
Supporting Information-Centric Functionality in
Software Defined Networks

Luca Veltri1, Giacomo Morabito2, Stefano Salsano3, Nicola Blefari-Melazzi3, Andrea Detti3
1University of Parma / CNIT, 2University of Catania / CNIT, 1University of Rome “Tor Vergata” / CNIT

Abstract —The Information-Centric Networking (ICN) paradigm
is expected to be one of the major innovation of the Future
Internet An ICN can be characterized by some key components
like: (i) the content-centric request/reply paradigm for data
distribution, (ii) route-by-name operations, and (iii) in-network
caching. In this paper we focus on a framework for ICN called
CONET (COntent NETwork) and in particular on a solution
devised under this framework called coCONET. coCONET
characteristics make it suitable for deployment in accordance to
the Software Defined Networks (SDN) philosophy. In this paper,
we will describe how coCONET can be implemented over an
OpenFlow (the most popular SDN instantiation, to date) network
and how OpenFlow should be modified to better suit the
operations of coCONET and, more in general, of ICN solutions.

Information Centric Networking; ICN; Software Defined
Networks; SDN; OpenFlow

I. INTRODUCTION

Recently there has been an increasing interest in the so
called Information-Centric Networking (ICN) paradigm [1][2]
which is considered one of the major characteristics of the
Future Internet (FI) [3]. ICN proposes a paradigm shift from
the traditional host-to-host communication – which has been at
the very basis of the design of the architectures and protocols
of the current Internet – to the content-to-user communication
paradigm which poses the focus on the delivery of the desired
content to the intended users. Motivations of such paradigm
shift find their origin in a clear evidence [1][2]: users value the
Internet for the content they can obtain from it rather than for
the possibility to interact with a specific host. The increasing
interest in ICN is demonstrated by:

- the large number of research project which are being carried
out on the topic such as CONVERGENCE [4], Named-Data
Networking [5], PURSUIT [6], and SAIL [7], for example;

- the large number of research papers appearing which focus
on the topic (see the papers presented at the ACM
SIGCOMM workshop on Information-Centric Networking
2011 or at IEEE Infocom Workshop on Emerging Design
Choices in Name-Oriented Networking 2012);

- the proposition of the Information-Centric Networking
Research Group (ICNRG) within the Internet Research Task
Force (IRTF) [9] (still waiting for approval).

 This work was supported in part by the EU under the projects FP7–
257123 “CONVERGENCE” and ICT-258365 “OFELIA”

As a result of such increasing interest several solutions
have been proposed for ICN. In this paper we focus on an ICN
framework named COntent NETwork (CONET), and on a
specific implementation based on this framework, called
coCONET1 [21] [10], which we will take as an exemplary ICN
implementation. In the CONET framework each piece of
content (called chunk) is characterized by a unique name.
When a user is interested in a given piece of content its
terminal generates an interest message, which is forwarded by
network nodes towards the origin node that can provide the
content. Forwarding process is based on the name of the
content that is included in the interest message. When the
content is sent back (in chunks) toward the interested terminals,
intermediate nodes can cache it. Therefore interest messages
can also be served by intermediate nodes storing a copy of such
piece of content. At this level of abstraction, this approach is
the same proposed in [1].

The CONET framework is modular and can support
different solutions for fundamental issues like naming, name
based routing, name based interest forwarding, data
forwarding, transport protocols. In the specific coCONET
solution that we will consider, the forwarding mechanism of
interest messages (i.e. content requests) is called “lookup-and-
cache”. It foresees that network nodes, which do not know the
next-hop node to forward an interest message, send a query to
an appropriate layer called NRS (Name Routing System). The
NRS answers providing the necessary routing information. It
follows that network nodes are required to run forwarding
operations only, while the creation and maintainement of
forwarding rules is demandated to a “control plane”
implemented by the NRS nodes.

The decoupling of switching/forwarding function from the
routing and control functions is typical of the so called
Software Defined Network (SDN) paradigm. In this paper we
will discuss how SDN can be used to support the need of an
ICN, starting from the concrete requirements coming from the
specific ICN solution coCONET.

