
A Theory-Driven Distribution Algorithm for
Peer-to-Peer Real Time Streaming

Lorenzo Bracciale∗, Francesca Lo Piccolo∗, Dario Luzzi∗
Nicola Blefari Melazzi∗, Giuseppe Bianchi∗, Stefano Salsano∗

∗Universitá di Roma “Tor Vergata”
Rome, Italy

{lorenzo.bracciale,francesca.lopiccolo,dario.luzzi,blefari,giuseppe.bianchi,stefano.salsano}@uniroma2.it

Abstract—Many distribution algorithms have been proposed
up to now for P2P real time streaming. However, due to the
lack of basic theoretical results and bounds, common sense and
intuitions and heuristics have driven their design so far. The
consequence is that we can find in the literature a large variety of
different choices about the main aspects of a P2P system, such as
overlay topology, scheduling process and upload strategy. In this
situation, it is difficult to establish unambiguously the absolute
goodness of a particular algorithm or even the rationale behind
a particular choice or solution.
In this paper we propose and evaluate a theory-driven distri-

bution algorithm for P2P real time streaming. We take advantage
from a previous theoretical study, where: i) we derived a
theoretical performance bound for forest-based overlay topologies
regarding the number of nodes reachable in a given time interval
or equivalently the time required to reach a given number of
nodes; ii) we proved the optimality of Streamline, a distribution
algorithm based on the serial transmission over forest-based
topologies, in terms of its capability to reach such a bound.
The Streamline algorithm is based on some ideal assumptions

that prevent its practical implementation. In this paper we
remove these assumptions and present a practical and working al-
gorithm, named Operational Streamline or simply O-Streamline.
We also evaluate the performance of O-Streamline, comparing
them with the optimal bounds of Streamline.1

I. INTRODUCTION
Peer-to-peer (P2P) overlay systems are being proposed to

stream multimedia audio and video content from a source to a
large number of end-users. The basic idea is to divide stream
data in so-called “chunks”, and to organize peer nodes in an
overlay distribution network to relay chunks.
To achieve this goal, a plethora of very different distribution

algorithms have been proposed up to now. These algorithms
make specific and different assumptions and choices about
the main aspects of a P2P real time streaming system, such
as overlay topology, scheduling process and upload strategy.
However, the actual literature is somehow confusing, as the
reader can not always understand the rationale behind the
choices driving the algorithm design. As a matter of fact, there
are algorithms that make different choices about, for instance,
the scheduling process, even if the application scenario is the

1This work was supported by the Italian Ministry of University
and Research (MiUR), with the Grant PRIN-2006099023 ”Profiles”
(disi.unitn.it/profiles).

same. Or there is an algorithm that combines the overlay
topology X with the upload strategy Y, while another one
combines the same overlay topology X with another upload
strategy Z. In many such cases it is not easy to understand the
reason of these choices and, most important, it is very difficult
to compare different algorithms as it would be necessary to
implement/simulate them. In addition, the measured/simulated
results of literature proposals are strongly affected by the used
test-bed or custom-made simulator and by the considered eval-
uation scenarios, in absence of theoretical properties guiding
the system design.
In our opinion, the main reason why so different approaches

have been proposed up to now is the lack of baseline theo-
retical results and bounds on P2P real time streaming. In ab-
sence of theoretical results, common sense and intuitions and
heuristics have driven the design of the proposed distribution
algorithms.
Another consequence of the lack of basic theoretical results

and bounds is the impossibility to establish unambiguously the
absolute goodness of a P2P streaming distribution algorithm.
In other words, while the performance of different distribution
algorithms may be (difficulty) compared, it is not possible
to evaluate how far/close the performance of a distribution
algorithm are from/to optimal performance. By optimal per-
formance we mean the ability to reach the greatest possible
number of nodes in a given time interval or equivalently it
makes possible to reach a given number of nodes in the
smallest possible time interval.
To provide evidence of what we argue above, in the follow-

ing we list the main alternatives proposed in the literature for
overlay topologies, scheduling processes and upload strategies.
As regards the overlay topology, it is possible to distinguish

among:
• tree-based solutions, such as NICE [1] and ZIGZAG
[2], where nodes are organized in a tree and content is
recursively spread from the parent node (the streaming
source) to its child nodes until all peers are reached;

