
PAPER IDENTIFICATION NUMBER 88-61956191

Design and Development Tools for Next Generation Mobile Services

G. Bartolomeo(1), E. Casalicchio(2), S. Salsano(1) and N. Blefari Melazzi(1)
(1) DIE - (2) DISP

University of Rome “Tor Vergata”, Italy
{giovanni.bartolomeo, emiliano.casalicchio, stefano.salsano, blefari}@uniroma2.it

Abstract

The actual standards for service authoring,
composition and development are not easy to port and
to apply for next generation mobile applications. This
paper describes some tools that we’re developing in
the context of the IST-Simple Mobile Service project,
whose aim is to ease the authoring and the use of
services for mobile devices. We propose a service
composition approach using an UML profile very close
to the actual standards for Web Services definition and
authoring, like WSDL and BPEL. We take a glance at
SMILE, the run-time support we provide for service
execution. Finally we hint at an efficient serialization
mechanism based on JSON, a human readable data
exchange format less verbose and, in our opinion,
more suitable for mobile terminals than XML.

1. Introduction

A number of research works have shown that the
actual Web has been designed and optimized mainly
for office and home applications; as a result, it is really
difficult to try and port even the most trivial web
application into the mobile environment. It has been
observed [3] that the “mobile” Web is not a simple
adaptation of the actual web contents to mobile
devices, but requires new features like context
awareness, multimodality, perception and others form
of interactions inherited from pervasive services.

Starting from the widely accepted consideration that
the use of mobile devices with limited display and
interaction capability raises new Human Computer
Interaction (HCI) issues, we argue that, in order to
make mobile devices really able to exploit the
advantages of the Network, a simple web browser
approach is not appropriate and applications allowing
some degree of intelligence directly into the user’s
terminal can be better suited for this type of services.
In other words, a different environment and HCI model
triggers a different technology to be used.

In this paper, we describe some tools we’re
developing in the context of the IST-Simple Mobile
Service project (IST-SMS) [4], whose aim is to ease
the authoring and the use of services for mobile
devices. We start observing a well defined trend in
current service development, namely the abstraction
from the underlying technology; then we propose our
service composition approach using an UML profile
very close to the actual standards for Web Services
definition and authoring, like WSDL and BPEL.
Consequently, we take a glance at the run-time support
we provide for service execution. Finally we hint at an
efficient serialization mechanism based on JSON, a
human readable data exchange format less verbose
(and therefore more suitable for mobile terminals) than
XML.

2. UML Based Design for Tomorrow’s
Internet

The current Internet is migrating from a number of
strict proprietary architectures to extensible, modular
component based ones. However, this migration is still
ongoing and we argue that a common core model
which abstracts from underlying implementation
details like transport technologies, discovery
mechanisms, directory services and other middleware
features is exactly what it is needed today. This is
reflected in both the two trends which Internet has
joint:
• Telecommunications: virtualization of the networks

is the keyword. In the Next Generation Network
model [5] the development of communication
services starts from service capabilities defined as
operations acting on attributes within abstract
classes [6].

• Web: there are today lots of initiatives and projects
aiming at addressing correct service compositions
regardless implementation details (e.g. WS-BPEL
and web application frameworks like Struts [7] and
Spring [8]).

PAPER IDENTIFICATION NUMBER 88-61956191

However, despite many approaches have been
proposed [9][10], many of them have been found very
difficult to implement and use in practice. In particular,
we noted that existing approaches for Web Service
combination (like the one by IBM [11] exploiting
UML and the Business Process Execution Language)
still presents some shortcomings in the mobile
environment:
• These approaches assume that communications

among servers are always on; they adopt the
verbose SOAP protocol which relies on
synchronous request-response message exchanges;
asynchronous communication are not well
supported.

• Typical composition of services is done for services
that are “fully defined”; however in mobile
environments it is liked to have a composition of
“loosely defined” components and have a context
dependent adaptation, at compile time or even at
run time; similarly we would like to compose
component services that are “abstract” and that can
be mapped into different executable machines,
allowing even some processing on terminals, in
contrast with the traditional centralized Web
Service composition solutions.

• The limitations coming from the mobile
environment (memory, computational power and
lifetime of batteries) introduces some specific
issues to be taken into account in designing
efficient communication protocols, e.g.
performance issues related to sending and receiving
messages containing serialized objects.