Probably one of the most popular implementation of the
SDN paradigm is OpenFlow [8][12]. In OpenFlow, network
nodes are called OpenFlow Switches and are responsible of
forwarding while routing decisions and control function can be
delegated in a centralized element called “Controller”.
OpenFlow Switches communicate with the Controller through
the OpenFlow protocol. The success of such architecture is

1 coCONET: convergence CONET, named after the EU project

CONVERGENCE

demonstrated by the fact that the OpenFlow protocol is already
implemented by a number of commercial products, and
available in several research and prototyping projects.
Therefore we focused on OpenFlow as a reference
implementation of SDN concepts.

When it comes to supporting ICN in OpenFlow, we see two
basic options: a “short term” one, i.e. use the existing
OpenFlow switches and API in order to realize the ICN
functionality; a “long term” one, i.e. consider future, ICN
capable switches and accordingly design an extended
OpenFlow interface. We are exploring both options, but this
paper deals with the latter one, focusing on the required
enhancements to the OpenFlow architecture, interfaces and
protocol that allow the supporting of ICN.

We are doing this work in the context of the OFELIA
project [14], which provides a pan-European experimental
platform open to researchers based on OpenFlow2. We plan to
integrate our implementations (both for the short term and long
term approaches) in the OFELIA testbeds, in particular we will
build two additional OFELIA “islands” (i.e. in Rome and
Catania) which will be able to run our implementations.

In section II we shortly recall some general ICN concepts,
then provide few details about the CONET framework, the
coCONET solution and its implementation. Section III
discusses the two above mentioned “short term” and “long
term” options. It also provides few details about the “short
term” approach and its ongoing implementation. Section IV
includes the main contribution of the paper, i.e. the analysis of
OpenFlow extensions to support ICN. In Section V we discuss
the status and the plan of our implementation activities.

II. ICN, CONET AND COCONET

While the debate on the specific procedures which should
be executed by ICNs is still ongoing, there is almost universal
consensus on the fact that an ICN solutions should support:

Content-centric request/reply paradigm for data
distribution. Users interested in a given content issue an
interest which is propagated in the network towards the host
storing the desired content (called the serving node). Upon
reception of an interest the serving replies by sending the
desired data to the requesting user.

Route-by-name operations. Each data item is given a
unique name and routing of all related information is
performed based on such name. This allows the interaction
between the users interested in a given content and the closest
copy of the desired data item.

In-network caching. Routers in the end-to-end path
between the serving node and the user can store in a local
cache content. Accordingly, upon reception of an interest a
router checks whether the requested piece of content is stored
in the local cache. If this is the case then the desired content is
sent to the requesting user while the interest message is no
further propagated. If this is not the case (i.e., the piece of
content is not in the local cache) then the interest message is

2 Instructions for accessing the experimental platform can be found at

http://www.fp7-ofelia.eu.

propagated towards the serving node. Note that in principle, in-
network caching can significantly improve efficiency of
network resource utilization.

- Security embedded in the content. To date most of the
effort has been focused on securing the communication
channel between two end-hosts or two parties running a
given application. In ICN solutions, instead, it is the
content which matters accordingly mechanisms have been
proposed which embed security information in the content
itself and therefore avoid fake version of a content to be
even disseminated in the network.

Content-Centric Networking (CCN) is one of the most
relevant existing ICN solutions [1]. CCN can be implemented
as a clean slate network in which a novel layer 3 protocol is
meant to replace IP, or as an overlay layer, e.g., on top of UDP
packets over an IP network. CCNx [23] is an implementation
of CCN following the overlay approach.

CONET [11] [10] is an ICN framework based on the same
general principles than CCN. Compared to CCN, its main
contribution is the proposal of a third approach, in addition to
the clean slate and the overlay ones, namely the “integration
approach”. The idea is to extend the IP protocol towards ICN
support in a backward compatible way. This is achieved by
adding an IP option (both for IPv4 and IPv6 headers) than can
take care of ICN related information. CONET can be seen as a
generic ICN framework that is capable to accommodate
different choices with respect to specific aspects like naming,
routing, forwarding, and caching.

Within the CONET framework we have designed a specific
solution called coCONET by choosing the naming, the routing
mechanism, etc. We have implemented the proposed
coCONET solutions and realized a testbed. Further details and
the open source implementation are available, see [21].

