
Use of COPS for Intserv operations over Diffserv:
Architectural issues, Protocol design and Test-bed implementation

Roberto Mameli, Stefano Salsano (*)

(*) CoRiTeL
Consorzio di Ricerca sulle Telecomunicazioni

Via di Tor Vergata, 135
00133 Roma (Italy)

Abstract
This paper describes a solution for the Intserv operations
over Diffserv network, based on the use of a Bandwidth
Broker for the resource allocation.
The Architectural scenario is described, which is based on
the current IETF work in this area. For the communication
of the admission control request to the Bandwidth Broker,
the use of COPS protocol is proposed and the detailed
protocol specification have been given. In particular, a new
client type for the COPS protocol ids proposed to support
dynamic DiffServ admission control. The Policy Decision
Point (PDP) acts as a "Bandwidth Broker" for the Policy
Enforcement Point (PEP) which is requesting resources.
The use of the defined mechanism is suited for (but it is not
limited to) the Integrated Services operation over Diffserv
networks.
The proposed model has been implemented in a test-bed,
where both the control plane and the data plane are realized
according to the specification.

1. Introduction

The two traditional approaches to QoS provisioning in IP
networks, namely the Integrated Services (Intserv) and the
Differentiated Services (Diffserv) Architectures are
characterized by opposite choices. In fact, the former is
stateful and per flow-based, while the latter is stateless and
manages aggregates. As a consequence, they obtain
opposite advantages and disadvantages. A possible solution
that tries to conjugate benefits of both the Intserv and the
Diffserv approaches is based on a proper combination of
them, using Intserv in the access and Diffserv in the core. In
fact, it achieves scalability due to the Diffserv aggregation
in the core, while keeping the advantages of end-to-end
signaling. [1] describes such a solution, but leaves some
open issues. One of them is related to resource management
within the Diffserv domain. At least three options exist:
 Statically provisioned resources
 Dynamically provisioned resources by means of

RSVP
 Dynamically provisioned resources by means other

than RSVP

In this work we focus on the third solution, where
Admission Control in the DiffServ network is based on a
centralized device called Bandwidth Broker (BB). The use

of a server to admit and reject traffic within a Diffserv
domain has been considered since the very beginning of the
discussion about the Diffserv architecture [2]. The reference
architectural scenario for our work is described in Section 2.
In the scenario described the routers at the boundary
between the Intserv and the Diffserv networks plays a key
role. In fact they are in charge of performing Admission
Control with the help of the BB. An intra-domain scenario
is assumed, where the BB is in charge of controlling
resource for a network in a single administrative domain.
The Edge Router (ER) communication with the Bandwidth
Broker is realized by means of an extension to the COPS
protocol. The COPS is used to exchange resource allocation
requests/responses. The Edge Router contains the PEP –
Policy Enforcement Point (client side of the COPS
protocol), while the Bandwidth Broker plays the role of the
PDP – Policy Decision Point (server side of the COPS
protocol). Sections 3 and 4 provide information on the
proposed COPS extensions, while the detailed specification
can be found in [3].
The interworking of RSVP and COPS protocols in the Edge
Router is described in section 5, while the test-bed
implementation is described in section 6.

2. Intserv over Diffserv: the role of the Edge
Router

The Intserv over Diffserv scenario described in [1] is
reported in Figure 1:

IntServ
access
network

ER ER

ER: Edge Router DS-R Diff-Serv Router

R: RSVP capable Router

DiffServ
core

network

IntServ
access
network

R

H
H

H : End user Host

DS-R

DS-R
R

Tx
Rx

Figure 1 – IntServ/DiffServ interoperation scenario

As previously mentioned, end-to-end QoS is achieved
exploiting Intserv in the access networks and Diffserv in the

core. This allows scalability, due to the Diffserv
aggregation, while keeping the advantages of end-to-end
signaling by means of the RSVP protocol. Let us describe
the sequence of operations involved in a single end-to-end
reservation in order to clarify how Intserv and Diffserv
interact:

 The sender application on Tx generates an RSVP
PATH message carrying the flow’s characteristics (i.e.
the Tspec). The message is carried towards the receiver
Rx; in the IntServ access regions it is subject to
standard RSVP/IntServ processing, while in the
DiffServ core it is forwarded transparently.

