
Supporting RSVP in a Differentiated Service Domain:
an Architectural Framework and a Scalability Analysis

Andrea Detti (*), Marco Listanti (**), Stefano Salsano (*), Luca Veltri (**)

(*) CoRiTeL (**) INFOCOM Dept.,
Consorzio di Ricerca sulle Telecomunicazioni University of Roma "La Sapienza"

Via di Tor Vergata, 135 Via Eudossiana, 18
00133 Roma (Italy) 00184 Roma (Italy)

Abstract
This paper analyzes a framework to offer reservation of
resources and QoS guarantees according to the Resource
Reservation Protocol (RSVP) paradigm in a network cloud
that supports a differentiated services architecture. The key
elements are: intelligent Edge Devices; a flow admission and
resource allocation method involving an Admission Control
Server; “simple” core routers based on the differentiated
services model. The main functionality of a client/server
protocol between the Edge Devices and the Admission
Control Server, called Simple Admission Control Protocol, is
described. The proposed framework is referred to as
Admission Control Server based Resource Allocation.
Scalability is analyzed and compared with RSVP approach.

1. Introduction
The support of QoS is a key challenges for the evolution of
the Internet. Several players in the Internet arena are
interested in the QoS support. For example end users would
like to send and receive their real time traffic (audio, video)
with good quality; network provider would like to provide
value-added services besides the pure transport of best effort
traffic; content providers are eager to have the chance to
distribute their video and audio streams over the Internet.
The integrated services (int-serv) model [1] has been
proposed by the IETF to cater for the support of Quality of
Service in the Internet, but it seems that this model will not
scale for network topologies bigger that few local routers.
The RSVP protocol has been designed to support the int-serv
model. Each “QoS flow” is identified within all routers in
the path from the origin to the destination, which provide the
required resources. The performances of backbone routers
are severely affected by this “per-flow” approach.
The differentiated services (diff-serv) model ([2,3]) is now
under study within IETF. It is a simpler approach, which
should not suffer of scalability issues and should scale up to
the core routers. The basic idea is to support a set of traffic
classes providing a different service to each class. The
service model is still under discussion: which kind of
services can be provided, which levels of guarantees and so
on.
The diff-serv approach seems very promising, nevertheless it
cannot cover all the needs that led to define the int-serv
model and the RSVP protocol. For example, an important
difference between the int-serv and diff-serv model is that
the former one takes care of end-to-end behaviors in its
intrinsic definition, while the latter basically specifies “local”
behaviors which must be somehow composed to achieve end-
to-end significance. It is therefore interesting to consider
solutions for the interoperability of the two approaches. The
basic idea, as described in [4] is to have “access” networks

working with RSVP and “core” networks based on diff-serv.
Section 2 discusses some issues of the differentiated services
model and clarifies the diff-serv network features upon
which our framework relies. Sections 3 and 4 provide an
overview of the architectural framework. Section 5 presents a
scalability analysis.

2. Basic concepts for the interworking of diff-
serv and RSVP
Both int-serv and diff-serv approaches go beyond the best-
effort service model and envisage a “service profile”, which
defines a kind of agreement between the customer and the
network provider. The service profile can be classified
according to the spatial granularity and to the temporal
flexibility. From the point of view of the spatial granularity,
the RSVP-like approach gives the maximum of detail: the
flow to which the agreement applies is fully specified from
the source point to the destination (and even through its
whole path from source to destination). One of the
advantages of the differentiated services model is that the
service profile can be expressed in a coarser way than in the
integrated services model. One customer could simply
require that all his/her traffic (or a given fraction of this
traffic) would receive a better service (in term of loss
probability or transport delay) than common best effort
traffic. From the point of view of the temporal flexibility,
again the RSVP model foresees dynamic agreements which
can be set up and released on demand, starting from the need
of the user applications (e.g. real time video and audio
transport over the Internet). The diff-serv approach basically
supports more static agreements, where the duration of the
agreement is defined on a contractual basis between the
customer and the provider. This contract is called “Service
Level Agreement” (SLA) in the diff-serv terminology.
The use of “spatially coarse” and temporary “static” service
profiles seems one of the most interesting applications, at
least in the short term, of the differentiated services
approach. The SLAs usually specifies the amount of traffic
of a given class that the customer is allowed to send to the
network, thus allowing policing at the edge of the network.
The network provider will take a set of possible actions,
typically at the network provisioning level, to ensure that
enough resources are available for the set of active SLAs.
The drawback is that it is not simple, if not impossible, to
give quantitative service assurances and achieve high
network utilization if the SLAs are coarse in their nature (see
also [5]).
When the SLA is known with a more precise spatial
definition it is simpler to provide deterministic assurance on
the given QoS. Let us assume that a SLA specifies the

