
Per-application Mobility Management:

Performance Evaluation of the UPMT Solution

Marco Bonola

University of Rome “Tor Vergata"
Rome, Italy

marco.bonola@uniroma2.it

Stefano Salsano

University of Rome “Tor Vergata"
Rome, Italy

stefano.salsano@uniroma2.it

Abstract— In this paper, we provide the performance evaluation
of the UPMT (Universal Per-application Mobility management
using Tunnels) solution. UPMT offers per-application mobility
management, i.e. the capability of separately taking handover
decisions for each application. UPMT supports legacy
applications, private IP addressing/NATs and it is an overlay
solution that does not require the access network to offer any
specific support. We have implemented UPMT under Linux OS
and made it available under the GPL Open Source license.

Keywords: Mobility management, per-application mobility,

vertical handovers, performance evaluation

I. INTRODUCTION
1

Current notebooks, netbooks, and handheld devices are able to
connect to several wireless (and wired) access technologies.
The capability to move from one access technology to another
one, switching also the active connections, is typically referred
to as “Vertical Handover”. The capability of roaming across
different network access technologies automatically using the
most suitable ones has been called “Always Best Connected”
(ABC) service in [1]. In order to support Vertical Handover
and ABC services in IP networks, countless solutions have
been proposed in the literature and several have been
considered in the IETF, see [2] for a survey.

Recently, the need to transport different applications on
different access technologies at the same time, and take
separate handover decisions for each application has been
identified and addressed [3][4][5]. The motivation is that
different applications have different requirements that can be
mapped into the different characteristic of the access
technologies (e.g. cost, QoS, security). For example, when
moving from an office WiFi access to a public 3G networks it
could be sensible to handover an ongoing voice call, but one
could want to suspend connectivity to a background bulk file
transfer.

In [4] we have proposed an application level solution called
UPMT (“Universal Per-application Mobility management
using Tunnels”). The solution was extended in [6] in order to
address scalability issues. UPMT main features are:

• per-application independent vertical handovers: UPMT is
able to independently direct the traffic of each application

1 This work was supported in part by the EU under the project FP7 –
224024 “PERIMETER”

on the “best” network interface (even different flows of the
same application can be controlled independently if
needed)

• support of legacy applications, i.e. existing applications
that are not aware of UPMT can use it

• support of legacy correspondent hosts, i.e. only one end of
the communication needs to implement UPMT

• support of mobile terminals behind NAT (Network
Address Translation) devices, i.e. using private IP
addresses

• full compatibility with existing network infrastructure,
UPMT does not require the access network to offer any
support but plain IPv4 connectivity

• for scalability, UPMT supports a multiple anchor nodes
scenario without requiring coordination between “Anchor
Nodes” (AN)

Let us focus on the first two features, namely “per-application
independent handovers” and “support of legacy applications”.
Combining these two features is really challenging as it means
that the application cannot be upgraded and become “UPMT
aware”. If this were possible, an application could perform
some actions to move the flows over the different interfaces or
to react to the switch of a flow from an interface to another. On
the other hand in our solution the applications do not need to
be aware of UPMT and are able to work without even noticing
that handovers are being performed. Of course our intent is not
to rule out the possibility that future applications will become
UPMT aware, integrating some mobility management features
in their logic. We just want to guarantee that in the
short/medium term all existing applications are able to exploit
our mobility management solution without any change.

From the above considerations, it is clear that to combine “per-
application independent handovers” and “support of legacy
applications” the UPMT modules need to be able to intercept
and properly manipulate the traffic directed to and coming
from a legacy application on the mobile device, implementing
the needed mobility management decisions. In this light, the
UPMT modules that can perform flow manipulation need to be
Operating System (OS) specific, while the “networking”
aspects of UMPT (e.g. how packets are tunneled, how
handovers are signaled) are independent from the OS.