 When the receiving host Rx receives the PATH it
generates the corresponding RSVP RESV message,
that is carried back towards the sending host. As
before, the RESV message undergoes standard
RSVP/IntServ processing in the IntServ access regions
and is transparently tunneled in the DiffServ core.
During his travel backwards, assuming that it is not
rejected before for resource unavailability, it reaches
the ingress Edge Router ER1.

 In ER1, the RESV message is processed. The ingress
Edge Router ER1 is a key element in the sequence of
operations described. A detailed description of its tasks
is reported below: among them it performs Admission
Control, i.e. based on the information carried in the
RESV message and on its view on the utilization of
network resources it decides to admit or reject the
request.

 If ER1 approves the request, the RESV message is
admitted and is allowed to continue upstream towards
the sender. If it rejects the request, the RESV is not
forwarded and the appropriate RSVP error messages
are sent.

Differently from core routers, the ER is RSVP aware and
stores per-flow states; the ER is capable of managing
packets both on a micro-flow basis and on an aggregate
basis. The choice between the two possibilities depends on
the role of the Edge Router. When it acts as ingress ER, i.e.
for packets from the originating Intserv network to the
Diffserv core it forwards packets in an aggregate fashion on
the outgoing interface, while it can handle micro-flows on
the incoming interface. Instead, when it behaves as egress
ER, i.e. for packets from the Diffserv core to the destination
Intserv network, it is able to distinguish micro-flows on the
outgoing interface. Note, however, that the distinction
between ingress and egress edge router depends only on the
direction of the data stream. This means that the same ER
may be ingress ER for a flow and egress ER for another one
in the opposite direction.

Let us focus on the ingress Edge Router, since it provides
some important functionality. Among them we cite:

 Classification: it performs per micro-flow
classification, i.e. it is able to distinguish the different
Intserv flows.

 Mapping: it performs mapping of IntServ service
classes into DiffServ PHBs; it is also in charge of
aggregating IntServ micro-flows into DiffServ
aggregates.

 Marking: it marks (or remarks) the DS field of
incoming packets according to the target PHB, that in
turn results from the mapping operation explained
above.

 ADSPEC update: for GS flows the exported terms in
the ADSPEC (i.e. C and D) must be properly updated
with a value depending upon the topology and the
characteristics of the DiffServ core.

 Admission Control: this is one of the main tasks
performed by the ingress Edge Router. The Admission
Control is applied to the virtual hop represented by the
DiffServ core network. The purpose of this procedure is
to ensure that Diffserv resources are available in the
Diffserv domain to support the requested Intserv flow.
In a “pure” DiffServ network per flow Admission
Control is not needed, as simpler “aggregate” policing
at ingress points based on provisioning can be used. As
explained in [1], the purpose of per-flow admission
control is to increase network utilization and/or to
support tighter end-to-end QoS guarantees (at the
expense of increased complexity).

There are basically two distinct approaches to the
realization of Admission Control in the ingress Edge
Router:

 Distributed: in this case Admission Control is based on
information locally available in the ingress Edge
Router.

 Centralized: differently from the previous choice,
Admission Control is realized by means of a
Bandwidth Broker (BB), i.e. logically centralized entity
acting as an Admission Control server. The BB could
use global knowledge of both the network topology and
the resource allocation (see Figure 2) to take Admission
Control decisions. The definition of mechanisms and
algorithms used for the BB operation is outside the
scope of this document and will not be further detailed
here. Related work can be found in [4].

The distributed solution is quite simple to implement, but it
is also rather inaccurate, since each ER exploits information
with a local scope, without the overall vision of the network
status. In contrast, the second approach raises some non-
trivial issues in terms of complexity and scalability, but
allows better resource utilization within the DiffServ cloud.
An architectural definition and scalability analysis of the
centralized scenario can be found in [5].