origin, the destination and the amount of the traffic that
must receive a “high quality” service. The network provider
can therefore provide adequate resources on the
corresponding path where it is needed, and the waste of
resource is not anymore a problem. The current IETF work
on the differentiated service model is considering this
approach under the name of Expedited Forwarding (EF)
service. It gives a quantitative bandwidth assurance allowing
the support of “virtual leased lines” over an ISP network.
The EF service is described in [6], under the name of
“Premium” service.
It is conceptually simple to provide the EF service. For each
router in the path the capacity on each outgoing link
allocated for the EF class should always exceed the rate at
which the admitted customers can inject traffic. Moreover
the occupation of each link due to the EF packets should be
reasonably low to make the queuing delay negligible.
If the agreement is static, the network provider will typically
perform network management actions to configure its
network in order to provide the required resource. If the
agreement is dynamic, more sophisticated approaches need
to be taken into account. In particular dynamic admission
control and dynamic resource allocation mechanisms in the
diff-serv clod must be defined and implemented.
The support of dynamic SLAs for the EF class in a diff-serv
cloud enables the provisioning of RSVP based services over
a diff-serv cloud. Each RSVP reservation request can be
mapped in the establishment of a dynamic diff-serv SLA.

3. Architectural framework
In Figure 1 the general architecture of our framework is
shown. The interior of the network is composed by a set of
routers that support the diff-serv paradigm. At the border of
the network a set of Edge Devices (ED) allow the
interworking with RSVP. RSVP messages and related state
information are only handled in the EDs, at the network
boundary. The internal routers simply ignore RSVP control
messages, forwarding them as IP packets.

Admission
Control
Server

ED

ED

ED ED

ED

ED

DS-RDS-R

User flows

SACP protocol

Diff-serv
cloud

RSVP relationship

R

Host R

RSVP based
access

networks

ED: Edge Device
DS-R Diff-Serv Router
R: RSVP capable router

R

RR

R

Figure 1: Architectural framework
The admission control procedure for the diff-serv network is
performed with the help of an Admission Control Server
(ACS). The Admission Control Server functionality is
logically centralized, and for simplicity in this paper we will
consider a single, physically centralized ACS within a diff-
serv domain. In a real implementation, the Admission
Control Server functionality could be split among a set of
coordinated ACSs, for both reliability and load sharing

reasons. Anyway, the required enhancements to support a
distributed Admission Control Server (i.e. hierarchies of
ACSs, synchronization among ACSs) are beyond the scope
of this paper. The ACS operate only at the level of a single
Internet Service Provider / autonomous system.
The ACS keeps the actual resource allocation of the links in
the diff-serv cloud. An ingress ED explicitly asks the ACS
for the resources on the path towards an egress ED. If the
resources are available, the ACS acknowledges the request
and updates its view of the resource allocation. The resources
will be explicitly de-allocated by the ED sending a
corresponding message to the ACS. We called this
mechanism Admission Control Server based Resource
Allocation (ACS-RA). We propose a protocol between the
EDs and the ACS to support this mechanism, called Simple
Admission Control Protocol (SACP).
As shown in Figure 2, at the user plane level the ingress ED
receives the IP packets related to a given flow, maps them
into the appropriate diff-serv class and forwards them into
the diff-serv network towards the Egress ED. The diff-serv
routers within the cloud forward the IP packets toward the
Egress ED, according to diff-serv based scheduling. In the
same figure, the control plane establishment procedure is
shown. The ingress ED receives RSVP path messages from
the RSVP aware sources, stores “PATH state” and forwards
the messages towards the destination. The Egress ED will
interpret them and forward them toward the destination. The
same mechanism applies to RSVP RESV messages, which
will be received by the Egress ED and sent to the ingress ED.
Upon the reception of the first RESV message related to a
given flow the ingress ED will use the SACP protocol to
perform the flow admission control procedure with the help
of the ACS. If the admission procedure is successful, the
ingress ED will send the RESV message towards the sender
host.