III. SHORT TERM VS. LONG TERM APPROACH

In this section we discuss how OpenFlow can be used to
support CONET and, in general, ICN solutions. The OpenFlow
standard has been created to process IP packets; forwarding
rules can be created in terms of the header fields defined by IP
and by standard transport protocols. Therefore, problems arise
when dealing with non-IP packets, such as for “clean-slate”
ICN solution. Likewise, current OpenFlow specifications
allows to process TCP and UDP ports, but it is not possible to
deeply analyze the payload, as it could be needed for efficient
solution in case of overlay transport of ICN packets. Note that
also an IP-based ICN solution, as proposed for CONET [11],
that reuses the IP header for carrying ICN relevant information
(e.g. content-name and chunk number) by exploiting the IP
Options field, cannot be supported on the current version of
OpenFlow, due to the lack of support of full IP header
processing rules (the IP Options field in our case).

Two possible SDN approaches can be envisaged for
building a ICN based on the OpenFlow protocol: i) a short term
approach based on the version of OpenFlow protocol
implemented in the available OpenFlow-enabled switches; ii) a
long term (clean slate) approach in which the OpenFlow
architecture is properly extended in order to accommodate non-

IP packets, to support new (and more flexible)
matching/forwarding rules and new switch processing
functions as well. In this paper we concentrate on the analysis
of OpenFlow extensions for fulfilling the second, “long term”,
approach and only provide some information on our ongoing
work on the “short term” approach.

A. Few notes on the short term approach

We have designed and we are currently implementing a
testbed in which OpenFlow 1.0 equipment is used to support
coCONET ICN functionality (see [20][22]). As previously
mentioned, CONET framework provides that content-name is
carried by an IP option in the IPv4 header, but OpenFlow 1.0
equipment cannot parse IP options. To overcome this impasse,
the basic idea is to map the content-name into a tag, added in
the same header position that is used to transport TCP and
UDP port number. In general, border nodes need to
add/remove such tag when entering/exiting in/out a domain
composed by a set of cooperating nodes that use OpenFlow
technology. The tag will uniquely identify the content in such
domain, more details can be found in [22].

IV. EXTENDING OPENFLOW

Following the SDN approach, we consider an OpenFlow-
based ICN architecture in which the intelligence of the ICN is
de-coupled from the forwarding (of interest messages and
content data) and caching functions. These leads to an
architecture that is summarized in Figure 1 and that is
composed by two different planes, that are: i) a data plane with
the ICN nodes, the serving nodes (i.e. the content producers),
and the terminals (i.e. the content requesters/consumers); ii) a
control plane that includes both the Name Routing System
(composed by NRS nodes) and PKI for security. The two
planes communicate through an extended OpenFlow interface
described in this section. Such an extended OpenFlow interface
is used by the NRS nodes (acting as OpenFlow Controllers) to
control one or more ICN nodes (acting as OpenFlow
Switches). We believe that such architecture is very well suited
to support ICN and can help in overcoming some critical issues
of ICNs like scalability. For example, as pointed out in [17],
the size of the name-based forwarding table is a scalability
issue for ICN routers. In [10] (see also [21] for further details)
we argue that by keeping the full routing tables in the NRS
nodes and using the forwarding tables as route “caches”,
scalability can be achieved. The architecture depicted in Figure
1 based on the extended OpenFlow approach, is perfectly
suited to such scenario, where the routing intelligence runs in
the NRS, implemented as a set of OpenFlow controllers.

Starting from the experience in the design and implementation
of coCONET on one side and of the “short term” approach for
integrating ICN operations with OpenFlow on the other side,
we considered the more general problem of the evolution of
OpenFlow in order to naturally support ICN. We observe that
there are two directions of work for making OpenFlow
compliant with the ICN paradigm, that are: i) revision/
extension of the OpenFlow packet matching rules; ii) extension
of the OpenFlow protocol/API. Let us consider these two
aspects in the following two subsections.

A. Packet matching extension

The first direction, which is already followed by the
OpenFlow community, is to have a more flexible match in
terms of new fields and protocol types that can be successfully
parsed and matched with proper flow table entries. This is
needed in all the three possible approaches for an ICN: clean
slate ICN, overlay ICN, and IPv4 compatible layer 3 ICN, as in
CONET. In the clean slate ICN approach, a complete new layer
3 protocol and new packet format is used. Currently no
standard has been defined yet; however, whatever packet
format will be defined for the new ICN layer 3, OpenFlow will
need to match the new format and the corresponding header
fields. In the overlay ICN approach, ICN packet are
encapsulated into standard IP packet, for example as UDP
payload; in this case OpenFlow would need to further process
the incoming packet in order to elaborate the UDP payload to
match the ICN packet fields. Finally, in the CONET approach,
although standard IP packets are used, OpenFlow still needs to
match ICN fields inserted as IPv4 or IPv6 options header
fields. We will further examine this aspects later on in this
section.

