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Abstract— In this paper, we provide the performance evaluation 
of the UPMT (Universal Per-application Mobility management 
using Tunnels) solution. UPMT offers per-application mobility 
management, i.e. the capability of separately taking handover 
decisions for each application. UPMT supports legacy 
applications, private IP addressing/NATs and it is an overlay 
solution that does not require the access network to offer any 
specific support. We have implemented UPMT under Linux OS 
and made it available under the GPL Open Source license.  
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vertical handovers, performance evaluation 

I. INTRODUCTION
1 

Current notebooks, netbooks, and handheld devices are able to 
connect to several wireless (and wired) access technologies. 
The capability to move from one access technology to another 
one, switching also the active connections, is typically referred 
to as “Vertical Handover”. The capability of roaming across 
different network access technologies automatically using the 
most suitable ones has been called “Always Best Connected” 
(ABC) service in [1]. In order to support Vertical Handover 
and ABC services in IP networks, countless solutions have 
been proposed in the literature and several have been 
considered in the IETF, see [2] for a survey. 

Recently, the need to transport different applications on 
different access technologies at the same time, and take 
separate handover decisions for each application has been 
identified and addressed [3][4][5]. The motivation is that 
different applications have different requirements that can be 
mapped into the different characteristic of the access 
technologies (e.g. cost, QoS, security). For example, when 
moving from an office WiFi access to a public 3G networks it 
could be sensible to handover an ongoing voice call, but one 
could want to suspend connectivity to a background bulk file 
transfer. 

In [4] we have proposed an application level solution called 
UPMT (“Universal Per-application Mobility management 
using Tunnels”). The solution was extended in [6] in order to 
address scalability issues. UPMT main features are: 

• per-application independent vertical handovers: UPMT is 
able to independently direct the traffic of each application 

                                                           

1 This work was supported in part by the EU under the project FP7 – 
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on the “best” network interface (even different flows of the 
same application can be controlled independently if 
needed) 

• support of legacy applications, i.e. existing applications 
that are not aware of UPMT can use it 

• support of legacy correspondent hosts, i.e. only one end of 
the communication needs to implement UPMT 

• support of mobile terminals behind NAT (Network 
Address Translation) devices, i.e. using private IP 
addresses 

• full compatibility with existing network infrastructure, 
UPMT does not require the access network to offer any 
support but plain IPv4 connectivity 

• for scalability, UPMT supports a multiple anchor nodes 
scenario without requiring coordination between “Anchor 
Nodes” (AN) 

Let us focus on the first two features, namely “per-application 
independent handovers” and “support of legacy applications”. 
Combining these two features is really challenging as it means 
that the application cannot be upgraded and become “UPMT 
aware”. If this were possible, an application could perform 
some actions to move the flows over the different interfaces or 
to react to the switch of a flow from an interface to another. On 
the other hand in our solution the applications do not need to 
be aware of UPMT and are able to work without even noticing 
that handovers are being performed. Of course our intent is not 
to rule out the possibility that future applications will become 
UPMT aware, integrating some mobility management features 
in their logic. We just want to guarantee that in the 
short/medium term all existing applications are able to exploit 
our mobility management solution without any change. 

From the above considerations, it is clear that to combine “per-
application independent handovers” and “support of legacy 
applications” the UPMT modules need to be able to intercept 
and properly manipulate the traffic directed to and coming 
from a legacy application on the mobile device, implementing 
the needed mobility management decisions. In this light, the 
UPMT modules that can perform flow manipulation need to be 
Operating System (OS) specific, while the “networking” 
aspects of UMPT (e.g. how packets are tunneled, how 
handovers are signaled) are independent from the OS. 
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II. UPMT BASICS 

UPMT is a solution for mobility management over 
heterogeneous networks based on IP in UDP tunneling. The 
basic idea can be summarized as follows. A multi-homed MH 
establishes an IP in UDP tunnel for each active network 
interface with its UPMT “correspondent peer”. This 
correspondent peer can be an “Anchor node”, a correspondent 
Fixed Host or a correspondent Mobile Host and plays the role 
of “Tunnel server” as it provides the second end of the tunnels 
established by the MH. 