H H
R

DS_R

DS_R
R

Bandwidth Broker

IntServ
Access
Network

IntServ
Access
Network

DiffServ
Core

Network

ER ER

ER: Edge Router DS-R: DiffServ Router
R: RSVP capable router H: End user host

Figure 2 – Bandwidth Broker

In this document the centralized solution of Figure 2 is
analyzed. A protocol for the communication between the
ER and the centralized server is needed. The use of the
COPS [6] is considered in this work. The COPS protocol
can be extended to support new Client types. Using COPS
for Admission Control in a Diffserv network has been
already discussed. For example in [7] such a scenario is
described, but the definition of the extensions to the COPS
protocol is not provided.

In this work we describe the use of COPS for outsourcing
the allocation of resources in a Diffserv network. The new
client-type is called “COPS-ODRA” (COPS- Outsourcing
Diffserv Resource Allocation) [3]. The COPS-ODRA client
relies on the Outsourcing model as it will explained in the
next section. The COPS-ODRA client type is especially
suited to support the Intserv operation on Diffserv network,
but can also support other scenarios for Diffserv resource
allocation, without using Intserv in the Access network.

Note that the scenario depicted in Figure 2 refers to a single
DiffServ core domain (intra-domain case). In a multi-
domain scenario, one could simply use of RSVP as end-to-
end signaling (raising scalability concerns) or more
complex communication mechanisms between BBs of
different domains could be defined. These inter-domain
aspects are outside the scope of this paper.

3. Outsourcing and provisioning models for
resource allocation

The COPS (Common Open Policy Service) protocol is a
simple query and response protocol that allows policy
servers (PDPs) to communicate policy decisions to network
devices (PEP). Two main models are supported by the
COPS protocol: outsourcing model and provisioning model.

The Outsourcing model is used when there are "Trigger
events" in the PEP that require a policy decision (e.g. a
dynamic request to admit a new flow). The PEP delegates
this decision to an external policy server (PDP). It sends a
query message to the PDP, typically waiting for the

response decision before admitting the new flow (see Figure
3). The Outsourcing model is used for the RSVP client type
defined in [10].

On the other hand, the Provisioning model [8] foresees that
the PDP proactively configures the PEP so that it knows
how to run its QoS mechanisms. The mechanisms to
exchange the configuration information and to store this
information is based on the definition of a "Policy
Information Base", see [11].

ER
(PEP)

Trigger event

BB
(PDP)

(1) Query (2)

Response (3)

Figure 3 – COPS-ODRA Outsourcing Model

In the Provisioning model, either there are no "Trigger
events" at the PEP (i.e. only packet classification, marking,
scheduling, etc. is performed at the PEP) or these events
must be handled using local information (i.e. mapped in the
available resources provisioned by the PDP). The two
models should be compared against scalability, flexibility,
efficiency in resource allocation and implementation
complexity.
The Provisioning model is very well suited when there are
no such dynamic requests coming to the PEP. In other
scenarios, like for example the RSVP/Diffserv interworking
the dynamic requests are a fundamental feature in the
PEP/Edge Router. In this case a possible solution is to fully
rely on the Outsourcing model, so that a very simple PEP
can be defined. The drawback is the need of relatively
frequent communication with the PDP, but there are
scenarios where this solution can be cost-effective.
Note that the Outsourcing model lends itself to more
sophisticated solutions if scalability concerns arise. In fact
the Outsourcing model can be dynamically paced by the
PEP in real-time. A straightforward option is to pre-reserve
some amount of bandwidth and to make Admission Control
Request with a coarser bandwidth granularity to limit the
pace of requests.
In general, a combination of Outsourcing and Provisioning
model could be used to provide a flexible and general
solution for QoS in IP networks. As a first step, the solution
described in this paper (and realized in the test-bed) focuses
on the pure Outsourcing case

In the Outsourcing model used by the COPS-ODRA client
the PEP explicitly asks the PDP/BB for a given amount of
resources, from an ingress point to an egress point. Note
that per-flow state is not stored in the PDP/BB. Instead,

resource allocation requests are properly aggregated and
only aggregate state information is kept in the PDP/BB,
allowing for higher scalability. The RSVP client type
defined in [10] has a different behavior, keeping a separate
state in the PDP for each RSVP flow.