• mesh-based solutions, such as CoolStreaming [3], Grid-
media [4] or PRIME [5], where each node randomly
establishes overlay connections with other nodes and
sends a received chunk only to neighbors still missing

that chunk, in such a way that each chunk is streamed on
a different tree;

• forest-based solutions, such as CoopNet [6] or Split-
Stream [7], where chunks and nodes are logically orga-
nized in a finite set of groups and distribution trees, in
such a way that each distribution tree includes all nodes
and is used to distribute a single group of chunks. Nodes
are interior nodes only in one tree and leaf nodes in all the
remaining trees. The idea is to exploit the upload capacity
that leaf nodes do not use in separate distribution trees,
thus increasing the overall transmission capacity of the
overlay network.

As regards the scheduling process, it is possible to distin-
guish among:

• push-based algorithms, such as [1] and [2], where sup-
plier nodes decide which chunks will be served to which
neighbors;

• pull-based algorithms, such as [3] or [5], where schedul-
ing decisions are taken at receivers and a chunk is
transmitted only if a receiver requests that chunk;

• hybrid push-pull algorithms, like [4], where chunks are
requested in pull mode at start up and relayed in push
mode in the immediate following phase.

Moreover, different local scheduling policies have been pro-
posed: for instance, giving priority to the chunks with more
stringent playback deadline [3], to the rarest chunks [8], to the
neighbors with the highest upload/download capacity [3][9].
As regards the upload strategy, when the same chunk has to

be uploaded to more than one child node, it can be transmitted
“in series”, e.g. starting the transmission towards a second
child node after completion of the chunk upload to the first
child, or “in parallel”, i.e. sending the same chunk to more
than one child node at the same time.
In this paper, we try to overcome the limitations discussed

so far by proposing a theory-driven distribution algorithm for
P2P real time streaming. Specifically, we take advantage from
the theoretical study in [10], where i) we derived a theoret-
ical performance bound for forest-based overlay topologies
regarding the number of nodes reachable in a given time
interval or equivalently the time required to reach a given
number of nodes; ii) we proved the optimality of Streamline,
a distribution algorithm based on the serial transmission over
forest-based topologies, in terms of its capability to reach
such a bound. However, even if Streamline is able to achieve
optimal performance, it is not a functioning algorithm in the
sense that it is based on assumptions usually not verified in real
scenarios. In other words the aim of Streamline is to set the
framework of what is doable and achievable. Then, to realize it
in practice, it is necessary to remove some ideal assumptions.
This is what we are going to do in this paper.
In more detail, the assumptions made in the Streamline

proposal are:
• the distribution topology is derived thanks to a sort of
Maxwell’s demon that holds a global and centralized
vision of the whole network. This conceptual entity is

able to instruct peer nodes on how to optimally organize
the overlay topology and schedule chunk transmissions;

• there is no churn.
• we do not take into account propagation delays induced
by the underlying physical network topology (practically
speaking, we assume that the propagation delays are
negligible when compared with the chunk transmission
time)

• we evaluate the performance by assuming that the ratio
between the uplink capacity of peer nodes and the stream
bit rate is equal to one.

In this paper, we propose a practical and working algorithm,
named Operational Streamline or more simply O-Streamline.
O-Streamline: i) does not rely on a centralized vision of the
whole network ii) takes the churn into account, iii) does not
assume that all peers have an uplink capacity equal to the
stream bit rate. As in Streamline we do not take into account
the signalling burden. This is left for future work also to make
possible to evaluate the effect of removing ideal assumptions
step by step. Otherwise, it would be difficult to assess the
implication of each of this assumption on the overall system
performance.
Finally, we evaluate, by means of simulations, the perfor-

mance of O-Streamline, and we show that such performance
are close to the optimal bounds derived for Streamline. To
the best of our knowledge, this is the first work presenting a
theory-driven distribution algorithm for P2P real time stream-
ing.
The paper is organized as follows. Section II briefly recalls

the basic concepts of Streamline and the main theoretical
results presented in [10]. Section III describes our proposal.
In Section IV we evaluate the performance of our algorithm.
Finally, Section V concludes the paper.