3. A Service Composition Approach for
Mobile Services

We propose an UML-based service composition

approach well suited to include components running on
mobile terminals, allowing automatic adaptation of the
service logic to the context (e.g. terminal capability,
user profile, available network connections…) and
distribution of the service logic among terminal and
server side according to specific context needs.

3.1. The SMS approach to service authoring

The SMS approach relies on the notion of
component services. As in recent development of
communication technologies, the component services
may be modeled using UML component diagrams.
Component services provide and use UML interfaces
and are described in UML component diagrams.

Component services are linked together to form end-
user services or to form more complex component

services. We use the term “workflow” to represent the
composition of component services into a service or
into an “aggregated” component service. A workflow
represents the execution logic of a service or
component service and might be described using UML
activity diagrams. A workflow may include conditions,
loops and invocation of remote components and can be
composed of different threads of control that interact
each others. The threads of control may run on one or
more different machines (i.e. mobile devices or fixed
hosts).

Component services that are modeled using UML
can represent different levels of abstraction. At the
highest abstraction level a component services may not
clarify on which machine its service logic runs, still
having defined some or all of its interfaces. We use the
term “un-deployed workflow” to point out such a
possibility.

For example assume a component service whose
name is “Select a place”, taken as an “abstract
component”. The purpose of this component is to let
the user choose a location. This component returns a
location (e.g. a GPS coordinate or an address with
number, street, city, county) after an interaction with
the user. It could be implemented on a server side, by
presenting an interface to the user on a web browser. It
could also be implemented by an application which
runs on a terminal and which includes a local database
of streets for a given city. Finally, it could also
implemented partially on the terminal side (e.g. only
data related to a given area are loaded directly into the
terminal) and the remaining part on the server side. For
the service author it is convenient to ignore all the
aspects of the implementation of the component
service and just focus on the functionality it offers, i.e.
on its interfaces. The underlying execution platform
will choose the most suitable implementation of the
component service at the service creation time or even
at run time by choosing concrete components and
making the workflow deployed depending on several
context information, like availability, performance
issues, adaptation to terminal conditions, user profiles,
etc.

In order to provide a technological grounding for
web-like applications, the UML components and
interfaces are defined so that there is an isomorphism
between the UML description and a WSDL
description. Under some restrictions to the UML
representation (which are grouped together into a
suitable UML profile), it is possible to univocally map
an UML interface description into a WSDL file and
vice versa.

PAPER IDENTIFICATION NUMBER 88-61956191

We consider WSDL 1.1 which includes the message
patterns “One-Way”, “Request-Response”,
“Notification”. This is a superset of current Web
Services, which do not use Notifications. An interface
this way defined is more general than a “traditional”
Web Service interface. This has two advantages: first,
all existing Web Services can be imported without
changes; second, given that new features such as
notification are allowed, it is possible to provide a
wider and more straightforward support for Web 2.0
applications, than the one currently provided by the
Internet. In a similar way, for what concerns
composition, we use UML activity diagrams which are
very similar to those used in BPEL, so that we can
easily turn BPEL workflows into ours.

Finally, we mention that the IST-SMS project is
investigating the use of Aspect Oriented Programming
techniques to solve possible conflicts in service
composition by exploiting context information. This
topic is however out of the scope of this paper; further
details can be found in [19].

XML

SOAP

WSDL

BPEL

http(s)

JSON

UML
(BPEL &
WSDL)

any transport
Fig.1 Traditional Web Services and SMS services

3.2. The SMS protocol stack

At this time, it is useful to compare traditional Web
Services with SMS services, using a “protocol stack”
like view (Fig.1). In the traditional Web Service
paradigm, the transport is provided typically by
SOAP/XML over http(s). Interfaces are described
using WSDL and orchestration between different
services is defined in BPEL.

In the SMS paradigm, the transport could be of any
kind. To support this feature, a suitable run-time
support, described in section 4, is provided. The
serialization is provided using a JSON representation
of interchanged data (section 5), the service interfaces
can be described starting either from WSDL or UML,
the orchestration is defined using either an UML
activity diagram or BPEL.

As a final consideration, it is worthy to say that an
SMS activity diagram describing a workflow running
on mobile devices could be translated directly into
executable code instead of being provided to terminals
in the form of BPEL statements to be interpreted by a

local BPEL engine, thus avoiding the need to install a
BPEL engine in the terminal (unlike [12]).