ICN node

(OpenFlow Switch)

ICN node

Name Routing System

NRS node

(OperFlow Controller)

NRS node

Data plane

Extended OpenFlow Protocol

Terminal

Terminal
Serving node

PKICA2CA1

CA3

Serving node

NRS node

Extended OpenFlow Protocol

Figure 1 Information Centric Network based on extended OpenFlow

The definition of a new and more flexible match
mechanism, in terms of new fields and protocol types that can
be successfully parsed and matched by an OpenFlow compliant
switch, has been already envisaged as an important
requirement by the OpenFlow community, and it is already
under discussion. New flexible match mechanisms may in fact
help in both introducing new extensions to the current
supported protocols (of the TCP/IP stack) and probably
supporting future layer 3 and 4 protocols. Fortunately the
OpenFlow Protocol and the corresponding API already
consider the possibility of extending the current standard match
mechanism by defining new OpenFlow match types (called
OFPMTs) and the corresponding mach structure (i.e. the set of
fields that compose the match) [15]. Hence, one simple
extension could be to define a new match type that allows the
matching of the entire layer two payload, seen as an opaque bit
string, together with a variable-length matching mask. Whether
this simple matching method works with an ICN packet format
or not, depends on the particular ICN protocol considered. In
case of CONET, this mechanism is sufficient to properly parse
the CONET packet header and to make the flow tables able to
forward the packet. Note that in case of CONET, due to the
fact that rather than defining a new packet format, it exploits IP
(v4 or v6) options field, it would simply require some matching
rules against such IPv4 and IPv6 header fields. Unfortunately,

at the moment we are writing this contribution, the current
OpenFlow protocol (version 1.1) [15] does not support packet
match based on IP options fields. However we believe that this
will available in standard mode in the next OpenFlow release.

B. OpenFlow protocol extension

However, flexible match, allowing the parsing of new
packet formats, is just one step in the direction of supporting
ICN, but it is not enough. In fact, having variable match allows
the redirection of ICN packets somewhere, but does not fulfill
all the functional requirements of an ICN node, like reactive or
proactive caching, intelligent forwarding-by-names of interest
messages, security, and other functionalities. This leads to the
second direction of work that has a deeper impact on
OpenFlow, as it concerns the support by OpenFlow of new
ICN specific methods. In fact, in order to fully implement an
ICN paradigm as described in the previous sections, the
OpenFlow API should be changed or extended in order to
better handle the concept of “content” and to support new
content-related methods, such as key management, caching and
routing-by-name, and so on. The new set of ICN-specific
operations that can be supported by an ICN node and by the
corresponding control protocol, can be classified as: “content-
related”, “routing-related”, and “security-related”, hereafter
summarized.

1) Content-related operations

Interest messages handling – An ICN node is requested to
handle incoming content interest messages that have to be
properly routed based on a forwarding-by-name strategy (see
later). At this phase the node could also need to keep track of
requested contents (for example if “Pending interest” state is
used to forward back the content data) or it may want to keep
track of the requests to optimize the processing of further
interest requests for the same content received from other
interesting end-nodes. The ICN node could keep track locally
or delegate such operation to an external controller. Moreover,
also in case of stateless interest processing (no information is
maintained for the already processed interest requests), in order
to better operate caching decisions, the node may still want to
inform the controller about the received request. This may be
performed by notifying the controller on a per-request basis
(every time a new interest message arrives) or on a batch basis,
sending to the controller some periodic summary information
reports about the requested contents. In this way the controller
can build ordered lists of most popular content, useful also for
the following caching decision.

Caching decisions – An ICN node may provide caching
functionality for achieving a native, in-network caching
function. This may drastically improve multicast content
distribution (when the same content has to be distributed from
one source to multiple destinations), and, more in general, it
allows a more efficient content delivery in both fixed and
mobile environments [16] (when the same content is
successively requested by to other destinations). Due to the
large amount of packets (and contents) that a node is requested
to forward, it is expected that a node decides to cache only a
portion of the overall forwarded contents. Such decision of
which content is to be cached and which not, could be made

locally, inside the node or, more likely, by relying on a
logically centralized controller. A further decision related on
caching, is on which content has to be removed from cache
when the cache is full and new content has to be added. Also
this decision could be delegated to an external controller.