ACS

DS-R

Control Plane

DS-R

Ingress ED

Diff-serv
cloud

Egress ED
RSVP Path

RSVP Resv

RSVP Path

RSVP Resv RSVP ResvRSVP Resv

RSVP Path

SACP
Admission Req.

SACP
Admiss. Resp.

DS-R

IP packet flow

U s e r P la n e

DS-R

Ingress ED

Diff-serv
cloud

Egress ED

Classifier,
policer,
marker

Figure 2: Support of RSVP on a diff-serv network
Let us now consider the mechanisms and information needed
for resource allocations in the ACS-RA framework. In a
RSVP capable network the set-up, maintaining and tear-
down of flows (soft states) are managed directly by all
routers encountered along the path followed by the packets
belonging to the flow. On the contrary in the ACS-RA
environment, the admission control and resource reservation
are managed by the Admission Control Server, externally to
the routers.
To provide a suitable resource reservation, ACS should know
the network state (i.e. the link bandwidth occupations) and

the end-to-end path followed by each established flow.
A naïve approach could be based on a static knowledge of
network topology (assuming that each flow between a pair of
ingress and egress EDs follows a prefixed path).
Unfortunately, the topology of the network and the paths
followed by the packets can dynamically change due to
events like failures, load balancing, adding/removing
hardware. All these considerations lead to the observation
that a crucial task is how to dynamically get route path
information (route discovery). There are two different
approaches:
One approach (centralized route discovery) foresees that the
ACS monitors the network topology. Typical Network
Management tools and protocols (e.g. SNMP) could be used
to this purpose. Then, during an admission request an ED
information about the pair of ingress and egress point passes
to the ACS and the ACS calculates the route based on this
information. Another approach (ED based route discovery)
foresees that each ED evaluates the route towards the egress
point and communicates it to the ACS in the admission
request. The ED should constantly monitor this information
for the set of the active flows. The “refresh” rate of this
information should be at least comparable with the average
refresh rate of RSVP messages. Different mechanisms can be
used. The traceroute utility is an application that performs
this task (see [7], chapter 3). To record a route with N hops,
2N messages are needed, with a quite lengthy procedure.
Approaches have been considered to improve this behavior,
for example the procedure described in RFC 1393 [8] needs
only N+1 messages and it is faster. Another possibility is the
use of the IP option “Record Route”, which requires each
router in the path to record its address in a field of the IP
header. The Egress ED should read this information and
send it back to the ingress ED.
Both approaches assume in the diff-serv cloud a “slowly”
changing network topology and routing, and that all packets
of the same flow follow the same route through the cloud. If
the core routers implement load sharing (i.e. a router can use
different outgoing links for the same destination), this could
be realized taking into account the originating address in the
selection of the outgoing link.

4. The Simple Admission Control Protocol
The SACP is a client/server protocol, which allows a client
to logically reserve/release resources that are under the
control of a server. The SACP protocol relies on TCP, which
provides a reliable transport of SACP messages. Two basic
message request/response pairs are defined: the admission
request/response and the release request/response.
The admission request message (ED Æ ACS) contains the
following parameters:
− Request ID
− Ingress point (IP address)
− Egress point (IP address)
− (Optional) Route Information (list of IP addresses)
− Requested Resource (e.g. traffic class, bandwidth)
The admission response message (ACS Æ ED) contains the
following parameters:
− Request ID (the same ID contained in the admission
request)
− Response (ACK/NAK)
The release request (ED Æ ACS) and release response
(ACS Æ ED) messages respectively carry the same