4. Use of the COPS protocol for Outsourcing
Diffserv Admission Control

In order to be flexible, the COPS protocol has been
designed to support multiple types of policy clients. Each
client-type will be described in a different usage draft. The
detailed definition of the COPS-ODRA client type is
provided in [3]. The purpose of this section is to provide an
overview on the operation of the proposed client type.

• Start of operations

In order to start operations, the PEP must open the dialogue
connection with its PDP/BB. First, a TCP connection is
established between the client and server and the PEP sends
a Client-Open message with the Client-Type = COPS-
ODRA. If the PDP supports this client type, it responds
with a Client-Accept (CAT) message. If the client type is
not supported, a Client-Close (CC) message is returned by
the PDP to the PEP. After receiving the CAT message, the
PEP can send requests to the server.

• Common operations

Following the terminology in [9], the PEP will send
"Resource Allocation Requests" (RAR) to the PDP/BB once
the connection is established.
A Resource Allocation Request will contain:
- the topological information (e.g. ingress point and

egress point in the Diffserv domain) which allows the
PDP/BB to aggregate different Resource Requests

- the type of the requested resource (e.g. the Diffserv
Per Hop Behavior or Behavior Aggregates)

- the amount of the requested resource (e.g. the
specification of the bandwidth)

The resource allocation request is used by the PDP to
perform the Admission Control procedure. According to the
requirements of the requested service, the PDP/BB will
properly map the requested edge-to-edge resources into
network resources and will assure that such resources are
available throughout the Diffserv cloud. The discussion of
the Admission Control algorithms in the PDP/BB and of the
mechanisms used by the PDP/BB to get topological/routing
information from the Diffserv domain are outside the scope
of this document. Related work can be found in [4], where
the use of OSPF and SNMP for the communication between
the BB and the Diffserv routers is proposed.

In response to the Resource Allocation request, the PDP
sends a reply where it accepts or rejects the RAR. On
receiving the answer, the PEP activates its local QoS

mechanisms as needed.

• State information in PEP and PDP/BB

The COPS protocol is stateful in the sense that
Request/Decision state is shared between PEP and PDP.
Depending on the COPS client type, one or multiple states
can be installed in the context of a single PEP/PDP
relationship. The "handle" object uniquely identifies a
single installed state at the PEP and at the PDP side. In case
of RSVP client type [10], a different state is installed for
each RSVP flow (actually one PATH state and one RESV
state). This implies that a lot of state information is
duplicated in the PEP and in the server.
In COPS-ODRA the state information is aggregated: the
state represents the set of resources allocated by the
PDP/BB to a PEP. Therefore a unique value for the handle
object is used in the context of a single PEP/PDP
relationship. The handle is inserted by the PEP in the first
request and then it is used in every message by the PEP and
by the PDP/BB.
The state information in the PDP/BB is represented by the
set of the triples (resource type, ingress point, egress point)
and the corresponding amount of allocated resources. The
PDP/BB keeps this state information separately for each
different COPS-ODRA client (i.e. for each connected PEP).
The requests for the same resource type, ingress point,
egress point coming from the same PEP are properly
composed by the PDP/BB so that only the aggregate
information is stored.
This aggregate state information stored in PDP/BB is
logically shared by the PEP in the sense that it is the result
of the sequence of Request messages sent and of the
Decision messages received. There is no need in the PEP to
evaluate and store the aggregate state information: in the
simplest case, the client side (PEP) stores a set of "per flow"
reservation information. In more advanced scenarios, the
PEP client can evaluate and store aggregate information.
Temporary state information per each request must be
stored in the PEP and in the PDP/BB in order to correlate
requests with decisions. To this purpose the notion of
request ID is needed and a corresponding client specific
protocol object is defined (see section 3). This temporary
information is deleted in the PDP/BB when the Decision
message is sent and in the PEP when this message is
received.