978-1-4244-9538-2/11/$26.00 ©2011 IEEE

II. UPMT BASICS

UPMT is a solution for mobility management over
heterogeneous networks based on IP in UDP tunneling. The
basic idea can be summarized as follows. A multi-homed MH
establishes an IP in UDP tunnel for each active network
interface with its UPMT “correspondent peer”. This
correspondent peer can be an “Anchor node”, a correspondent
Fixed Host or a correspondent Mobile Host and plays the role
of “Tunnel server” as it provides the second end of the tunnels
established by the MH.

Independently from the number of established tunnels, a
virtual interface (viface) is brought up and configured with a
virtual IP address (VIpA) in the MH. MH IP stack is
configured in such a way that IP packets locally generated by
applications “under UPMT control” are routed through the
virtual interface and handled by UPMT protocol layer (e.g. by
using “policy routing” features). The output tunnel is chosen
by UPMT according to a “Per-Application Forwarding Table”
(PAFT), a table that binds an application flow identified by the
5-tuple (protocol, IP source address, IP destination address,
source port, destination port) with an output tunnel. The PAFT
associates an application level “socket” to the tunnel used to
send packets from the MH to the AN and from AN to MH. For
each application packet sent over the viface, a PAFT look-up
is performed. The packet is then encapsulated in the resulting
IP in UDP tunnel and sent over the real network interface.
With this approach, both IP readdressing of the underlying
network interfaces and application flows handovers from one
tunnel to another are hidden to the virtual interface’s IP stack
and application sockets. In the tunnel server, for each
incoming packet received on a registered IP in UDP tunnel the
PAFT is updated (if necessary) and reply packets are sent over
the same tunnel. In case of downstream traffic, MH can update
the PAFT of its tunnel server also by sending an explicit
request.

UPMT design takes into account a multi AN scenario in which
the MH is allowed to concurrently use more then one AN and
independently choose the AN for any application flow under
UPMT control. The virtual addresses management is fully
decentralized and no cooperation between ANs is required. In
[6] we proposed a solution in which each AN assigns a
“locally unique” VIpA to MH. According to the AN to which a
given tunnel is established, the MH performs local NAT so
that still only one virtual viface is required regardless of the
actual number of ANs concurrently used.

The AN provides the Mobile Host with a second level NAT
service on the “Anchor-NAT”, which is a key element in our
mobility architecture (Figure 1). In fact, the idea is that the
Mobile Host will access the Internet through the NAT in the
Anchor Node, using a public IP address provided by the AN.
Since a CH never sees the VIpA used by MH, communication
with legacy CH is provided.

The MH connects to the AN using IP in UDP tunnels, one
tunnel per each access network. The UPMT mobility
management procedures allow the MH to select the tunnel
towards the Anchor Node, if needed in a separate way for each
application/flow to be supported.

MH

Legacy

CH

Public

Internet

AN

Local

NAT

Local

NAT
Net1

Net2

Net3

Anchor

NAT

Figure 1. UPMT reference scenario

It is worth spending some words about the choice of IP/UDP
encapsulation as tunneling method in UPMT, as opposed to
other candidates like for example Generic Routing
Encapsulation (GRE), L2TP, IP in IP. The pros of IP/UDP
encapsulation are: (i) NAT traversal of UPMT data flows does
not require any additional mechanism since UDP traverses all
existing NAT implementations. (ii) There is no need to register
a new IP protocol number to handle tunneled data. (iii)
IP/UDP encapsulation requires less overhead2 with respect to
GRE.

The networking and signalling aspects of UMPT have been
presented in [4]. The full details can be found in the technical
report [7], including the procedures to establish the tunnels, to
manage the PAFTs, to support the NAT functionality and to
drive the handover of application flows across the tunnels.

III. RELATED WORK

MIPv4 [8] is the networking level mobility solution for IPv4
standardized within IETF. MIPv4 requires support by the
Foreign Network (FH) access router (Foreign Agent - FA).
This is a major limitation for the deployment of ubiquitous
ABC services in the short/ medium term, as all access
networks visited by the MH must support MIPv4. Moreover,
support for “IP flow binding” [8] (required to build a per-
application mobility management infrastructure) is still at early
stage of standardization process.