parameters of the admission request and release messages.
The Request ID is only used to correlate a request with the
response. No correlation exists between the admission
request and the release request.
Other messages are needed for synchronization and error
recovery procedures, for example living (ED Æ ACS),
resync request (ACS Æ ED).
In the proposed ACS-RA framework, the Admission Control
Server keeps information at an aggregate level (per link, per
Edge Device), while per flow information is only stored in
the Edge Devices. The EDs keep per-flow “soft” state, which
is created with the first RSVP RESV message and must be
constantly refreshed by RESV messages. The ACS works
with “hard” state, that is a resource is allocated once with the
SACP admission request message until explicitly de-
allocated with a release request message. This approach has
a positive impact on the scalability, as it reduces the
interactions of EDs with the ACS.
An overview of the procedures performed in the EDs and in
the ACS, and of the supporting data that must be stored in
these elements is given hereafter. To reduce the number of
options, from now on it is assumed that the ED based route
discovery approach (see section 3) is used.
Figure 3 shows a conceptual diagram of the ED control
plane functionality related to the handling of RSVP
messages and to the admission control procedures.

to-from Admission Control Server

Timer

Timer

SLA
data

ED
coordinator

Route
data

A
d

m
is

s.
 r

eq

A
d

m
is

s.
 c

fm

Request, update, release, etc.

R
e

le
as

e
 r

eq

R
e

le
as

e
 c

fm

Route evaluation
procedure

Resv

Path

L
iv

in
g

D
iff

 S
er

v
ro

ut
er

s

O
th

e
r

E
D

s
in

 t
he

 D
iff

-s
er

v
cl

o
ud

 a
n

d
ro

ut
er

s
in

 th
e

R
S

V
P

 a
cc

es
s

n
et

w
or

ks

Internal interface toward
policer, marker, scheduler

modules

Routing path
request, answer

Soft states

Figure 3: Edge device control plane
The ED_coordinator module handles the RSVP procedures,
correlating them with the admission control procedure
performed by means of the SACP; it handles the SACP
procedures interacting with the Route_data module and the
SLA_data module. The Route_data module must provide
and store route path data. The Route_data can be seen as
cache memory that stores the paths from the ingress ED to
the others EDs. This cache is refreshed, using the route
discovery procedure, periodically to maintain the consistence
between the information stored and the actual route path.
The SLA_data module stores, the flow “soft” state
information (Session, Flow_spec, Filter_spec) and its routing
path into the diff-serv cloud.
When the ED receives a RSVP RESV message related to a
new flow, it sends an admission request message to the

ACS. According to the admission response message, the ED
forwards either a RSVP RESV message towards the sender
or a RSVP RESV_ERR message towards the receiver
otherwise. If a “refresh” RSVP RESV message is received,
only the state in the SLA_data is refreshed. When a RSVP
RESV_TEAR message is received, or a timer related to a
reservation is expired, a release request message is sent to
the ACS. When a change in the route path of an active flow
is detected, the resources on the old path must be released
sending a release request and new resources must be
allocated sending an admission request.
The ACS functionality (Figure 4) can be decomposed in two
modules: ACS_processor and RA_data (Resource Allocation
data).
The RA_data module represents the database of the
resources to be allocated. It has a link usage array in which
each link within the diff-serv cloud is associated with a
global link information (i.e. total bandwidth and current
available bandwidth) and a vector of link usage information.
Each link usage information is related to a specific ED and
stores the amount of resources used by the ED over the link
(Figure 5).