• Synchronization

Synchronization procedures are foreseen in COPS
specification to cover failure situations. The basic idea is
that the PDP/BB can "reset" the state and ask the PEP to
rebuild it by sending proper resource allocation Request
messages. If the PEP has only stored "per-flow" state, it will
send one Request message for each active reservation. If the
PEP has stored aggregate states, it can send "aggregate"
Resource Allocation requests.
Selective re-submissions (i.e. for resource type, ingress or
egress point) can be supported.

4.1. Message types

The COPS protocol provides for different COPS clients to
define their own "named", i.e. client-specific, information
for various messages. This section describes the messages
exchanged between a COPS server (PDP) and COPS
ODRA clients (PEP) that carry client-specific data objects.

• Request (REQ) PEP →PDP
The REQ message is sent by COPS-ODRA clients to issue
a 'Resource Allocation Request' to the PDP. It can be used
to request new resources, to modify a previous reservation
or to release a reservation. Each REQ message contains a
single request. The PDP responds to the resource allocation
request with a DEC message containing the answer to the
query. Note that resource allocation request messages can
be generated and sent to the PDP in response to the receipt
of a Synchronize State Request (SSQ) message.

• Decision (DEC) PDP → PEP
The DEC message is sent from the PDP to a COPS-ODRA
client in response to the REQ message received from the
PEP. Unsolicited DEC messages cannot be sent for this
client type. Each DEC message contains a single decision.
The Decision Flags object will contain the answer in the
Command-code field according to the COPS specifications.
In particular the Command-code will be "Install" to mean a
positive answer and "Remove" to mean a negative answer.
No report is sent by the PEP to confirm the reception of a
Decision message. Only in case of specific errors, the PEP
will send back a Report State message to the PDP/BB.

• Report State (RPT) PEP → PDP
For COPS-ODRA client type, the Report State message is
sent by the PEP to the PDP in case of problems with a
received Decision message. More specifically it is used to
communicate that the Decision contains a Request identifier
which cannot be correlated to a previous request. This event
is the manifestation of abnormal behavior. On reception of a
Report State message the PDP could start a Synchronization
procedure.

• Synchronize State Request (SSQ) PDP → PEP
The Synchronize State Request message is sent by the PDP
to the PEP to "reset" the state information. It requests the
PEP to send the set of resource allocation REQ messages
needed to rebuild the state. The SSQ can apply to the whole
set of PEP active reservations PEP, or to a specific resource
type and ingress-egress couple, depending on the
information contained in the Client SI object.

• Synchronize State Complete (SSC) PEP → PDP
The Synchronize State Complete message is sent by the
PEP to the PDP to inform that all the REQ messages needed
to rebuild the state have been sent.

5. RSVP/COPS interaction

From now on the architecture represented in Figure 2 will
be assumed as the reference scenario. As previously
explained, the Edge Router comprises most of the
functionality needed for interworking, including admission
control on a micro-flow basis. Obviously, for proper
operation, RSVP and COPS signaling should properly
interact. To clarify this mechanism let us consider the
sequence of operations involved in an end-to-end
reservation, that is described in detail in [1] and reported
here in a simplified form. We are considering unicast
reservations.

As described above, queries from the ingress ER to the BB
are triggered whenever the former receives a RESV
message from the downstream DiffServ domain. Note that
in this situation RSVP and COPS are synchronized. A
possible choice in the implementation of RSVP/COPS
interaction would be to keep this synchronization. This
would imply a blocking behavior; whenever the RSVP
daemon triggers a query it blocks indefinitely waiting for a
response. This raises the obvious problem of managing
situations in which a response from the PDP/BB is not
temporarily available. In fact, in such cases, the blocking
behavior should be avoided, in order to be able to manage
other events and to avoid soft state expirations.