MIPv6 [9] benefits from both the previous work on MIPv4
and from some features offered by IPv6 itself. Even though
MIPv6 shares many features with UPMT and fulfills a number
of requirements (e.g. multiple CoAs [10], flow binding update
[11]), IPv6 connectivity cannot be given as granted for most
Internet Service Providers. Again, in the short/ medium term
MIPv6 mobility solutions for ABC are limited by the access
and transport network infrastructure.

HIP [12] seems to be more suited for ABC services. HIP is
totally end-to-end but also defines mechanisms for rendezvous
services and host discovery. HIP works with NAT and with all
existing network infrastructure. Even though HIP

2 IP/GRE encapsulation with the KEY option requires 20 + 16 B against 20 +

8 B of IP/UDP. (The key option is required to multiplex tunnels on a single
address without inspecting the inner packet).

specifications do not support a per-application mobility
management, quite recently a per-application mobility
management solution based on HIP has been proposed in [5].
This solution has only been simulated using a network
simulator, and no real implementation has been developed.

In [3] a per-application mobility management platform was
first proposed. The solution is based on address translations on
the two endpoints, and it requires that both endpoints are
“mobility-aware”. The interoperability with NATs is not
discussed and the solution is evaluated by simulation, no real
implementation is reported.

IV. UPMT IMPLEMENTATION DESIGN

In this section we focus on some architectural aspects of our
UMPT implementation running in the Mobile Host and in the
Anchor Node. In particular, we will consider two aspects: i)
the implementation of tunnelling mechanisms (encapsulation
and de-capsulation of packets); ii) the handling of the flows
without active cooperation of the applications and without
linking ad-hoc modified socket libraries. The former aspect
(tunnelling) is common to both MH and AN, the latter (flows
handling) specifically concerns the MH. Figure 2 and Figure 3
show the architecture of our Linux based UPMT
implementation respectively for the Anchor Node and for the
Mobile Host.

As shown in the figures, the realized Linux implementation is
composed by user space and kernel space components. The
UPMT implementation architecture in the Anchor Node is a
subset of the one in the Mobile Host. The common modules
are the UPMT tunnelling, the PAFT (per Application
Forwarding Table) and the UPMT Configu-ration Tool.

The PAFT works at the level of the single flow, i.e. identified
by the 5-tuple (protocol, IP src, IP dst, src port, dst port),
storing the correspondence between flows and tunnels, both in
the MH and in AN.

AN-UCE -

UPMT Control

Entity

UPMT
Configuration

Tool

Signaling
Agent

Network
Manager

UPMT

Tunneling

JNI

DBUS

NETLINK
socket

PAFT

User Space

Kernel

Interface

function call

UPMT

module

external

module

Figure 2. Linux UPMT modules on Anchor Node

MH-UCE
UPMT Control

Entity

UPMT
Configuration

Tool

UPMT
Connection

Tracker

Signaling
Agent

Network
Manager

Conn-Tracker
Proxy

UPMT

Tunneling

Exception
filter

UCE
GUI

Application
Monitor

JNI

DBUS

NETLINK
socket

NETLINK
socket

PAFT

local
socket

User Space

Kernel

Interface

function call

UPMT

module

External

module

Figure 3. Linux UMPT modules on Mobile Host

The UPMT tunnelling component and the PAFT are
implemented in kernel space for maximum performance. This
means that the UDP flows used for tunnelling data between the
AN and the MH are handled within the kernel: the UDP
packets received from these tunnels are not transferred to a
user space application as a “normal” UDP socket would do.
Likewise, the packets outgoing on these UDP flows are not
received from a user space application through a socket, but
are generated within the kernel that “intercepts” the proper IP
packets in a layer 2 virtual interface and encapsulate them into
the UDP tunnel. As shown in Figure 4, this is different from
other existing IP in UDP tunnelling solution (such as
OpenVPN [13]) which operates the encapsulation and de-
capsulation in user space, by creating “normal” UDP sockets.
In these user space solutions, an outgoing packet is transferred
by an application to the Kernel, then the kernel intercepts it
and sends it to the user space tunnelling, which encapsulate it
and sends it again to the kernel using a UDP socket. This
approach is clearly un-efficient, as we will be able to show
with performance measurements.