4. A Middleware Agnostic Run-Time
Support

How many times a successful application should be
rewritten during its lifecycle? The history in traditional
computing environment and even more in mobile
environment has shown a number of applications and
legacy systems reengineered during the years, as a
consequence of a change of underlying technology.

Nowadays, network applications usually are written
exploiting a set of facilitation provided by third party
software known in its whole as “middleware”.
Interoperability between different middleware
platforms is a recent issue. For example, limiting to
mobile applications, in [1] the authors present an
approach for mobile client interoperability with
existing services implemented using different
middleware platforms based on an asynchronous
communication model and the use of WSDL as a
standard to describe abstract service definition.
However, this work focuses on interoperability
between mobile client and existing middleware
applications, rather than on portability of applications
across different middleware platforms.

 The solution adopted in SMS, named SMILE [18],
is a “Simple Middleware Independent LayEr” between
the application and the underlying middleware
platform which allows the developer to focus on
modeling the application business logic instead of
write middleware specific code.

SMILE uses as much as possible provided
middleware facilitations such as naming services
addressing and message routing mechanisms, directory
services, scalability features, application deployment
mechanisms, etc. and wrap them, offering simple and
uniform interfaces. SMILE is actually provided as a set
of Java API running on both J2SE and J2ME
platforms. Once the developer has modeled the abstract
service logic, the libraries provide concrete bindings to
the most known middleware/web platforms (Java RMI,
CORBA, JXTA, JADE, SPRING, etc.).

The aim is to try and achieve at least two goals.
First, the developer should have no need to rewrite the
application when the middleware platform changes.
Second, given that one node could provide more than
one binding with underlying middleware platforms
(“multibinding” node), it can exploits or exports
services provided over different platforms, so that the
node could act as a “bridge” between platforms. As
simple services can be composed to create complex
ones, this means that a composed services can be

PAPER IDENTIFICATION NUMBER 88-61956191

implemented using component services running not
only on different nodes, but also on different
middleware platforms, as outlined in Fig.2.

To certain aspects, we find that SMILE appears
complementary to OMG MDA: by itself, it doesn’t
focus on models, it just provides common interfaces to
different runtime environments. What is achieved in
MDA at a model level by transformations translating
Platform Independent Models into Platform Specific
Models, is here replaced by a concrete software layer
which acts as a “virtual machine”. By providing these
facilitations, SMILE allows the developer to focus on
the business logic more than on the implementation
details, in supporting the original concepts inspiring
MDA, i.e. to allow rapid application development
hiding as much as possible any implementation detail.

Exports services
using CORBA

interface

Exports services
using WS
interface

JXTA
JADE

CORBA
JADE

WEB -SERVER

JXTA

Import
Services provided

under JXTA

Import
Services provided

under JADE

Fig.2 SMILE over different middleware platforms

4.1. SMILE’s API

As the acronym suggests, SMILE aims to be
developer-friendly, providing very few simple
primitives. It has been observed [16] that a language is
successful if it provides just few verbs, but many
nouns; this guideline seems to be accepted also in
recent works about middleware interoperability [17].
We therefore just limit to have very few primitives
allowing to interact with middleware functionalities
and to offer developers the possibility to model their
applications with as many service interfaces and data
types as he needs.

The main interface in SMILE is the Process
interface (Fig.3), which inherits the functionality of the
Receiver interface (wrapping a simple callback
notifying the reception of a message from another,
possibly remote, process) and adds (i) the capability to
send messages to other processes, (ii) awareness of
being a SMILE process (through the assignment of a
process identifier) and (iii) callbacks to allow the
developer to execute custom code when setting up the
process or performing shutdown operations.

Fig.3 SMILE core API

Typically a process interacts with others to provide
or request one or more services. In order to do this,
each process is given the possibility to publish, delete
and search for service Descriptors by implementing the
PublishSearch interface. Each Descriptor holds a
description of the services offered by a given process
in terms of service type and allowed operations (like in
WSDL). The same interface allows to subscribe and
unsubscribe to a service, for services which provide
notifications.

All the interfaces described in this section map into
binding specific platform operations. Obviously in case
of multibiding nodes (Fig. 4) searching and message
exchange facilitations are extended over different
platforms; furthermore it’s possible to search a process
on the basis of its bindings, other than of its service
type and offered operations.

JXTA RMI CORBA Spring ???