As a consequence the RSVP should be properly adapted in
order to manage requests and responses asynchronously.
After a query and before getting the response, processing of
other events should be possible. A possible way to realize
this behavior could be the introduction of pending
reservation states in the RSVP daemon. Consider as an
example the reception of a RESV message by the ingress
Edge Router ER1, that in turn triggers an admission control
query towards the PDP/BB. In this case the RSVP daemon
could set up a reservation state before retrieving the
response, marking it as pending. No further operations
related to this state should be performed until it remains
pending, i.e. until the response from the PDP/BB is
available; this means, for example, that the RESV message
should not be forwarded upstream. In the case of positive
response (i.e. reservation request accepted), the
corresponding reservation should be instantiated on the
egress interface of ER1, and the RESV message should be
forwarded upstream. In the case of rejection, e.g. due to
unavailability of resources, a RESVERR message should be
propagated downstream towards Rx, according to standard
RSVP behavior. The introduction of pending reservation
states could allow the RSVP daemon to perform normal
processing related to states other than the one considered.
This obviously includes refresh operations triggered by
timeout expirations. Note that a timeout could also be
defined for pending states. In this case, when the timeout of
a pending reservation state expires, and no response has
been received in the meanwhile, the RSVP could either
reject the request or revert to local decision based on LPDP

functionality in the ER.

Figure 4 and Figure 5 show the typical sequence of
operations involved in a reservation, both in the case of
acceptance and in the case of rejection. As stated above, the
interface between the PEP in the ER and the PDP/BB is
realized by means of the COPS protocol extension
described in [3], while the interface between the RSVP
daemon and the PEP within the ER is described in a [13].

ER1 ER2

PDP/BB

RSVP
RESV

COPS REQ
(Add)

COPS DEC
(Install)RSVP

RESV

Pending
Resv State

Normal
Resv State

Figure 4 – Reservation successfully accepted

RSVP
RESV

COPS REQ
(Add)

COPS DEC
(Remove)

Pending
Resv State

RSVP
RESVERR

ER1 ER2

PDP/BB

Figure 5 – Reservation rejected

Finally, Figure 6 shows the sequence of events involved in
the release of resources. When a RESV TEAR is received a
COPS-ODRA REQ message is sent to the PDP/BB, in order
to let it keep track of resource usage. After the reception of
the corresponding DEC message the PEP notifies the
RSVP, which in turn releases the reservation and forward
upstream the RESV TEAR. Note however that the same
sequence of operations happens in the case of PATH TEAR
or in the case of timeout expiration.

RSVP
RESVTEAR

COPS REQ
(Release)

COPS DEC
(Install)

Resv
State

RSVP
RESVTEAR

ER1 ER2

PDP/BB

Figure 6 – Resource Release

6. Testbed implementation and future work

This paragraph describes the prototype implementation
realized within CoRiTeL lab. The starting point was the
testbed configuration described in [12] and reported in
Figure 7.
The testbed of Figure 7 is composed of 5 Personal
Computers running the Linux operating system (Red Hat
6.1 distribution, kernel version 2.2.12). The PC are
equipped with 100 Mb/s ethernet cards. All the functional
elements represented in Figure 1 are represented here. The
core network is represented by the central PC, that is
configured as a Diffserv core router. Traffic control
functionality provided by Linux kernel is exploited to
realize the Intserv and Diffserv mechanisms (policing,
scheduling). In particular, EF and AF traffic classes are
supported in the Diffserv network. The two adjacent PCs
are configured as Edge Routers; they run a version of the
ISI RSVP daemon (RSVPd release 4.2a4) which we have
adapted. A complete description of the preliminary changes
done in the RSVPd is given in [12]. In the first step these
changes were substantially related to the traffic control level
(i.e. mapping, marking and micro-flow aggregation), with
minor interest in the admission control functionality.

RSVP RSVP/DiffServ RSVP/DiffServDiffServ RSVP

Edge Router Edge Router

Figure 7 – Original Testbed configuration

The subsequent step has been the enhancement of the test-
bed of Figure 7 with the introduction of the Bandwidth
Broker (see Figure 8). Currently the test bed includes 4
Edge Routers and 2 Core routers. The COPS-ODRA
protocol has been implemented on the client-side and on the
server side.

RSVP RSVP/DiffServ RSVP/DiffServDiffServ RSVP

Bandwidth Broker
(COPS Server)

Edge Router
(COPS Client)

Edge Router
(COPS Client)

Figure 8 - Testbed Configuration with the BB

 The modules that have been developed are shown in Figure
9. The COPS-ODRA on the client side interacts with the
RSVPd or with a test application that can generate Resource
Allocation requests using the CCAPI. In the current version,
the COPS-ODRA server is configured by reading a static
table, where the set of available bandwidth for each pair of
Edge Routers and for each class is provided. This means
that the Decision module and the resource & Topology
model are too simplistic. We are working on the second
version of the server, which should include topological
information on the Diffserv network, in order to map the
Edge-to-edge resource requests into the allocation of
internal network resources.