Independently from the number of established tunnels, a 
virtual interface (viface) is brought up and configured with a 
virtual IP address (VIpA) in the MH. MH IP stack is 
configured in such a way that IP packets locally generated by 
applications “under UPMT control” are routed through the 
virtual interface and handled by UPMT protocol layer (e.g. by 
using “policy routing” features). The output tunnel is chosen 
by UPMT according to a “Per-Application Forwarding Table” 
(PAFT), a table that binds an application flow identified by the 
5-tuple (protocol, IP source address, IP destination address, 
source port, destination port) with an output tunnel. The PAFT 
associates an application level “socket” to the tunnel used to 
send packets from the MH to the AN and from AN to MH. For 
each application packet sent over the viface, a PAFT look-up 
is performed. The packet is then encapsulated in the resulting 
IP in UDP tunnel and sent over the real network interface. 
With this approach, both IP readdressing of the underlying 
network interfaces and application flows handovers from one 
tunnel to another are hidden to the virtual interface’s IP stack 
and application sockets. In the tunnel server, for each 
incoming packet received on a registered IP in UDP tunnel the 
PAFT is updated (if necessary) and reply packets are sent over 
the same tunnel. In case of downstream traffic, MH can update 
the PAFT of its tunnel server also by sending an explicit 
request. 

UPMT design takes into account a multi AN scenario in which 
the MH is allowed to concurrently use more then one AN and 
independently choose the AN for any application flow under 
UPMT control. The virtual addresses management is fully 
decentralized and no cooperation between ANs is required. In 
[6] we proposed a solution in which each AN assigns a 
“locally unique” VIpA to MH. According to the AN to which a 
given tunnel is established, the MH performs local NAT so 
that still only one virtual viface is required regardless of the 
actual number of ANs concurrently used. 

The AN provides the Mobile Host with a second level NAT 
service on the “Anchor-NAT”, which is a key element in our 
mobility architecture (Figure 1). In fact, the idea is that the 
Mobile Host will access the Internet through the NAT in the 
Anchor Node, using a public IP address provided by the AN. 
Since a CH never sees the VIpA used by MH, communication 
with legacy CH is provided. 

The MH connects to the AN using IP in UDP tunnels, one 
tunnel per each access network. The UPMT mobility 
management procedures allow the MH to select the tunnel 
towards the Anchor Node, if needed in a separate way for each 
application/flow to be supported. 
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Figure 1. UPMT reference scenario 

It is worth spending some words about the choice of IP/UDP 
encapsulation as tunneling method in UPMT, as opposed to 
other candidates like for example Generic Routing 
Encapsulation (GRE), L2TP, IP in IP. The pros of IP/UDP 
encapsulation are: (i) NAT traversal of UPMT data flows does 
not require any additional mechanism since UDP traverses all 
existing NAT implementations. (ii) There is no need to register 
a new IP protocol number to handle tunneled data. (iii) 
IP/UDP encapsulation requires less overhead2 with respect to 
GRE. 

The networking and signalling aspects of UMPT have been 
presented in [4]. The full details can be found in the technical 
report [7], including the procedures to establish the tunnels, to 
manage the PAFTs, to support the NAT functionality and to 
drive the handover of application flows across the tunnels. 

III. RELATED WORK 

MIPv4 [8] is the networking level mobility solution for IPv4 
standardized within IETF. MIPv4 requires support by the 
Foreign Network (FH) access router (Foreign Agent - FA). 
This is a major limitation for the deployment of ubiquitous 
ABC services in the short/ medium term, as all access 
networks visited by the MH must support MIPv4. Moreover, 
support for “IP flow binding” [8] (required to build a per-
application mobility management infrastructure) is still at early 
stage of standardization process. 

MIPv6 [9] benefits from both the previous work on MIPv4 
and from some features offered by IPv6 itself. Even though 
MIPv6 shares many features with UPMT and fulfills a number 
of requirements (e.g. multiple CoAs [10], flow binding update 
[11]), IPv6 connectivity cannot be given as granted for most 
Internet Service Providers. Again, in the short/ medium term 
MIPv6 mobility solutions for ABC are limited by the access 
and transport network infrastructure. 