II. BASIC CONCEPTS OF STREAMLINE AND THEORETICAL
RESULTS

In this section, we recall some basic concepts of Streamline
and the main theoretical results presented in [10], to better
understand O-Streamline.
Streamline organizes peers and chunks in a finite number

of overlay trees and groups respectively, in such a way that:
i) each tree includes all peers and ii) chunks in a group are
always transmitted by using the same overlay tree, iii) for each
tree, and thus for each chunk, the source node sends the chunk
to its children in series, and the same holds for each peer node
of the tree, excluding the leaves.
Streamline shares with CoopNet [6] or SplitStream [7]

the advantage of exploiting in separate distribution trees the
upload capacity that leaf nodes do not use, thus increasing the
overall transmission capacity of the overlay network. However,
while CoopNet and SplitStream use a parallel transmission of
chunks, Streamline resorts to a serial transmission of chunks.
The idea behind this kind of distribution is that giving all the

uplink capacity to a single child, instead of sharing it among
different children, allows that child to start serving other nodes
before than in the case of parallel transmission. This means

that all nodes, except the last served ones, can start serving
their children before than in the case of parallel transmission;
in turn, served children can become fathers of other children
before than in the case of parallel transmission, and so on.
Streamline assumes the following reference framework. A

stream is generated by a single node (source) at constant
rate R (Kbps) and segmented into chunks with fixed size L
(Kb). The source starts transmitting at time instant t = 0.
We define T = L/R (s) the chunk duration, which is also
the time elapsing between two consecutive chunks. Besides
to the source, the network is composed of an unlimited
number of nodes, which join the system simultaneously, are
always on and are assumed to be homogeneous in terms of
uplink capacity (equal to B Kbps) and downlink capacity.
The downlink capacity is assumed to be great enough so that
downlinks are not a bottleneck of the system. Each node has
k overlay parents and k overlay children, being the parent set
potentially different from the children set.
Streamline considers the following performance indexes:
• N(c, k, t) : the number of peer nodes that can complete
the download of the c-th chunk within t time units, being
k the number of parents/children;

• T (c, k, n) : the amount of time needed by n peer nodes
to complete the download of the c-th chunk, being k the
number of parents/children.

The previous performance indexes have been derived in [10]
under the assumption that the ratio between the uplink capacity
of peer nodes and the stream bit rate is equal to one, i.e., B =
R. This is the most demanding assumption, in a streaming
scenario. Furthermore, the previous performance indexes have
been normalized with respect to the time needed to download
a complete chunk at rate B (in bit/s). Thus, the latter time
interval will be the unit of time. In addition, for the sake of
simplicity, t is always assumed to be an integer value: the
generalization to continuous time is rather straightforward.
In [10] we show that the following results hold:

N(c, k, t) =
t−c+1∑

i=1

Fk(i) (1)

where Fk(·) is the k-step Fibonacci sequence, defined as
follows

Fk(i) =

0 if i ≤ 0
1 if i = 1∑k

j=1 Fk(i − j) if i > 1
(2)

As regards T (c, k, n), it can be obtained thanks to the follow-
ing implicit relation:

T (c, k, n) = min{t ≥ c :
t−c+1∑

i=1

Fk(i) ≥ n} (3)

In addition, and most importantly, in [10] we show that
Streamline is optimal among all distribution algorithms for
forest-based topologies, in the sense explained in the Intro-
duction.

III. FROM THEORY TO PRACTICE: OUR PROPOSAL
In this section, we describe our proposal to turn Streamline

into O-Streamline, a practical and working distribution algo-
rithm for P2P real time streaming.
O-Streamline tries to maintain the two basic principles of

Streamline, that are i) the organization of peers and chunks
in a finite number of overlay trees and groups and ii) the
serialization of chunk transmissions.
The second principle is easy to be put in practice. The first

principle involves two distinct assumptions: i) the availability
of a global and centralized vision of the whole network; ii)
the absence of peer churn.
As regards the first assumption,O-Streamline does not count

anymore on a global and centralized vision of the whole
network, but it builds the overlay topology in a distributed
manner and schedules chunk transmissions with a limited,
local view of the overall topology.
O-Streamline constructs the overlay topology as follows.