Application

search(), publish()
delete()

 Multi-binding
(search,
publish,
delete)

CORE

SMILE

binding binding binding binding binding

EXTENTIONs

Context-aware
SD (ca_search(),
ca_publish(),ca_

delete())

Component
Service
registry

Fig. 4 SMILE’s extensions: multibinding and
context-aware service discovery

PAPER IDENTIFICATION NUMBER 88-61956191

4.2. Context-aware Component Service
Discovery in SMILE

The composition of a next generation mobile
application is also driven by end-user’s preferences and
more in general by context information, as faced in
[15]. The main idea is that a developer may chose to
compose a service putting together software
components that satisfy some specific functional and
non functional characteristics.

A SMILE extension (Fig. 4) provides the support
for context-aware component service discovery. The
Context-aware service discovery provides the
following APIs: ca_publish, publishes a component
described by an SMS service descriptor; ca_search,
searches for a set of components, given a SMS service
descriptor filter; and ca_delete, deletes a previous
published component.

Once an SMS component service is created, at least
one platform specific process is instantiated by the
SMILE core and its identifier is well known by the
component business logic. When a component service
executes a publish operation, the SMILE core performs
a platform specific process publishing using the
information contained in the fields type, operations and
platform. The whole service descriptor, plus the
process identifier is then published into a component
service registry, executing an update.

Therefore, the component service registry stores the
service descriptors and the related process identifiers of
all the instantiates SMS service components. When a
delete is invoked, the specified service descriptor is
removed from the component registry and the SMILE
core deregisters it from any other platform specific
service registry. More details on context-aware service
discovery could be found in the companion paper [15].

5. Efficient Serialization Mechanisms for
Mobile Devices

Fig.5 shows a typical procedure which is followed
by a number of tools (e.g. AXIS) allowing code
generation from an existing service description in
WSDL. Apart from the generation of the skeleton of
the service business logic, an important step consists
on extracting the data types used in the service’s
interface (usually hosted into a WSDL in a “datatype”
subsection and described using XML schema) and
create a correspondent data type definition in a
programming language, for example classes in Java or
C++ (function f1). In turn, these classes should be able
to generate instances (e.g. Java/C++ objects) which can
be serialized into and deserialized from a stream
(function f2) to be transported on the network. In the

Web Service paradigm, the function f2 is implemented
using an XML serialization and the resulting stream is
transported inside SOAP messages.

Limiting to the Java world, currently the function f1
(automatic code generation from described data type)
is supported by AXIS and Castor. The former however
is tightly coupled with the transport mechanism and
it’s unpractical to be used for applications which don’t
use SOAP. Though Castor has a wider scope and is
independent from the transport mechanism, providing
an XML serialization which is compliant with the
XML schema used to describe the data types1, it uses
Java features unsupported by J2ME devices in the
serialization process (function f2) and therefore it is
not suitable for our purposes.

Contrary to the model above described, JSON
follows a different paradigm. JSON is a lightweight
data-interchange text format that is completely
language independent. It uses just two primitives data
structures, a collection of name/value pairs and an
ordered list of values. In almost all languages, these
structure are both available and it is very easy to write
parsers from/to JSON streams. Typical
implementations in Java, available also in J2ME,
provide API to create a so called JSON object from a
JSON stream and viceversa. A JSON object could be
considered as a run-time representation of the data
structure described in the JSON stream. The API
provide simple methods to manipulate both the data
and the data structure as well which the JSON object
represents. Therefore, the depicted model becomes like
the one represented in Fig.6, in which the data
definition and the data instance level have been
compressed into one single level, while the XML
representation has been replaced by the JSON
representation.

XML
Runtime

Data model

Data
Instance

Level

XML
SCHEMA
inside WSDL

Data type
definition

XML serialized
object

Data Instances
(object)

Marshalling

Unmarshalling
Rx

Tx

Data
Definition

Level

Fig.5 Serialization using XML

1 This is in general not true. The serialized stream obtained from
AXIS is compliant with the corresponding XML schema only if
SOAP document/literal or SOAP document/wrapped is used. In its
first versions, AXIS just supported SOAP rpc/encoding (producing
xml statement not compliant with a corresponding XML schema
defining data types); this is the reason why the SOAP rpc/encoding is
still widely used in Java Web Services.