Caching notification – It could be expected that the
controller is notified when some content has been cached by a
node. This in useful order to have an updated map within the
controller of the availability of contents.

Proactive caching – The controller can proactively push
some content in an ICN node, therefore anticipating the
“automatic” caching procedures that are the only solution if a
purely distributed approach (i.e. without OpenFlow) is used.
These “proactive push” approaches could prove very useful for
example for distribution of live content in ICN (e.g.
audio/video real-time streaming).

2) Routing-related operations

An ICN adopts an addressing scheme based on names,
which do not include references to their location; as
consequence, interest messages have to be routed toward the
closest copy of the content, based on a “destination” content-
name. The main routing-related operations are:

Forwarding-by-name – When receiving a new interest
message, the ICN node is expected to forward it to a next-hop
node on the basis of the targeted content name. This
forwarding operation is performed through a proper name-
based Forwarding table present within the ICN node that maps
possible content names to the corresponding next-hops. The
insertion of new entries in such routing table is in charge of a
logic entity that in our architecture is mapped onto the
controller. When a new content is requested with a name that is
not in the local forwarding table, the node requests the name-
to-next-hop lookup to the controller. If a route is found and
returned, this is stored into the forwarding table. Particular care
should be taken when the forwarding table is full and a
previous entry has to be deleted and replaced by the new one.
Such decision may be assisted by the controller (for example
through some priority information), or can be autonomously
taken by the node on a basis on fixed and simple rules (e.g. “do
remove the oldest entry”).

Forwarding table management – Such forwarding table is
dynamically updated each time a name-to-next-hop is
requested to and returned from the controller. However the
controller is expected to have the possibility to populate and
modify the forwarding table according to some upper level
strategy (for example by distributing the forwarding-by-name
information for the most popular contents, or for contents that
require some form of prioritization). Such operations should be
controller-driven and they can be executed asynchronously
with respect to the incoming packet events.

Forwarding table exportation – In case the controller does
not keep a copy of the routing table of each node attached to it
(e.g. for scalability reason), it is required that the ICN nodes
could send to controller their current routing-by-name
information stored in the table.

3) Security-related operations

An ICN node is expected to exploit security information
embedded in the content to avoid the diffusion of fake versions

of contents and to protect the content, as opposed to exploit
connection-based or application-based security [18].

Security enforcement – Contents (or content chunks, like in
CONET) are cryptographically protected in order to assure
content (and content generator) authentication and data
integrity. This security service is provided through digital
signature and can be verified through the public key associated
to the private key of the content (or of thecontent generator).
Every ICN node should verify such signature before
forwarding the content toward the interested end-nodes, in
order to protect the network against DoS or other attacks. Such
function in turn requires that the ICN node obtain the public
key associated to the content. One solution can involve the
NRS node (that acts as controller) that may provide the public
key together with routing information (see next point). Other
possible solutions could be to use identity-based cryptography,
or self-certifying names. The investigation on what solution
better fits the ICN paradigm and requirements is out the scope
of this paper. The CONET framework can support all these
solutions.

Key management and distribution – In case some human
readable names are used, and an association between names
and public keys is required, this should be executed by the
controller NRS node, according to a proper key management
mechanism (e.g. through the use of a public key infrastructure -
PKI, the use of a Web of Trust, or other key management
mechanism). The result of such mechanism should let the NRS
node to be aware of the correct name-to-key associations and
be able to pass this information to the ICN nodes.

Key revocation – In parallel to a proper key management
and distribution mechanism, it should be implemented also a
key revocation mechanism that allow the revocation of
compromised or withdrawn keys. A part of the properly
selected mechanism, it will still in charge of the NRS node to
communicate such revocation information to the ICN node.

4) Analysis of operations

According to the previous description, all ICN-related
operations that involve both the ICN and NRS nodes can be
driven: i) by the NRS node, on the basis of a control logic; this
happens asynchronously respect to the ICN node, or ii) by the
ICN node, when a new networking event happens, e.g. when
interest or content packet arrives. In the former case the
operation may start in correspondence of an internal timeout or
in accord to a control logic executed in the control plane
between different NRS nodes. In the latter case instead, the
operation can be driven by six different type of packet events at
the ICN node:

- An interest message arrives to the switch - no route to
content (& no content in cache) is present. Hence these
following operations are required: Handling of content
interest request, Name lookup, Key distribution.