Peer nodes are uniformly divided into G different groups, in
such a way that i) each node belongs only to one group,
ii) each node establishes random overlay bidirectional con-
nections with P peer nodes in the same group to which it
belongs and O peer nodes in each of the remaining groups.
This can be easily achieved in a real distributed environment.
Provided that groups are progressively identified starting from
0, each node may establish its membership group if it extracts
an (integer) random number with uniform distribution in the
interval [0, G − 1].
The G groups are also used to organize the stream chunks.

In more detail, if chunks are progressively indexed starting
from 1, chunk i is associated with the group g such that g =
i mod G.
To describe howO-Streamline schedules chunk transmission

we let:
• L the chunk size (in bits)
• U the ratio between the stream bit rate R and the uplink
capacity B of all nodes;

• T = L/R the chunk duration (in s).
The scheduling algorithm operates as follows:
• the source node, which does not belong to any of the
groups and it is connected to U neighbors per each group,
sends the generic chunk in series to the U neighbors
of the corresponding group. The source node serves the
chunks to the neighbors of each group following the
order implicitly established in the association between
chunk identifiers and groups. The source node repeat this
distribution pattern, modulo G, unless churn changes the
overlay neighbors. Therefore each node which is child of
the source receives a new chunk from the source every
G × U × L

B seconds;
• the generic peer relays only the chunks of the group it
belongs to. A FIFO queue is used to manage the chunks
of the group to which the generic peer belongs;

• the generic peer is interested only in chunks that arrive
at the source, starting from the time instant at which the

peer joins the system.
This could be achieved by quering the source node at
bootstrap time, asking for the identifier of the latest
produced chunk.

• the generic peer serves each chunk in the FIFO queue in
series to G×U neighbors (if there are G×U neighbors
missing that chunk), by giving priority to the neighbors of
its own group. This implies that the number of neighbors
P has to be at least equal to G×U . Moreover, whenever
possible, the generic peer serves the chunks belonging to
the same group to which the peer belongs in the same
order;

• if a peer ends serving a chunk to G × U neighbors and
there are no new chunks to be served in the FIFO queue,
it tries to serve that chunk to other neighbors, until a new
chunk to be served is enqueued in the FIFO queue.

Finally, it can be shown that the value of P must be greater
than G × U , for the algorith to work.
A last remark is that, being O-Streamline a data driven

algorithm, it is not necessary to re-configure the whole overlay
topology in case of peer churn.

IV. SIMULATION RESULTS

In this section we evaluate the performance of O-Streamline
by considering the following performance indexes:

• Nserved(c, d): is the average number of nodes that com-
plete the download of a chunk c with a chunk delivery
delay less than or equal to d; the chunk delivery delay
is the difference between the time instant at which the
chunk arrives at the source and the time instant at which
the chunk is completely received from a node. Note that
this performance index is very similar to the performance
index N(c, k, t) used to evaluate the performance of
Streamline. In fact, if in N(c, k, t) we consider the chunk
delivery delay t− c− 1 instead of the absolute time t of
chunk delivery and we average on all chunks, we obtain
Nserved(c, d);

• chunk delivery ratioR(n, Sn): with reference to a node n,
the chunk delivery ratio is the ratio between the number
of (completely) received chunks and the total number of
chunks generated during the duration of the session of
that node, Sn.

We evaluated these performance indexes via simulations by
using the OPSS simulator [13]. The duration of the simulations
is 1800 s. For each simulation result we assessed the 95%
confidence intervals. These intervals are plotted in the figures
only when they are significant; when they are small (e.g. less
than 5%) they are not shown to improve the readability of the
figures themselves.
We simulated a homogeneous scenario in terms of downlink

and uplink capacity: all nodes, including the source, have the
same uplink and downlink capacity. As regards the downlink
capacity, like in Streamline, we set a value great enough so that
downlinks are not a bottleneck of the system. As regards the
uplink capacity, we remove another assumption of Streamline,

i.e., that the ratio between the uplink capacity of all nodes
and the the stream bit rate is equal to 1. In O-Streamline we
consider also values of this ratio greater than or equal to 1.
As a consequence, when this ratio is greater than one, we had
to use the OPSS simulator also to evaluate the performance
of Streamline.
As regards the churn model we make some assumptions,

which must not be seen as too oversimplified, since the main
goal of this paper is to present a practical and working theory-
driven algorithm and to test its robustness against churn rather
than to give a real model of churn. These assumptions are:

• the session times are exponentially distributed;
• when a peer node leaves the system, a new peer node
joins the system. This makes possible to keep the number
of simulated peer nodes constant throughout the whole
simulation and to simplify the evaluation of simulation
results;

• each node may accept up to X connections per group
besides the number P or O of connections per group 2.
This guarantees a topology perturbation after node dis-
connections. In fact, accepting more connections than the
minimum number P or O, implies that new peer nodes
may be placed in topological positions different from the
ones of the corresponding peer nodes which are going
to disconnect and to be replaced. In addition, also peer
nodes loosing a neighbor due to a disconnection may look
for another neighbor and maintain P or O (depending on
the group to which the disconnecting node belongs) as
minimum number of connection per group.

The presentation of simulation results is organized as fol-
lows. First, we refer to a churn-free simulation scenario where
peer nodes are always on (subsection IV-A). This allows us
to compare O-Streamline with Streamline, thus understanding
O-Streamline’s position with respect to ideal performance
bounds. Then, we introduce the churn and evaluate its impli-
cations on the performance of O-Streamline (subsection IV-B).

A. Comparison with Streamline, no churn
We assume that the number P of neighbors in the same

group to which the generic peer belongs is equal to the number
O of neighbors in the remaining groups.
We first consider a scenario with 11504 nodes, 8 neighbors

per group (P = O = 8) and a ratio between uplink capacity
and stream bit rate equal to 1.
In figure 1 we plot the cumulative distribution function of

Nserved(c, d) for three different values of the number G of
groups. The curve relative to Streamline has been analytically
derived by setting k = 4. In fact, even if the performance
of Streamline improve monotonically as a function of the
number k of children, we chose k = 4 since the improvement
becomes negligible for greater values of k (see [10] for more
details). We observe that as the number of groups increases,
the performance of O-Streamline get closer to the ones of

2In all the simulations X is a random variable with uniform distribution in
the interval (0,2).

Streamline. For instance, with 4 groups, the difference between
O-Streamline and Streamline is negligible for chunk delivery
delay up to 12 − 13 seconds; the maximum chunk delivery
delay necessary to serve the whole network of O-Streamline
is 3 seconds higher than that of Streamline. With 3 groups
the maximum chunk delivery delay of O-Streamline does not
worsen, while with 2 groups the maximum chunk deliver
is 6 seconds higher than the maximum chunk delivery of
Streamline.
As a consequence, we can state that there exists a threshold

for the number of groups G over which improvements become
negligible. In addition the number of groups G should be
chosen so as to limit the signaling burden required to maintain
the relationships with neighbors belonging to all the G groups.

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
 6 8 10 12 14 16 18 20 22

 11504

 10000

 8000

 6000

 4000

 2000F
r
a
c
t
i
o
n

o
f

S
e
r
v
e
d

N
o
d
e
s

Chunk Delivery Delay [sec]

U=1, P=O=8, 11504 nodes

Streamline
G=2
G=3
G=4

Fig. 1. Cumulative distribution function of Nserved(c, d) in Streamline and
O-Streamline in case of a network with 11504 nodes, ratio between uplink
capacity and stream bit rate equal to 1 and 8 neighbors per group, for three
different values of the number of groups.

In figure 2 we plot the inverse cumulative distribution
function3 of R(n, Sn) (the chunk delivery ratio), for three
different values of the number G of groups. As in the previous
figure, the curve relative to Streamline has been analytically
derived by setting k = 4. We also note that the chunk delivery
ratio in Streamline is equal to 1 for every chunk and every
node. As expected, we observe that Streamline succeeds in
completely diffusing all chunks. Instead, O-Streamline has a
chunk delivery ratio that increases with the number of groups.
For instance 95% of nodes download at least 80%, 85% and
90% of all chunks with 2, 3 and 4 groups, respectively.
Now we consider a second scenario with 17472 nodes, 2

groups and a ratio between uplink capacity and stream bit rate
equal to 2.
In figure 3 we plot the cumulative distribution function

of N served(c, d) for three different values of the number of
neighbors per group (we recall that we assumed P = O). The
curve relative to Streamline has been derived via simulations
under the assumption of 4 parents/children per node.