COPS
client

COPS
server

Decision
module

COPS-ODRA protocol

RSVP
daemon

COPS client API

Resources
& topology

module

BB/PDP

ER/PEP

Test
applic.

Figure 9 – Software modules

Work is also ongoing to measure the performance of the
proposed solution, aiming to infer some conclusion about
the possible scalability issues.

7. Acknowledgements

The authors would like to thank Andrew Smith from
Extreme Networks who provided the source code of a
generic COPS server, Andrea Ferraresi and Eleonora

Manconi from CoRiTeL for their work on the specification
and the implementation of the COPS-ODRA client-type.

8. References
[1] Bernet, Y., Yavatkar R., Ford, P., Baker, F., Zhang, L.,

Speer, M.,Braden, R., Wrocklaski, J., Felstaine, E., "A
Framework for Integrated Services Operation Over Diffserv
Networks", IETF <draft-ietf-issll-diffserv-rsvp-03.txt>,
September 1999, Work in Progress.

[2] K. Nichols, V. Jacobson, L. Zhang " A Two-bit
Differentiated Services Architecture for the Internet "RFC
2638, July 1999

[3] S. Salsano, “COPS Usage for Outsourcing Diffserv Resource
Allocation”, <draft-salsano-issll-cops-odra-00.txt>, February
2000, Work in Progress

[4] O. Schelén, A. Nilsson, J. Norrgard,S. Pink: Performance of
QoS Agents for Provisioning Network Resources. In
Proceedings of IFIP Seventh International Workshop on
Quality of Service (IWQoS'99), London, UK, June 1999.

[5] A. Detti, M.Listanti, S.Salsano, L.Veltri, "Supporting RSVP
in a Differentiated Service Domain: an Architectural
Framework and a Scalability Analysis", ICC '99, June 1999,
Vancouver, Canada.

[6] D. Durham, Ed., J. Boyle, R. Cohen, S. Herzog, R. Rajan, A.
Sastry "The COPS (Common Open Policy Service)
Protocol", IETF RFC 2748, January 2000

[7] A. Terzis, J.Ogawa, S.Tsui, L.Wang, L.Zhang "A prototype
Implementation of the Two-Tier Architecture for
Differentiated Services" IEEE Workshop on QoS Support for
Real-Time Internet Applications, June 2-4, 1999 Vancouver,
Canada

[8] F. Reichmeyer, et al. "COPS Usage for Policy Provisioning",
draft-ietf-rap-pr-01.txt, October, 1999, Work in Progress.

[9] R. Neilson, J. Wheeler, F. Reichmeyer, S. Hares (Editors),
"A Discussion of Bandwidth Broker Requirements for
Internet2 Qbone Deployment" Version 0.7

[10] J. Boyle, R. Cohen, D. Durham, S. Herzog, R. Rajan, A.
Sastry, "COPS usage for RSVP ", IETF RFC 2749, January
2000

[11] M. Fine, K. McCloghrie, S. Hahn, K. Chan, A. Smith, "An
Initial Quality of Service Policy Information Base for COPS-
PR Clients and Servers", draft-mfine-cops-pib-02.txt,
October 1999.

[12] W. Almesberger, S. Giordano, R. Mameli, S. Salsano, F.
Salvatore, “A Prototype Implementation for the IntServ
Operation over DiffServ Networks”, submitted to Globecom
2000

[13] R. Mameli, “The CCAPI (COPS Client Application
Programming Interface)” <draft-mameli-issll-cops-api-
00.txt>, February 2000, Work in Progress

[14] R. Mameli, S. Salsano, “Integrated services over DiffServ
network using COPS-ODRA” <draft-mameli-issll-is-ds-
cops-00.txt>, February 2000, Work in Progress