Application

TX/RX

User Space

Kernel

TUN/TAP

L2 driver

Tunneling

application

“Real” NIC

L2 driver

socket

socket

Application

TX/RX

User Space

Kernel

UPMT

L2 driver

“Real” NIC

L2 driver

socket

OpenVPN tunneling approach UPMT tunneling approach

Figure 4. Tunneling approach comparision

The advantage of a user space solution is that it does not
require kernel modifications. Actually, we implemented a first
prototype of UPMT using a user space tunnelling module. We
discarded it, when we noticed the performance limitations and
we realized that we needed in any case modification to the

kernel in order to provide per-application handover supporting
legacy applications.

The UMPT tunnelling module communicates with the user
space UPMT Configuration module using the so-called
“Netlink Sockets” of the Linux OS. The UPMT Configuration
module is used by the coordinating entities of UPMT, called
UPTM Control Entities (MH-UCE and AN-UCE for Mobile
Host and Anchor Node respectively). The UPMT Control
Entities run in user space, they sends commands to the UPMT
tunnelling kernel module as needed to configure the PAFT
(Per-Application Forwarding Table) and to drive the handover
process.

In the Mobile Host, the UCE module is complemented with a
Graphical User Interface that can be used for user interaction,
especially useful for testbed and demo purposes. The UCE and
the associated GUI are written in Java. On the MH, the UCE
GUI presents the user the list of available network interfaces,
the list of active application and the list of the sockets open by
each applications. The user is able to decide the interface (i.e.
the tunnel) to be used for an application or even for each single
socket of each application, “manually” controlling the
handovers. The UCE is also able to work autonomously
according to a set of configurable policies. A configuration file
is now used to configure the per-application policies. Current
policies are simple (e.g. a priority list of interfaces to be used
when available), it is for further study to define and implement
more complex policies, e.g. based on performance
measurements, performance estimates, costs and so on. On the
MH, the UCE receives notifications about the presence and the
status of network interfaces from the Network Manager [15]
and it communicates with remote UPMT entities (e.g. the
Anchor Node) using the UPMT Signalling Agent.

It is worth to discuss how it is possible to populate the PAFT
on the Mobile Host, adding the sockets that are used by the
applications. Assume for example that at a given time there is
the policy to send all sockets of application X through tunnel
M. It is relatively easy to retrieve the list of all the active
sockets for the application X, and it would be easy to add a set
of PAFT entries pointing each socket into tunnel M (and this
could be repeated periodically with a sort of polling
mechanism). The problem is that moving the sockets into the
tunnels would break the sockets itself as the packets would be
NATed at the exit of the tunnels in the Anchor Node.
Therefore these sockets must be inserted in the tunnel M from
the very first packet of the flow. The solution is to use the
conntrack [16] facilities in the Linux Netfilter framework [17]
which allows to “capture” the first packets of each socket.
Once a “first packet of a socket” is captured, our module
checks the application to which the socket belongs, decides

3
 if

the packet has to be handled by UPMT and, if so, it decides
which tunnel must be used and sets the PAFT accordingly.
Then the packet continues its “regular” processing, so that the
PAFT entry will be used to decide on which tunnel to send it.

3Once the first packet is captured, policies implementation is
straightforward, and can be based for example on application name,
protocol, destination address etc.

Strange as it may sound, there is no simple facility in the Linux
kernel to understand which application (e.g. which Process ID
or “PID”) has produced a packet from the data structure
(called skbuf) that contains the packet itself, which only carries
a socket identifier or “file descriptor”. Associating a file
descriptor with a Process ID is possible in user space by
browsing the information contained in the /proc file system
(recursively reading all process folders in /proc and looking
for the file descriptor that is associated to the packet in the
skbuf). It is not possible to perform the same interrogation
from kernel space, so one could think to (1) “stop” the packet;
(2) ask some software module responsible for reading the
/proc to find the process that opened a given socket; (3)
buffering all related packets till the response is received
(because sleeping is not allowed in this particular kernel
context). This is clearly not optimal, therefore we decided to
extend the skbuf structure in the Linux kernel to transport the
application PID. This way, when processing a packet in the
networking stack of the kernel, it is easy to get the PID of the
owner application, at the prize of the need to recompile the
kernel to extend the skbuf structure.