- An interest request arrives to the switch – a route is
available but no content is cached. Only this following
operation is now executed: Handling of content interest
request.

- An interest request arrives to the switch: content available.
The request can be fulfilled and only the following
operation is executed: Handling of content interest request.

- A data packet arrives to the switch. The packet is forwarded
to all the destination (that requested such content), and the
following operation is executed: Caching decision.

- A full chunk of content arrives to the switch. In addition to
the operations executed for data packets, the following
operation is required: Security enforcement, Caching
notification.

According to the above operations, a NRS node (OpenFlow

Controller) should be able to command the ICN node
(OpenFlow Switch) to operate the following atomic ICN-
related tasks:

- (C1) Add/remove a route entry in the interest routing table;
- (C2) Add/remove a chunk of content in the switch cache;
- (C3) Add/remove a key for security checks in the switch

key repository;
- (C4) Add/remove an entry in the Pending Interest Table.
- (C5) Configure/change caching policy.
- (C6) Query for caching capability.

Moreover, if the ICN capable node is used to distribute live
content:

- (C7) Add/remove an entry in a static Pending Interest Table

Likewise the ICN node should be able to query for name-
lookup, notify events, and update state information as follows:

- (S1) query for a name-lookup and routing information;
- (S2) query for a content-name public key;
- (S3) notify of different content related events (e.g. arrival of

an interest message that does not require name lookup,
content chunks completed, failure in authentication, etc).

Such new methods should be properly encaspulated in the

following three standard OpenFlow types of messages:

controller-to-switch – initiated by the controller and used to
manage the state of the switch; they may or may not require a
response from the switch; the following methods are supported:
Feature, Configuration, Modify-State, Read-State, Packet-out,
Barrier. New Modify-State messages should be defined for C1-
4, and C7. New Configuration message should be defined for
C5. New Feature message should be defined for C6.

asynchronous – initiated by the switch and used to update
the controller of state changes or network events; the following
main methods are supported: Packet-in, Flow-Removed, Port-
status, Error. New Packet-in messages should be defined for
S1-2. A new asynchronous method should be introduced in
order to handle S3 non-error event notification.

symmetric – initiated asynchronously by either the switch
or the controller and sent without a solicitation by the other
party; the following methods are defined: Hello, Echo (and
Experimental). No specific new symmetric message is required.

V. IMPLEMENTATION ACTIVITIES AND PLANS

We are currently implementing the proposed OpenFlow-
based ICN architecture in the OFELIA project testbed [14],
pursuing both the “short term” approach that was only
mentioned in section III and the “long term” approach which

was extensively considered in previous section. Following the
“short term” approach (i.e. using existing OpenFlow switches),
the goal of the implementation is to show how Information
Centric functionality can be realized on top of OpenFlow.
Following the “long term” approach (i.e. assuming OpenFlow
switches that are natively ICN enabled) we have the more
ambitious goal of realizing an ICN capable SDN network that
can be exposed to experiments.

The implemented architecture is the one described in the
previous sections, using the content protocol and packet format
described in [11]. For the ICN nodes (both border and internal
nodes) that include forwarding and caching functionality we
use Linux boxes with Open vSwitch. We are modifying the
current Open vSwitch implementation in order to adapt it to
our architecture. In particular the main changes/extensions that
we are introducing in Open vSwitch are: i) allowing the
forwarding based on a forwarding-by-name strategy (proper
new forwarding tables and table management mechanisms); ii)
implementing the OpenFlow extensions described in section
IV, in order to support content-related, routing-related, and
security-related operations. Caching functionality are
implemented through a new caching unit, realized in the same
Linux node, including both content storage and retrieval
functions and caching control logic. The caching unit
communicates with the controller (NRS node) via the ICN-
modified version of the OpenFlow protocol. For the controllers
(NRS nodes) we use Linux boxes with the nox [13] OpenFlow
Controller. OpenFlow 1.0 has been used as starting version for
the implementation/modification of the control protocol
between NRS node (acting as OpenFlow controller), the ICN
nodes (both border and internal node), and cache unit.
According to the timeline of the OFELIA project our plans are
to release the “short term” implementation by late spring 2012
and have a first “long term” release by late summer 2012.