HIP [12] seems to be more suited for ABC services. HIP is 
totally end-to-end but also defines mechanisms for rendezvous 
services and host discovery. HIP works with NAT and with all 
existing network infrastructure. Even though HIP 
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specifications do not support a per-application mobility 
management, quite recently a per-application mobility 
management solution based on HIP has been proposed in [5]. 
This solution has only been simulated using a network 
simulator, and no real implementation has been developed. 

In [3] a per-application mobility management platform was 
first proposed. The solution is based on address translations on 
the two endpoints, and it requires that both endpoints are 
“mobility-aware”. The interoperability with NATs is not 
discussed and the solution is evaluated by simulation, no real 
implementation is reported. 

IV. UPMT IMPLEMENTATION DESIGN 

In this section we focus on some architectural aspects of our 
UMPT implementation running in the Mobile Host and in the 
Anchor Node. In particular, we will consider two aspects: i) 
the implementation of tunnelling mechanisms (encapsulation 
and de-capsulation of packets); ii) the handling of the flows 
without active cooperation of the applications and without 
linking ad-hoc modified socket libraries. The former aspect 
(tunnelling) is common to both MH and AN, the latter (flows 
handling) specifically concerns the MH. Figure 2 and Figure 3 
show the architecture of our Linux based UPMT 
implementation respectively for the Anchor Node and for the 
Mobile Host. 

As shown in the figures, the realized Linux implementation is 
composed by user space and kernel space components. The 
UPMT implementation architecture in the Anchor Node is a 
subset of the one in the Mobile Host. The common modules 
are the UPMT tunnelling, the PAFT (per Application 
Forwarding Table) and the UPMT Configu-ration Tool. 

The PAFT works at the level of the single flow, i.e. identified 
by the 5-tuple (protocol, IP src, IP dst, src port, dst port), 
storing the correspondence between flows and tunnels, both in 
the MH and in AN. 
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Figure 2. Linux UPMT modules on Anchor Node 
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Figure 3. Linux UMPT modules on Mobile Host 

The UPMT tunnelling component and the PAFT are 
implemented in kernel space for maximum performance. This 
means that the UDP flows used for tunnelling data between the 
AN and the MH are handled within the kernel: the UDP 
packets received from these tunnels are not transferred to a 
user space application as a “normal” UDP socket would do. 
Likewise, the packets outgoing on these UDP flows are not 
received from a user space application through a socket, but 
are generated within the kernel that “intercepts” the proper IP 
packets in a layer 2 virtual interface and encapsulate them into 
the UDP tunnel. As shown in Figure 4, this is different from 
other existing IP in UDP tunnelling solution (such as 
OpenVPN [13]) which operates the encapsulation and de-
capsulation in user space, by creating “normal” UDP sockets. 
In these user space solutions, an outgoing packet is transferred 
by an application to the Kernel, then the kernel intercepts it 
and sends it to the user space tunnelling, which encapsulate it 
and sends it again to the kernel using a UDP socket. This 
approach is clearly un-efficient, as we will be able to show 
with performance measurements.  
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Figure 4. Tunneling approach comparision 

The advantage of a user space solution is that it does not 
require kernel modifications. Actually, we implemented a first 
prototype of UPMT using a user space tunnelling module. We 
discarded it, when we noticed the performance limitations and 
we realized that we needed in any case modification to the 



kernel in order to provide per-application handover supporting 
legacy applications. 

The UMPT tunnelling module communicates with the user 
space UPMT Configuration module using the so-called 
“Netlink Sockets” of the Linux OS. The UPMT Configuration 
module is used by the coordinating entities of UPMT, called 
UPTM Control Entities (MH-UCE and AN-UCE for Mobile 
Host and Anchor Node respectively). The UPMT Control 
Entities run in user space, they sends commands to the UPMT 
tunnelling kernel module as needed to configure the PAFT 
(Per-Application Forwarding Table) and to drive the handover 
process. 