V. TESTBED AND PERFORMANCE EVALUATION

We have implemented the proposed UPMT solution under
Linux OS. The implementation is available as open source at
[18]. In the following subsections we provide a performance
evaluation of the UPMT implementation. In Section V.A we
deal with the impact of handovers on “user level”
performances like throughput. In Section V.B we assess the
performances of the realized implementation of the Anchor
Node and of the Mobile Host with respect to the processing
load. In both cases we followed an experimental approach by
performing measurements on the actual implementation.

A. User Level Performance Analysis

We setup a test-bed where we could show separate handovers
of different applications over three access networks active at
the same time (Ethernet, WLAN and 3G access provided by a
commercial operator). To the best of our knowledge, our
implementation is the only one performing per-application
independent handover in a real test bed. We monitored the
execution time of the handover by capturing packet traces with
the tcpdump tool. The results show that there is virtually no
delay in the handover execution, the difference in the time
stamps of the received packets is only due to the differential
network delay among the interfaces and that there is no packet
loss. The test-bed consists of the following components:

1. an anchor node AN at public IP address 160.80.103.66. AN
is a PC with Pentium M 1.2 GHz processor, 1.256 GB
RAM and Linux kernel 2.6.35.4-upmt.

2. a mobile host MH with three network interfaces. MH is a
laptop with Linux kernel 2.6.35.4-upmt, Core 2 Duo 1.83
GHz, 2 GB RAM. MH is equipped with 3 NICs: (i) wlan0,
a wireless 802.11g NIC connected to a AP on the LAN
192.168.100.0/24; (ii) eth0, a Ethernet 100Mbs NIC on the
LAN 192.168.100.0/24; (iii) ppp0, a HSPA USB card
connected on a PPP link and IP address 95.75.196.58. In

addition MH has a UPMT virtual interface has a fixed
virtual IP address VIpA_fix 5.6.7.8.

3. a number of legacy correspondent hosts placed over the
Internet. In particular, along the demonstration time, MH
will connect to a WEB server CH1 at www.torvergata.tv, a
backup file server CH2 at ubfsrl.ath.cx; a streaming server
CH3 at vipnrj.yacast.net; a FTP server CH4 at
ftp.archlinux.org and a laptop CH5 placed in another LAN
running a skype client.

The demonstration described in the reminder of this section is
intended to show UPMT capability of performing per-
application independent handovers. After initial association
and tunnel establishment, five applications are started in the
same sequence as they are listed in Table 1. Four applications
are put under UPMT control; one application (firefox) is not
handled by UPMT and is routed through eth0 for the whole
demo time. The initial interface for each application is the first
interface in the “Handover” column. The applications under
UPMT control are handed over as described in Table 1, in the
same sequence as they are listed.

We monitored the execution time of the handover by capturing
packet traces with the tcpdump tool. The results are reported in
Figure 5. Each sub-figure shows for each application the sum
of received and transmitted bits-per-second on the first and the
second network interfaces used over the demo time (the initial
period in which the application are sequentially launched has
been cut). The trace related to firefox traffic (no UPMT) has
been omitted.

Table 1 Application list in the reported experiment

App Activity Traffic Handover CH

skype video

conference

RT (UDP)

video/audio

+ control

ppp0�eth0 CH5

+ al.

vlc streaming MMS (TCP) wlan0�ppp0 CH3

scp backup SSH (TCP) eth0�wlan0 CH2

chrome ftp

download

FTP (TCP) wlan0�eth0 CH4

firefox streaming HTTP (TCP) eth0

(no UPMT)

CH1

Further details of the measurements are available at [7]. We
just note that the results are fully satisfactory: (i) there is
virtually no delay in the handover execution, the difference in
the time stamps of the received packets is only due to the
differential network delay among the interfaces; (ii) we have
no packet loss and indeed, the sum of the bit-rate for the two
interfaces around the handover instant keeps the aggregate
bandwidth in trend; (iii) the oscillation visible on the traces are
not caused by UPMT tunnelling, but they are caused by
network loss and TCP congestion control, as we observed
identical behaviour without UPMT. In conclusion we want to
underline that the current UPMT implementation already
provides “break-before-make” handovers and per-socket
handovers, which was not possible to show here.