3i.e. the complement to one of the cumulative distribution function

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

F
r
a
c
t
i
o
n

o
f

S
e
r
v
e
d

N
o
d
e
s

Chunk Delivery Ratio

U=1, P=O=8, 11504 nodes

Streamline
G=2
G=3
G=4

Fig. 2. Inverse cumulative distribution of chunk delivery ratio in Streamline
and O-Streamline in case of a network with 11504 nodes, ratio between uplink
capacity and stream bit rate equal to 1 and 8 neighbors per group, for three
different values of the number of groups.

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
 10 8 6 4 2

 17472

 16000

 14000

 12000

 10000

 8000

 6000

 4000

 2000

F
r
a
c
t
i
o
n

o
f

S
e
r
v
e
d

N
o
d
e
s

Chunk Delivery Delay [sec]

G=2, U=2, 17472 nodes

Streamline
P=O=4
P=O=8

P=O=12

Fig. 3. Cumulative distribution function of Nserved(c, d) in Streamline and
O-Streamline in case of a network with 17472 nodes, ratio between uplink
capacity and stream bit rate equal to 2 and 2 groups, for three different values
of the number of neighbors per group.

We observe that as the number of neighbors per group in-
creases, the performance of O-Streamline get closer to the ones
of Streamline. For instance, with 12 neighbors per group, the
difference between O-Streamline and Streamline is negligible
for chunk delivery delay up to 6 seconds; the maximum chunk
delivery delay necessary to serve the whole network of O-
Streamline is 1 second higher than that of Streamline.
Another observation is that the performance of O-Streamline

get closer to the ones of Streamline as the ratio between uplink
capacity and stream bit rate increases. As a matter of fact if
we compare figure 1 and figure 3 for the cases of G = 2 and
P = O = 8 the maximum chunk delivery delay is 21 s for
U = 1 and 8.5 s for U = 2.
Finally, we note that we do not present results on the chunk

delivery ratio in this scenario, since the choice of U = 2

guarantees the complete diffusion of all chunks, regardless of
the number of neighbors per group.

B. Impact of churn
We consider a scenario with 17472 nodes and a ratio

between uplink capacity and stream bit rate equal to 2. The
average session time of each node is equal to 10 minutes.
In figure 4 we plot the cumulative distribution function of

Nserved(c, d) for three different values of the number G of
groups. The number of neighbors per group is 8 (P = O = 8).
We observe that: i) the performance worsen with respect to
what happens in absence of churn, ii) the lower the number
of groups, the more significant the worsening, iii) a single
group implies a maximum chunk delivery delay of about 25
seconds; using 2 or 3 groups makes possible to reduce this
delay to about 16 − 17 seconds.

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
 25 20 15 10 5 0

 17472

 15000

 12000

 9000

 6000

 3000

F
r
a
c
t
i
o
n

o
f

S
e
r
v
e
d

N
o
d
e
s

Chunk Delivery Delay [sec]

U=2, P=O=8, 17472 nodes

G=1, no churn
G=2, no churn
G=3, no churn

G=1
G=2
G=3

Fig. 4. Cumulative distribution function of Nserved(c, d) in O-Streamline
in case of a network with 17472 nodes, ratio between uplink capacity and
stream bit rate equal to 2 and 8 neighbors per group, for three different values
of the number of groups.

In figure 5 we plot the inverse cumulative distribution
function4 of R(n, Sn) (the chunk delivery ratio), for three
different values of the number of groups. The number of
neighbors per group is 8 (P = O = 8). Also this performance
index improves as a function of the number of groups.

