharing of the available link capacity among the
downloads, therefore it linearly increases with the number of
downloads (active routes). In these underloaded conditions,
ITO and LRU do not show noticeable differences: both
algorithms succeed in replacing inactive routes.

Overloaded FIB. Performances start to decrease when the
number of active-routes gets close to, or overcomes, the FIB
size. In these conditions, the greater the overloading, the
greater the performance degradation with respect to the
unlimited-FIB case. In addition, the differences between the
route replacement algorithms shows up. With the ITO
algorithm, the download delay is a bit greater than the
unlimited-FIB case and the number of lookups per download
remains quite limited. We argue that these promising results
are the consequence of the non-preemptive policy adopted by
ITO algorithm. Figure 5 shows that the ITO algorithm limits
the number of lookups per download to 1.5, also in overloaded
conditions. The rise of the lookup rate is due to the presence of
transport level time outs, during which a route timeout set by
ITO may wrongly elapse. In these cases, the route is removed
from the FIB, and briefly reinserted; this increases the number

of lookup per content. With the LRU algorithm, we observe a
significant increase of the number of lookups per download
and longer download times. When the number of active routes
gets close to and overcomes the FIB size, the LRU algorithm is
pre-emptive, as it replaces FIB entries associated to active
routes. This yields a dramatic in/out flapping of the routes in
the FIB, which increases download delay and number of
lookups per content.

REFERENCES

[1] D. Cheriton, M. Gritter, “TRIAD: a scalable deployable NAT-based
internet architecture”, Technical Report (2000)

[2] T. Koponen, M. Chawla, B.G. Chun, A. Ermolinskiy, Kye Hyun Kim, S.
Shenker, I. Stoica: “A data-oriented (and beyond) network architecture”,
Proc. of ACM SIGCOMM 2007

[3] V. Jacobson, et al., ”Networking named content”, in Proc. of ACM
CoNEXT 2009

[4] D. Smetters, V. Jacobson: “Securing Network Content”, PARC technical
report, October 2009

[5] D. Trossen, M. Sarela, and K. Sollins: "Arguments for an information-
centric internetworking architecture" SIGCOMM Computer
Communication Review, vol. 40, pp. 26-33, 2010

[6] SAIL project website, http://www.sail-project.eu/

[7] PURSUIT project website: www.fp7-pursuit.eu

[8] COMET project website: www.comet-project.org/

[9] Named-Data Networking (NDN) project website, http://named-data.org/

[10] COAST project website: http://www.coast-fp7.eu/

[11] CONVERGENCE project website: www.ict-convergence.eu

[12] S. Oueslati, J. Roberts, N. Sbihi: “Ideas on Traffic Management in
CCN”, Information-Centric Networking, Dagstuhl Seminar

[13] A. Detti, N. Blefari-Melazzi, S. Salsano, M. Pomposini, “CONET: A
Content Centric Inter-Networking Architecture”, ACM SIGCOMM
Workshop on Information-Centric Networking, Toronto, August 2011

[14] S. Salsano, A. Detti, M. Cancellieri, M. Pomposini, N. Blefari-Melazzi,
“Transport-layer issues in Information Centric Networks”, ACM
SIGCOMM Workshop on Information-Centric Networking (ICN 2012),
August 17, 2012, Helsinki, Finland

[15] A. Detti, S. Salsano, N. Blefari-Melazzi, “IPv4 and IPv6 Options to
support Information Centric Networking”, Internet Draft, draft-detti-
conet-ip-option-02, Work in progress, October 2011

[16] L. Breslau et al., “Web Caching and zipf-like Distribution: Evidence and
Implications”, in Proc. IEEE INFOCOM, 1999

[17] D.C. Feldmeier, “Improving gateway performance with a routing-table
cache”, in Proc. of IEEE INFOCOM 1988

[18] Changhoon Kim, Matthew Caesar, Alexandre Gerber, and Jennifer
Rexford, "Revisiting route caching: The world should be flat," in Proc.
Passive and Active Measurement Conference, April 2009

[19] N. Feamster, H. Balakrishnan, J. Rexford, A. Shaikh, J. van der Merwe,
“The case for separating routing from routers”, Proc. ACM SIGCOMM
Workshop on Future Directions in Network Architecture, August 2004

[20] N. McKeown et al. “OpenFlow: Enabling Innovation in Campus
Networks”, ACM SIGCOMM Computer Communication Review,
Volume 38, Number 2, April 2008

[21] A. Kuzmanovic, E.W. Knightly “Receiver-Centric Congestion Control
with a Misbehaving Receiver: Vulnerabilities and End-point Solutions”,
Elsevier Comput. Network. 2007, 51, 2717–2737

[22] A. Ghodsi, T. Koponen, B. Raghavan, S. Shenker, A. Singla, and J.
Wilcox, "Information-Centric Networking: Seeing the Forest for the
Trees", in Proc. of the 10th ACM Workshop on Hot Topics in Networks
(HotNets-X), Cambridge, Massachusetts

[23] A. Detti, M. Pomposini, N. Blefari-Melazzi, S. Salsano, “Supporting the
Web with an Information Centric Network that Routes by Name”, Tech.
report, available at http://netgroup.uniroma2.it/Andrea_Detti/Lookup-
and-Cache/tech-rep-ICN.pdf