Figure 5 User level performance evaluation

B. System Level Performance Analysis

In this section we want to analyze the processing load
performances of the proposed solution, both on the anchor
nodes and on the mobile devices. For different reasons, it is
important that the processing burden is as limited as possible
in both cases. On the anchor nodes, the reason is that the
scalability of the solution (i.e. how many concurrent flows and
concurrent users can be supported) depends on the processing
load.

Figure 6 Test-bed for System Level performance analysis

On the mobile devices an excessive processing load due to the
mobility management can limit the performance of the
applications, considering the limited processor capacity.
Moreover the processing load has an impact on the duration of
the batteries. We show that the proposed tunneling mechanism
implemented in kernel space is very efficient with respect to
the processing load.

We used an experimental methodology, both for the analysis
of Anchor Node processing load and for the Mobile Host
processing load. Figure 6 and Table 2 respectively show the
networking architecture and the hardware used in the test-bed.
We compared three solutions, as shown in Figure 7: i) sending
packets without UMPT tunneling (i.e. only using NAT
functionality in the AN), which is the “reference” solution
(denoted as plain-NAT); ii) sending packets using UMPT
tunneling (denoted as UPMT); iii) sending packets using a
user-level tunneling mechanism, in particular OpenVPN [13]
with null ciphering.

 iperf sender

iperf receiv.

Mobile Host

Scenario 1 : plain-NAT

Anchor Node

iperf sender

iperf receiv.

Corresp. Host

NAT.

Mobile Host

Scenario 2 : UPMT

NAT

iperf sender

iperf receiv.

Corresp. Host

NAT.

Mobile Host

Scenario 3 : ULT (Open VPN)

Open VPN server

iperf sender

iperf receiv.

Corresp. Host

NAT.

UPMT tunnel

D-TLS tunnel

iperf sender

iperf receiv.

iperf sender

iperf receiv.

Figure 7:. System Level performance evaluation scenarios

As for the Anchor Node, we produced synthetic flows with the
iperf traffic generation tool using two external hosts and
analyzed the behavior of the AN, in terms of packet loss and
CPU processing load (measured using the mpstat Linux tool).
We were able to estimate the CPU saturation load of the AN
by increasing the generated traffic. Figure 8 shows the packet
loss due to CPU overload in the Anchor Node in the three
scenarios. On the x axis the input packet rate (packets/s) is
reported. For each scenario it is possible to identify a
“saturation load”: when the input traffic is lower than the
saturation load there is no packet loss, when the input traffic is
higher than the saturation load, the excess traffic is dropped.
The saturation load for UPMT (around 60.000 pkt/s) is not
much lower that the one for plain-NAT (70.000 pkt/s). This
shows that the additional processing load due to
encapsulation/de-capsulation has limited impact on the
scalability of the Anchor Node. On the other hand, the
saturation load in the user level tunneling (OpenVPN) is much
lower (around 20.000 pkt/s). This is due to the inefficiency of
performing tunneling in the user space. The result is confirmed
by the analysis of CPU load for the same range of input traffic
(Figure 9). When the input traffic rate grows and approaches
the saturation load, the CPU load grows and approaches
100%. From the saturation load onward, the CPU load remains
at 100%.