In the Mobile Host, the UCE module is complemented with a 
Graphical User Interface that can be used for user interaction, 
especially useful for testbed and demo purposes. The UCE and 
the associated GUI are written in Java. On the MH, the UCE 
GUI presents the user the list of available network interfaces, 
the list of active application and the list of the sockets open by 
each applications. The user is able to decide the interface (i.e. 
the tunnel) to be used for an application or even for each single 
socket of each application, “manually” controlling the 
handovers. The UCE is also able to work autonomously 
according to a set of configurable policies. A configuration file 
is now used to configure the per-application policies. Current 
policies are simple (e.g. a priority list of interfaces to be used 
when available), it is for further study to define and implement 
more complex policies, e.g. based on performance 
measurements, performance estimates, costs and so on. On the 
MH, the UCE receives notifications about the presence and the 
status of network interfaces from the Network Manager [15] 
and it communicates with remote UPMT entities (e.g. the 
Anchor Node) using the UPMT Signalling Agent. 

It is worth to discuss how it is possible to populate the PAFT 
on the Mobile Host, adding the sockets that are used by the 
applications. Assume for example that at a given time there is 
the policy to send all sockets of application X through tunnel 
M. It is relatively easy to retrieve the list of all the active 
sockets for the application X, and it would be easy to add a set 
of PAFT entries pointing each socket into tunnel M (and this 
could be repeated periodically with a sort of polling 
mechanism). The problem is that moving the sockets into the 
tunnels would break the sockets itself as the packets would be 
NATed at the exit of the tunnels in the Anchor Node. 
Therefore these sockets must be inserted in the tunnel M from 
the very first packet of the flow. The solution is to use the 
conntrack [16] facilities in the Linux Netfilter framework [17] 
which allows to “capture” the first packets of each socket. 
Once a “first packet of a socket” is captured, our module 
checks the application to which the socket belongs, decides

3
 if 

the packet has to be handled by UPMT and, if so, it decides 
which tunnel must be used and sets the PAFT accordingly. 
Then the packet continues its “regular” processing, so that the 
PAFT entry will be used to decide on which tunnel to send it. 

                                                           

3Once the first packet is captured, policies implementation is 
straightforward, and can be based for example on application name, 
protocol, destination address etc. 

Strange as it may sound, there is no simple facility in the Linux 
kernel to understand which application (e.g. which Process ID 
or “PID”) has produced a packet from the data structure 
(called skbuf) that contains the packet itself, which only carries 
a socket identifier or “file descriptor”. Associating a file 
descriptor with a Process ID is possible in user space by 
browsing the information contained in the /proc file system 
(recursively reading all process folders in /proc and looking 
for the file descriptor that is associated to the packet in the 
skbuf). It is not possible to perform the same interrogation 
from kernel space, so one could think to (1) “stop” the packet; 
(2) ask some software module responsible for reading the 
/proc to find the process that opened a given socket; (3) 
buffering all related packets till the response is received 
(because sleeping is not allowed in this particular kernel 
context). This is clearly not optimal, therefore we decided to 
extend the skbuf structure in the Linux kernel to transport the 
application PID. This way, when processing a packet in the 
networking stack of the kernel, it is easy to get the PID of the 
owner application, at the prize of the need to recompile the 
kernel to extend the skbuf structure. 

V. TESTBED AND PERFORMANCE EVALUATION 

We have implemented the proposed UPMT solution under 
Linux OS. The implementation is available as open source at 
[18]. In the following subsections we provide a performance 
evaluation of the UPMT implementation. In Section V.A we 
deal with the impact of handovers on “user level” 
performances like throughput. In Section V.B we assess the 
performances of the realized implementation of the Anchor 
Node and of the Mobile Host with respect to the processing 
load. In both cases we followed an experimental approach by 
performing measurements on the actual implementation. 

A. User Level Performance Analysis  

We setup a test-bed where we could show separate handovers 
of different applications over three access networks active at 
the same time (Ethernet, WLAN and 3G access provided by a 
commercial operator). To the best of our knowledge, our 
implementation is the only one performing per-application 
independent handover in a real test bed. We monitored the 
execution time of the handover by capturing packet traces with 
the tcpdump tool. The results show that there is virtually no 
delay in the handover execution, the difference in the time 
stamps of the received packets is only due to the differential 
network delay among the interfaces and that there is no packet 
loss. The test-bed consists of the following components: 

1. an anchor node AN at public IP address 160.80.103.66. AN 
is a PC with Pentium M 1.2 GHz processor, 1.256 GB 
RAM and Linux kernel 2.6.35.4-upmt. 