PAPER IDENTIFICATION NUMBER 88-61956191

Data Definition &
Instance Level

JSON Runtime data
model

JSON ObjectJSON textual
format

Fig.6 Serialization using JSON

Fig.7 A prototype for the IST-SMS browser

6. Conclusion and future works

We’ve chosen to implement the aforementioned
tools using the Java technology and in particular J2ME
MIDP for mobile phones. As a first step, we’ve
developed a prototype of an evolved browser able to
manage pages and start applications (so called
SMSlets) using request/response and notification
messages originated from servers or other terminals
and containing JSON serialized objects (Fig.7).

The browser is built upon the SMILE libraries,
resulting in a very abstract application independent
from the underlying middleware and network
mechanisms. SMSlets built using the methodology
described in section 3 automatically benefit of SMILE
as well. The HCI is particularly optimized for cell
phones, graphics and user interaction control are
managed by an our own optimized version of Thinlet
[13] for J2ME MIDP, exploiting the XML User
Interface Language (XUL) [14]. Support for context
awareness and new form of HCI is provided as well
according to the terminal’s capability and available
peripherals (e.g. Bluetooth, NFC, camera, sensors, etc.)

7. References

[1] P. Grace, G. S. Blair1, and S. Samuel, “ReMMoC: A

Reflective Middleware to support Mobile Client
Interoperability” in Proceedings of International
Symposium on Distributed Object and Application
(DOA), Catania, Italy, November 2003

[2] A. Uribarren, J. Parra, K. Makibar,I. Olalde, N. Herrasti,
“Service Oriented Pervasive Application Based On
Interoperable Middleware”, Workshop on Requirements
and Solutions for Pervasive Software Infracstructure
(RSPSI2006), in Pervasive 2006 Workshop
Proceedings, Dublin, Ireland, May 2006

[3] J. Canny, The Future of Human-Computer Interaction,
ACM Queue vol. 4, no. 6 - July/August 2006

[4] The Simple Mobile Services Project, home page.
http://www.ist-sms.org

[5] ETSI, TR 180 001 V1.1.1, Telecommunications and
Internet converged Services and Protocols for Advanced
Networking (TISPAN); NGN Release 1, Technical
Report, March 2006

[6] ETSI, TS 101 878 Telecommunications and Internet
Protocol Harmonization Over Networks (TIPHON)
Release 3; Service Capability Definition; Service
Capabilities for a simple call

[7] The Struts framework, home page,
http://struts.apache.org/

[8] The Spring application framework, home page,
http://www.springframework.org/

[9] N. Milanovic, M. Malek, "Current Solutions for Web
Service Composition" IEEE Internet Computing, vol.
08, no. 6, pp. 51-59, Nov/Dec, 2004.

[10] D. Skogan, R. Gronmo, I. Solheim, "Web Service
Composition in UML", edoc, pp. 47-57, Enterprise
Distributed Object Computing Conference, Eighth IEEE
International (EDOC'04), 2004

[11] K. Mantell, From UML to BPEL: Model Driven
Architecture in a Web services world. IBM
developerWorks, SOA and Web Services –
Architectures Sept. 2003

[12] G. Hackmann, M. Haitjema, C. Gill, G. C. Roman,
“Sliver: A BPEL Workflow Process Execution Engine
for Mobile Devices”, ICSOC 2006, 4th International
Conference, Chicago, IL, USA, December 4-7, 2006,
Proceedings. Lecture Notes in Computer Science 4294
Springer 2006

[13] The Thinlet project, home page,
http://thinlet.sourceforge.net/home.html

[14] The XML User Interface Language (XUL),
http://www.mozilla.org/projects/xul/

[15] N. Blefari-Melazzi, E. Casalicchio, S. Salsano,
“Context-aware Service Discovery in Mobile
Heterogeneous Environments”, To appear in proc. of
16th IST Mobile and Wireless Communication Summit,
July 2007, Budapest, Hungary.

[16] P. Prescod, REST and the Real World, Published on
XML.com, February 2002

[17] W. K. Edwards, M. W. Newman, J. Sedivy, T. Smith, S.
Izadi, Challenge: Recombinant Computing and the
Speakeasy Approach, Proceedings of Mobicom '02,
September 2002

[18] The SMILE project, home page,
http://netgroup.uniroma2.it/twiki/bin/view.cgi/Main/Smi
lePublic

[19] G. N. Prezerakos, N. D. Tselikas, G. Cortese, Model-
driven Composition of Context-aware Web Services
Using ContextUML and Aspects, ICWS 2007, July
2007, Salt Lake City, Utah, USA