VI. CONCLUSIONS

In this paper we have discussed some issues related to the
application of SDN concepts to Information Centric Networks.
We are considering how OpenFlow architecture and protocols
can be modified and enhanced to support ICN. Our work is at
early stage and we have reported here our first analysis of the
ICN functionality that can be offered on a controller/switch
interface based on the OpenFlow architecture. Based on these
first results, we believe that the application of SDN concepts to
ICN is feasible and can bring important benefits. We think that
the SDN research community should start discussing the
support of ICN, this work is a contribution to the discussion.

REFERENCES
[1] V. Jacobson, D. K. Smetters, J. D. Thornton, M.F. Plass, N.H. Briggs,

and R. L. Braynard, “Networking Named Content”, Fifth ACM

International Conference on emerging Networking EXperiments and
Technologies (CoNEXT), 2009.

[2] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim, S.
Shenker, and I. Stoica. “A Data-Oriented (and Beyond) Network
Architecture”. Proc. of ACM Sigcomm. August 2007.

[3] European Future Internet Portal, http://www.future-internet.eu/

[4] The CONVERGENCE EU FP7 project, http://www.ict-convergence.eu

[5] The Named-Data Networking (NDN) project, under NSF Future Internet
Architecture (FIA) program, http://named-data.org/

[6] The PURSUIT EU FP7 project, http://www.fp7-pursuit.eu/

[7] The SAIL (Scalable & Adaptive Internet Solutions) EU FP7 project,
http://www.sail-project.eu/

[8] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation
in Campus Networks”. White paper. March 2008 (available at:
http://www.openflow.org).

[9] http://wiki.tools.ietf.org/group/irtf/trac/wiki/icnrg

[10] A. Detti, N. Blefari-Melazzi, S. Salsano, and M. Pomposini. “CONET:
A Content-Centric Inter-Networking Architecture”, Proc. of ACM
Sigcomm – ICN 2011. August 2011

[11] A. Detti, S. Salsano, N. Blefari-Melazzi. IPv4 and IPv6 Options to
Support Information Centric Networking. Internet draft (draf-detti-
conet-ip-option-02). November 2011.

[12] http://www.openflow.org/

[13] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and
S. Shenker, “NOX: Towards an Operating System for Networks”, ACM
Computer Communication Review. pp. 105-110. July 2008

[14] A. Köpsel and H. Woesner, “OFELIA – Pan-European Test Facility for
OpenFlow Experimentation”, Lecture Notes in Computer Science. Vol.
6994/2011. 2011

[15] B. Pfaff, et al., “OpenFlow Specification”, Version 1.1, February 28,
2011, http://www.openflow.org/documents/openflow-spec-v1.1.0.pdf

[16] K Katsaros, G. Xylomenos, G. C. Polyzos: “MultiCache: An overlay
architecture for information-centric networking”, Computer Networks,
Elsevier, Volume 55, Issue 4, 10 March 2011, Pages 936-947

[17] Diego Perino, Matteo Varvello, "A reality check for content centric
networking", ACM SIGCOMM Workshop on Information Centric
Networking (ICN), Toronto, Canada, August 2011

[18] D. Smetters, V. Jacobson: “Securing Network Content”, PARC technical
report, October 2009

[19] S. Oueslati, J. Roberts, N. Sbihi: “Ideas on Traffic Management in
CCN”, Information-Centric Networking, Dagstuhl Seminar

[20] N. Blefari-Melazzi, A. Detti, G. Mazza, G. Morabito, S. Salsano, L.
Veltri: “An OpenFlow-based Testbed for Information Centric
Networking”, Future Network & Mobile Summit 2012, 4 - 6 July 2012,
Berlin, Germany

[21] N. Blefari Melazzi, M. Cancellieri, A. Detti, M. Pomposini, S. Salsano,
“The CONET solution for Information Centric Networking”, Technical
Report, December 2011, http://netgroup.uniroma2.it/CONET/

[22] G. Mazza, G. Morabito, S. Salsano, “Supporting COntent NETworking
in OpenFlow”, Technical Report, November 2011,
http://netgroup.uniroma2.it/CONET/

[23] http://www.ccnx.org/