2. a mobile host MH with three network interfaces. MH is a 
laptop with Linux kernel 2.6.35.4-upmt, Core 2 Duo 1.83 
GHz, 2 GB RAM. MH is equipped with 3 NICs: (i) wlan0, 
a wireless 802.11g NIC connected to a AP on the LAN 
192.168.100.0/24; (ii) eth0, a Ethernet 100Mbs NIC on the 
LAN 192.168.100.0/24; (iii) ppp0, a HSPA USB card 
connected on a PPP link and IP address 95.75.196.58. In 



addition MH has a UPMT virtual interface has a fixed 
virtual IP address VIpA_fix 5.6.7.8. 

3. a number of legacy correspondent hosts placed over the 
Internet. In particular, along the demonstration time, MH 
will connect to a WEB server CH1 at www.torvergata.tv, a 
backup file server CH2 at ubfsrl.ath.cx; a streaming server 
CH3 at vipnrj.yacast.net; a FTP server CH4 at 
ftp.archlinux.org and a laptop CH5 placed in another LAN 
running a skype client. 

The demonstration described in the reminder of this section is 
intended to show UPMT capability of performing per-
application independent handovers. After initial association 
and tunnel establishment, five applications are started in the 
same sequence as they are listed in Table 1. Four applications 
are put under UPMT control; one application (firefox) is not 
handled by UPMT and is routed through eth0 for the whole 
demo time. The initial interface for each application is the first 
interface in the “Handover” column. The applications under 
UPMT control are handed over as described in Table 1, in the 
same sequence as they are listed. 

We monitored the execution time of the handover by capturing 
packet traces with the tcpdump tool. The results are reported in 
Figure 5. Each sub-figure shows for each application the sum 
of received and transmitted bits-per-second on the first and the 
second network interfaces used over the demo time (the initial 
period in which the application are sequentially launched has 
been cut). The trace related to firefox traffic (no UPMT) has 
been omitted. 

Table 1 Application list in the reported experiment 

App Activity Traffic Handover CH 

skype video 

conference 

RT (UDP) 

video/audio  

+ control 

ppp0�eth0 CH5  

+ al. 

vlc streaming MMS (TCP) wlan0�ppp0 CH3 

scp backup SSH (TCP) eth0�wlan0 CH2 

chrome ftp 

download 

FTP (TCP) wlan0�eth0 CH4 

firefox streaming HTTP (TCP) eth0 

(no UPMT) 

CH1  

 

Further details of the measurements are available at [7]. We 
just note that the results are fully satisfactory: (i) there is 
virtually no delay in the handover execution, the difference in 
the time stamps of the received packets is only due to the 
differential network delay among the interfaces; (ii) we have 
no packet loss and indeed, the sum of the bit-rate for the two 
interfaces around the handover instant keeps the aggregate 
bandwidth in trend; (iii) the oscillation visible on the traces are 
not caused by UPMT tunnelling, but they are caused by 
network loss and TCP congestion control, as we observed 
identical behaviour without UPMT. In conclusion we want to 
underline that the current UPMT implementation already 
provides “break-before-make” handovers and per-socket 
handovers, which was not possible to show here. 

  

   

Figure 5 User level performance evaluation 



B. System Level Performance Analysis  

In this section we want to analyze the processing load 
performances of the proposed solution, both on the anchor 
nodes and on the mobile devices. For different reasons, it is 
important that the processing burden is as limited as possible 
in both cases. On the anchor nodes, the reason is that the 
scalability of the solution (i.e. how many concurrent flows and 
concurrent users can be supported) depends on the processing 
load. 

 
Figure 6 Test-bed for System Level performance analysis 

On the mobile devices an excessive processing load due to the 
mobility management can limit the performance of the 
applications, considering the limited processor capacity. 
Moreover the processing load has an impact on the duration of 
the batteries. We show that the proposed tunneling mechanism 
implemented in kernel space is very efficient with respect to 
the processing load. 