RA
data

Timer

ACS
processor

Living

Admission req

Admission response

Release req

Release resp

Links usage array
(hard state)

Figure 4: Admission Control Server

link

E
D

Link usage in fo rmat ion

Globallinkinformation
Figure 5: Link usage array vector

When an admission request message is received, the
ACS_processor module compares the Requested Resource
parameter with the available bandwidth on each link of the
Route Information parameter. According to the result, it
accepts or refuses the incoming request and sends the
admission response message to the requesting ED. If the
request is accepted, the ACS_processor updates the links
usage array. The resource is allocated until explicitly de-
allocated by a release request message.
The main reason to store the resource allocated by each ED
is the handling of failures in the edge devices. The crash of
an edge device causes the inconsistency of the links usage
array with the real links usage. For this purpose, if there is
no other activity, the ED periodically sends a living message
to the ACS. If the ACS detects that an ED is not working
anymore, it will release the resources that were allocated by
the broken ED and clear the associated link usage

information.
When the ACS suspects that the synchronization of the data
related to a single ED can be lost, it can request the ED to
send admission request messages for each active flow in the
ED. The resync request message is used to this purpose.

5. Scalability analysis
In this chapter we investigate the scalability of ACS-RA in
comparison with RSVP approach. It is important to remark
that the main advantage of a ACS-RA is the simplicity of the
user plane implementation inherited by the diff-serv
approach. Therefore, as far as the user plane is concerned the
ACS-RA behaves far better than a RSVP based network. For
this reason no further investigation is provided on the
comparison of the user plane performances.
On the other hand we will concentrate on control plane
performance evaluation, trying to compare processing load
and memory requirement in both approaches. It is important
to note that in this comparison we will assume a single
centralized ACS for a given diff-serv cloud. This is obviously
the worst case for ACS-RA architecture; nevertheless we will
show that it scales better than an RSVP approach with
regard to control plane too.

5.1. Memory requirements

Let us compare the memory requirements in the two
approaches. We will evaluate first the global amount of
memory needed in all network elements, as an indication of
the overall complexity. Then the memory allocated in the
most loaded network elements, which constitute possible
bottleneck, will be compared.
We denote:
− FSI: flow state information;
− RPI: routing path information in the diff-serv cloud;
− NF: number of flows in the diff-serv cloud.
− PL: path length, i.e. the mean number of routers along
the path of a flow in the diff-serv cloud, including ingress
and egress EDs.
− NL : number of links of the diff-serv cloud.
− LSI : link state information.
− NED: total number of EDs in the diff-serv cloud.
We indicate with [x] the number of bytes used to store the
information x.
In RSVP for each active flow the FSI is stored in all routers
along the path; therefore the total amount of memory is:
PL.[FSI].NF (1)
For ACS-RA the memory used in the EDs is:
NF.([FSI] + [RPI])
while the memory used in the link usage array is:
NL.NED.[LSI]
therefore the total amount of memory is:
NF.([FSI] + [RPI]) + NL.NED.[LSI] (2)
Although the total memory occupation of both RSVP and
ACS-RA is linear with the number of flows, ACS-RA has
smaller slope than RSVP since ACS-RA flow state
information is stored only in edge devices instead of in every
router along the path. In ACS-RA we notice a constant term
(not depending on NF) which takes into account ACS
memory. This term grows according to the product between
the number of links (NL) and the number of EDs (NED). The
number of links, according to the network topology used in

the next paragraph, is nearly proportional to the number of
EDs therefore the product NL.NED is a quadratic function of
the number of EDs. Increasing the number of EDs, the
constant term grows therefore the “trade-off point” shifts to
the right as shown in Figure 6.
We consider a reference network topology composed by
hierarchical d levels of routers. There is a first level of N1
full meshed routers forming a backbone area, whereas the
other routers are organized in N1 tree topologies having
backbone routers as their roots. We indicate with d the tree
depth and with α the tree fan-out. The d-level routers are
EDs.
In the example shown in Figure 7 we represent a topology
with α=N1=5 and d=2.
For a given ingress ED, we define “distance i EDs” the set of
EDs that are reachable exactly ascending i steps inside the
network with i≤d. If we indicate with D(i) the number of
“distance i EDs”:

D(i) =


 (α-1)αi-1 for i < d

(Ν1-1)αd-1 for i = d

Number of flows

B
yt

es

ACS-RRA with k1 E
Ds

RSVP w
ith

 k 2
 E

Ds

RSVP w
ith

 k 1
 EDs

T
ra

d
eo

ff
 li

ne

ACS-RA with k2
 EDs

k2

k1

Figure 6: Example of memory occupation with k2 > k1

In the example shown in Figure 7, D(1) = 4 and D(2) = 20.
Moreover, according with the reference network topology:
− number of h level routers: N1• h-1
− number of routers along the way from an ingress ED to
a distance i egress ED (path length):

PL(i) =


 2i+1 for i < d

2d for i = d
− total number of links:

2

)1(

12

)1(11
1

11

2

1
1

−
+

−
−=

−
+= ∑

=

− NN
N

NN
NNL

dd

i

i

α
ααα

Assuming that flows entering in a ED are equally distributed
towards all other EDs, the mean path length is:

∑

∑
−

=

−

=

⋅
−

++⋅






−
=

=⋅
−

+⋅






−
=

1

1

1

1

2
1

)(
)12(

1

)(

)(
1

)(
)(

1

)(

d

i

d

i

d
NED

dD
i

NED

iD

dPL
NED

dD
iPL

NED

iD
PL

(3)

At last, we evaluate the number of flows crossing each k-
level router, FpRk. Assuming that n flows enter in each ED
and supposing they are equally distributed among all egress
EDs:

FpRk =
n.ad-k
NED-1.(2 NED-ad-k - ad-k-1) 1≤k≤d-1

for backbone routers FpR is:

FpR1 =
n.ad-1
NED-1.(2 NED-ad-1 - ad-2) ≅

2.n.NED
N1

To give some numeric results, we use the previous formulas
in a reference network topology with depth d=3 and
α=N1=5. We assume the following data size for the
information to be stored:
− [FSI] : for IP version 4 unicast flows with
guaranteed services FSI is composed by the following field:
- Session: 8 bytes (destination info);
- Flow_spec: 44 bytes (Reservation information);
- Filter_spec: 8 bytes (source info);
− [RPI] : list of IP addresses in a routing path (4
bytes each);
− [LSI] : assumed of 32 bytes.

First level

Second level

Figure 7: Reference network topology with α = 5 and d =2
Figure 8 shows the memory occupation versus the number of
flows. We notice a trade-off point when there are
approximately 9 flows per ED.

0 4 8 12 16 20 24 28 32 36 400

2

4

6

8

10

12

14

16

18x 105

RSVP

Admission Control Server
Edge Devices

ACS-RA

Number of flows for edge device

B
yt

es

Figure 8: Example of memory occupation of the reference
network topology with α=5 and DL=3

It is interesting to compare the global memory occupation for
a single flow. In Figure 9 we notice that while for RSVP this
value is constant, in ACS-RA these value decrease as long as
the number of flow grows. This behavior is due to the

sharing of ACS memory by all flows and it shows a better
scalability of ACS-RA than RSVP when the number of flows
for ED increases.

5.1.1. Network bottlenecks

Using the previous results, we compare network bottlenecks
of both models. For this reason we selected backbone routers
(for RSVP model) and ACS (for ACS-RA model) as network
elements requiring the allocation of the biggest amount of
memory.
Let us consider the memory needed in a backbone router and
in the ACS for the following target network topologies:
a) α = N1= 5 , d = 3 (125 EDs)
b) α = N1= 8 , d = 3 (512 EDs)
c) α = N1= 10 , d = 3 (1000 EDs)
When network size grows, the tradeoff point shifts versus a
great number of flows for ED but however Figure 10 shows
that, around to 500 flows for ED, RSVP backbone routers
and ACS need an amount of memory which have the same
order of size. It is necessary remember that in RSVP case
several backbone routers are required while in ACS-RA case
only one management device (ACS) is needed.

5.2. Work load in RSVP and ACS-RA models

In this paragraph we keep on the RSVP and ACS-RA
comparison taking into account the total amount of work that
they have to perform during the set-up, maintaining and
tear-down of flows. The total amount of control load and a
per-system load are analyzed. The aim of the following
analysis is simply to give an idea of the work load comparing
the two strategies; a precise analysis of the load within each
router or ACS-RA device is out of the scope of this paper
and requires more sophisticated models.