V. CONCLUSIONS
O-Streamline is a distribution algorithm designed starting

from a theoretical framework. For this reason, the reader can
understand the rationale behind its design and ascertain its pros
and cons. More important, O-Streamline is both amenable to
a real implementation and has performance close to absolute
bounds for this class of algorithms.

REFERENCES
[1] S. Banerjee, B. Bhattacharjee and C. Kommareddy, Scalable application

layer multicast, in Proceedings of ACM SIGCOMM, Pittsburgh, PA,
USA, 2002.

4i.e. the complement to one of the cumulative distribution function

 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

 1

 0.9

 0.8

 0.7

 0.6

 0.5

 0.4

 0.3

 0.2

 0.1

 0

F
r
a
c
t
i
o
n

o
f

S
e
r
v
e
d

N
o
d
e
s

Chunk Delivery Ratio

U=2, P=O=8, 17472 nodes

no churn
G=1
G=2
G=3

Fig. 5. Inverse cumulative distribution of chunk delivery ratio in O-Streamline
in case of a network with 17472 nodes, ratio between uplink capacity and
stream bit rate equal to 2 and 8 neighbors per group, for three different values
of the number of groups.

[2] D. A. Tran, K. A. Hua and T. Do, ZIGZAG: an efficient peer-to-peer
scheme for media streaming, in Proceedings of IEEE INFOCOM, San
Francisco, CA, USA, 2003.

[3] X. Zhang, J.C. Liu, B. Li and P. Yum, CoolStreaming/DONet: A data-
driven overlay network for efficient live media streaming, In Proceedings
of IEEE INFOCOM, Miami, FL, USA, 2005.

[4] M. Zhang, L. Zhao, Y. Tang, J. Luo and S. Yang, Large-Scale Live
Media Streaming over Peer-to-Peer Networks through Global Internet,
in Proceedings of ACM Multimedia, Singapore, Singapore, 2005.

[5] N. Magharei and R. Rejaie, PRIME: Peer-to-Peer Receiver-drIven MEsh-
based Streaming, in Proceedings of IEEE INFOCOM, 2007.

[6] V. N. Padmanabhan, H. J. Wang and P. A. Chou, Distributing streaming
media content using cooperative networking, in Proceedings of NOSS-
DAV, Miami Beach, FL, USA, 2002.

[7] M. Castro, P. Druschel, A. Kermarrec, A. Nandi, A. Rowstron, and
A. Singh, Splitstream: High-bandwidth multicast in cooperative envi-
ronments, in Proceedings of the 19th ACM Symposium on Operating
Systems Principles, The Sagamore, NY, USA, 2003.

[8] M. Zhang, Y. Xiong, Q. Zhang and S. Yang, On the Optimal Scheduling
for Media Streaming in Data-driven Overlay Networks, in Proceedings
of IEEE GLOBECOM, 2006.

[9] L. Bracciale, F. Lo Piccolo, D. Luzzi, S. Salsano, G. Bianchi and N.
Blefari-Melazzi, A push-based scheduling algorithm for large scale P2P
live streaming, in Proceedings of QoS-IP 2008, on line available at
netgroup.uniroma2.it/p2p/QoSIP08.pdf.

[10] G. Bianchi, N. Blefari Melazzi, L. Bracciale, F. Lo Piccolo, S. Salsano
and D. Luzzi, Streamline: an Optimal Distribution Algorithm for Peer-
to-Peer Real-time Streaming over Forest-Based Topologies, submitted for
pubblication and on line available at netgroup.uniroma2.it/p2p/streamline.
pdf.

[11] T. Silverston, O. Fourmaux Source vs Data-driven Approach for Live
P2P Streaming , ICNICONSMCL ’06 Washington, DC, USA

[12] E. W. Biersack, P. Rodriguez, and P. Felber, Performance Analysis of
Peer-to-Peer Networks for File Distribution, in Proceedings of the 5th
International Workshop on Quality of Future Internet Services (QofIS’04),
Barcelona, Spain, 2004.

[13] L. Bracciale, F. Lo Piccolo, D. Luzzi and S. Salsano OPSS: an Overlay
Peer-to-peer Streaming Simulator for large-scale networks. The simulator
code is on line available at http://minerva.netgroup.uniroma2.it/p2p.