We used an experimental methodology, both for the analysis 
of Anchor Node processing load and for the Mobile Host 
processing load. Figure 6 and Table 2 respectively show the 
networking architecture and the hardware used in the test-bed. 
We compared three solutions, as shown in Figure 7: i) sending 
packets without UMPT tunneling (i.e. only using NAT 
functionality in the AN), which is the “reference” solution 
(denoted as plain-NAT); ii) sending packets using UMPT 
tunneling (denoted as UPMT); iii) sending packets using a 
user-level tunneling mechanism, in particular OpenVPN [13] 
with null ciphering. 
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Figure 7:. System Level performance evaluation scenarios 

As for the Anchor Node, we produced synthetic flows with the 
iperf traffic generation tool using two external hosts and 
analyzed the behavior of the AN, in terms of packet loss and 
CPU processing load (measured using the mpstat Linux tool). 
We were able to estimate the CPU saturation load of the AN 
by increasing the generated traffic. Figure 8 shows the packet 
loss due to CPU overload in the Anchor Node in the three 
scenarios. On the x axis the input packet rate (packets/s) is 
reported. For each scenario it is possible to identify a 
“saturation load”: when the input traffic is lower than the 
saturation load there is no packet loss, when the input traffic is 
higher than the saturation load, the excess traffic is dropped. 
The saturation load for UPMT (around 60.000 pkt/s) is not 
much lower that the one for plain-NAT (70.000 pkt/s). This 
shows that the additional processing load due to 
encapsulation/de-capsulation has limited impact on the 
scalability of the Anchor Node. On the other hand, the 
saturation load in the user level tunneling (OpenVPN) is much 
lower (around 20.000 pkt/s). This is due to the inefficiency of 
performing tunneling in the user space. The result is confirmed 
by the analysis of CPU load for the same range of input traffic 
(Figure 9). When the input traffic rate grows and approaches 
the saturation load, the CPU load grows and approaches 
100%. From the saturation load onward, the CPU load remains 
at 100%. 

Table 2 – Hardware used in the experiments 

Mobile Host (iperf source 
and receiver) 

PC Intel Core 2 Quad 2.66 GHz, 
NIC Ethernet 100 Mb/s 

Access Node PC VIA C7-D Processor 1.5 GHz, 
2 NICs Ethernet 100 Mb/s 

Correspondent Host (iperf 
source and receiver) 

PC Intel Core 2 Duo 1.83 GHz, 
NIC Ethernet 100 Mb/s 

 

As for the Mobile Device processing load, we considered the 
iperf application generating packets at different rates. It should 
represent a generic application that is producing a packet 
stream. We measured the overall processing load of the device 
under the three different networking scenarios (plain-NAT, 
UPMT and Open-vpn) in order to evaluate the impact of our 
tunneling mechanism and to compare it with that of a user-
space tunneling mechanism. Figure 10 shows that, as in the 
Access Node experiments, the difference between the plain-
NAT (no tunneling) and the UPMT (kernel-based tunneling) is 
limited. In this case the relative difference is even smaller, as 
the CPU load is dominated by the user-space operations 
performed by the application and in particular by system-calls 
needed to relay the data from user-space to kernel-space 
(transmitting side) and vice-versa (receiving side). On the 
other hand, the difference between the plain-NAT and the 
Open-vpn processing load is relatively high. 

VI. CONCLUSIONS 

We remark that to the best of our knowledge, we provided the 
first implementation of per-application mobility management 
in real devices. We have performed some user level and 
system level performance analysis on the real implementation. 
As for user level performance, we measured the throughput of 



different applications across the UPMT handover procedures 
and found that the impairment is negligible. As for the system 
level performances, the analysis shows that the processing 
penalty incurred by the tunneling operation is limited. This is 
achieved thanks to the kernel based implementation, as a 
comparable user space tunneling solution shows much higher 
processing requirements.  

 

Figure 8. Anchor Node packet loss comparison 

 

Figure 9. Anchor node CPU load comparison 

 

Figure 10. Mobile Device CPU load comparison 
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