0 5 10 15 20 25 30 35 40100

200

300

400

500

600

700

800

900

1000

RSVP

ACS-RA

Number of flows for edge device

B
yt

e
s

Figure 9: Memory occupation for single flow

Number of flows for edge device

B
yt

es

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2

2.5
x 10

7

RSVP back ebone
 (a)

ACS (c)

ACS (b)

ACS (a)

RSVP backbone (b)RSVP back
bone (c

)

Tradeoff line

Figure 10: Comparison of ACS-RA and RSVP bottleneck
elements

For this reason a simple approach will be followed. Every
control message exchanged between routers or between EDs
and ACS is considered. The control process load will be
evaluated taking into account the work needed to execute the
main operations related to the handling of each control
message. We will refer as [message-x] as the total amount of
work units needed to perform all operations related to the
reception of “message-x”.
Table 1 shows a list of main control messages for each
network element in both architectures.

RSVP ACS-RAMessage
Router ED ACS

New PATH message [new PATH] X X
Refreshing PATH message [ref PATH] X X
New RESV message [new RESV] X X
Refreshing RESV message [ref RESV] X X
Tear down [Tdown] X X
Admission Request [Admission Req] X
Release Request [Release Req] X

Table 1: Control messages
Moreover, we indicate with Nref the number of PATH and
RESV refresh messages during a single flow session.
Let us consider the total amount of network systems work for
the set-up, maintaining and tear-down of each flow session;
for RSVP and ACS-RA architectures:
− RSVP:
PL.Nref.([refPATH]+[refRESV])+PL.([newPATH]+
+[newRESV] +[Tdown])
− ACS-RA:
2Nref.([refPATH]+[refRESV])+2([newPATH]+[newRESV]+
+[Tdown]) + [Admission Req] + [ReleaseReq]
By substituting one work unit for each message we obtain the
total number of messages handled for each flow. Although
the simple counting of control messages is a rude way to
compare the two architectures, it can be the starting point of
the analysis of the amount of processing load.
A more “sophisticated” analysis can be done trying to assign
specific load values to the processing of each message (in

terms of work unit). In the following analysis we use load
weights reported in Table 2. As Table 2 shows, we fixed as
work unit the work required by refresh messages, whereas
the work required by new reservation messages was set as K
times a work unit. The aim is to investigate work load
varying the K parameter.

Event RSVP ACS-RA
router ED ACS

[new PATH] 2 2
[ref PATH] 1 1
[new RESV] K K/2
[ref RESV] 1 1
[Tdown] 2 1
[Admission Req] 2/3 K
[Release Req] 1

Table 2: Work loads (in work units) per received message
We want to remark that these are merely “magic numbers”
just to give a better feeling of the overall load needed in
network systems.
This analysis leads to the following results:
− RSVP: 2.PL.Nref + (K+4).PL
− ACS-RA: 4.Nref + 13/6 K +8
Note that the overall work load grows when the number of
crossed routes increases in a RSVP architecture, whereas it is
not topology depended in a ACS-RA.
Although the total amount of work needed to handle a single
flow can be useful to understand the complexity of the two
architectures, an other useful parameter is the work load per
time unit required by each flow for each network element.
Let us now focus on the work load per time unit required by
each flow for each network element. We indicate with:
− refR:the refreshing rate; i.e. the number of refresh
message per time unit;
− sesR: the session rate; i.e. the number of tear-
down messages per time unit that is the inverse of the mean
duration of a session flow.
Let us consider a single RSVP router and the ACS; the
number of work units per time unit are, respectively:
− RSVP router:
refR.([refPATH]+[refRESV]) + sesR.([newPATH] +
+ [newRESV] + [Tdown]) =
= 2.refR + (K+4).sesR
− ACS:
sesR.([Admission Req] + [Release Req]) =
= (2/3 K+1).SesR
Multiplying these values by the number flow that a single
system has to handle in the same time we obtain the global
work load per network element.
In the RSVP architecture, focusing on backbone routers (first
level routers), the number of flows per router is:

− RSVP core router:
2.n.NED

N1

.[2.refR + (K+4).sesR]

In a ACS-RA architecture the ACS has to handle all active
flows; this means that the total amount of work load is:
− ACS: n.NED.sesR.([Admission Req]+[Release
Req]) =
= (2/3 K+1).n.NED.sesR
There is a trade-off between the two architectures depending

on the number of refresh messages per session and the
number of core routers:

−
ACS

RSVP router :

(2/3 K+1).N1

.sesR
2.[2.refR + (K+4).sesR] =

N1
.(2/3 K+1)

2.(2.Nref+K+4)
Anyway it has to be remarked that for ACS-RA there is only
one device with that amount of work whereas in RSVP
environment all core routers (N1) are loaded with that value
of work. Figure 11 shows trade-off lines between RSVP
routers and ACS in terms of work load. The three lines refer
to a ratio of 3:2, 1:1 and 2:3 between ACS load and router
load, varying the K parameter and the number of refresh
messages per session. The picture shows that also for big
values of number of flows per ED as soon as the number of
refresh messages increases the work load for ACS is less
than for each backbone router in a RSVP architecture.

6. Conclusions
A framework for the interworking of RSVP with a
differentiated services network has been described. We
assumed that the implementations of diff-serv model will
start supporting “static” Service Level Agreements. The step
towards RSVP based services and the corresponding
mapping of RSVP flows into diff-serv SLAs basically
requires that the resource allocation approach moves from a
static towards a dynamic one. A dynamic mechanism called
ACS-RA (Admission Control Server based Resource
Allocation) has been proposed. The important point is that
the user plane level will not substantially change, only a
more intelligent management of resources can provide a
high level of service assurance with no loss on network
efficiency. This is a very important indication as it enables to
build core routers with fast forwarding functionality based
only on diff-serv information. The resource allocation
functionality is then superimposed as an overlay.
The scalability issues related to the ACS-RA have been
analyzed in comparison with RSVP. As far as the user plane
is concerned the ACS-RA behaves far better than a RSVP
based network, as it inherits the advantages of the diff-serv
approach. Therefore we focused our analysis on the control
plane scalability. The amount of memory and the processing
load in the network elements have been considered for
comparison. We found that the scalability properties of ACS-
RA are satisfactory. Our results show that even in the case of
a single Admission Control Server in a diff-serv cloud, the
ACS-RA scales better than RSVP.

0 10 20 30 40 50 60 70 80 90 1000

10

20

30

40

50

60

70

80

90

100

Nref

(nuber of “refresh” RESVper session)

K = [new resv]/[refresh resv]

RSVP = 3/2
 ACS

RSVP = ACS

RSVP = 2/3 ACS

Figure 11: ACS / RSVP work load trade-off

7. References
[1] P.White, “RSVP and Integrated Services in the Internet:
A Tutorial”, IEEE Communications Magazine, May 1997
[2] D. Black et al. “An Architecture for Differentiated
Services”, Internet-draft, Diffserv working group, May 1998,
<draft-ietf-diffserv-arch-00.txt>
[3] Y.Bernet et al. “A Framework for Differentiated
Services”, Internet-draft, Diffserv working group, May 1998,
<draft-ietf-diffserv-framework-00.txt>
[4] Y.Bernet et al. “A Framework for Use of RSVP with
Diff-serv Networks”, Internet-draft, June 1988, <draft-ietf-diffserv-
rsvp-00.txt>
[5] I.Stoica, H.Zhang “LIRA: An Approach for Service
Differentiation in the Internet”, NOSSDAV ’98, 8-10 July, 1998,
Cambridge, UK.
[6] K. Nichols, V. Jacobson and L. Zhang “A Two-bit
Differentiated Services Architecture for the Internet” Internet Draft,
November 1997 <draft-nichols-diff-svc-arch-00.txt >
[7] C.Huitema “Routing in the Internet”, Prentice Hall, 1995
[8] G. Malkin, “Traceroute Using an IP Option”, RFC 1393