Table 2 – Hardware used in the experiments

Mobile Host (iperf source
and receiver)

PC Intel Core 2 Quad 2.66 GHz,
NIC Ethernet 100 Mb/s

Access Node PC VIA C7-D Processor 1.5 GHz,
2 NICs Ethernet 100 Mb/s

Correspondent Host (iperf
source and receiver)

PC Intel Core 2 Duo 1.83 GHz,
NIC Ethernet 100 Mb/s

As for the Mobile Device processing load, we considered the
iperf application generating packets at different rates. It should
represent a generic application that is producing a packet
stream. We measured the overall processing load of the device
under the three different networking scenarios (plain-NAT,
UPMT and Open-vpn) in order to evaluate the impact of our
tunneling mechanism and to compare it with that of a user-
space tunneling mechanism. Figure 10 shows that, as in the
Access Node experiments, the difference between the plain-
NAT (no tunneling) and the UPMT (kernel-based tunneling) is
limited. In this case the relative difference is even smaller, as
the CPU load is dominated by the user-space operations
performed by the application and in particular by system-calls
needed to relay the data from user-space to kernel-space
(transmitting side) and vice-versa (receiving side). On the
other hand, the difference between the plain-NAT and the
Open-vpn processing load is relatively high.

VI. CONCLUSIONS

We remark that to the best of our knowledge, we provided the
first implementation of per-application mobility management
in real devices. We have performed some user level and
system level performance analysis on the real implementation.
As for user level performance, we measured the throughput of

different applications across the UPMT handover procedures
and found that the impairment is negligible. As for the system
level performances, the analysis shows that the processing
penalty incurred by the tunneling operation is limited. This is
achieved thanks to the kernel based implementation, as a
comparable user space tunneling solution shows much higher
processing requirements.

Figure 8. Anchor Node packet loss comparison

Figure 9. Anchor node CPU load comparison

Figure 10. Mobile Device CPU load comparison

ACKNOWLEDGMENT

We would like to thank Alessio Bianchi, Andrea Gambitta,
Fabio Patriarca, Enrico Gagliano, Andrea Capitani, Fabio
Ludovici, for their contribution to UPMT development.

VII. REFERENCES

[1] E. Gustafsson et al. “Always Best Connected”, IEEE Wireless
Communications, Feb 2003.

[2] Deguang Le, Xiaoming Fu, Dieter Hogrere, “A Review of Mobility
Support Paradigms for the Internet”, IEEE Communications surveys, 1s
t quarter 2006, Volume 8, No. 1

[3] M. Chang, H. Lee, M. Lee, "A per-application mobility management
platform for application-specific handover decision in overlay
networks", Computer Networks, Volume 53, Issue 11, July 2009

[4] M. Bonola, S. Salsano, A. Polidoro, “UPMT: Universal Per-Application
Mobility Management using Tunnels”, IEEE GLOBECOM 2009

[5] L. Bokor, L. T. Zeke, S. Nováczki. G. Jeney, “Protocol design and
analysis of a HIP-based per-application mobility management
platform”, Proceedings of the 7th ACM international symposium on
Mobility management and wireless access, 2009, Tenerife, Spain

[6] M. Bonola, S. Salsano, “Achieving Scalability in the UPMT Mobility
Management Solution”, Future Internet and Mobile Summit 2010, 16 -
18 June 2010, Florence, Italy

[7] S. Salsano, M. Bonola et al., “The UPMT solution (Universal Per-
application Mobility Management using Tunnels)”, technical report
available at http://netgroup.uniroma2.it/TR/UPMT.pdf

[8] C. Perkins, “IP Mobility Support for IPv4”, IETF RFC 3344, (Aug.
2002) S. Gundavelli, et al., ”Flow Binding Support for Mobile IPv4” -
draft-ietf-mip4-multiple-tunnel-support-00, (Aug. 2010)

[9] D. Johnson, C. Perkins, J. Arkko, “Mobility Support in IPv6”, IETF
RFC 3775, (Jun. 2004)

[10] R. Wakikawa et al, “Multiple Care-of Addresses Registration”, IETF
RFC 5648 (Oct 2009)

[11] G. Tsirtsis et al., “Flow Bindings in Mobile IPv6 and NEMO Basic
Support”, draft-ietf-mext-flow-binding-11

[12] R. Moskowitz, P. Nikander, P. Jokela, T. Henderson, “Host Identity
Protocol”, IETF RFC 5201, (Apr. 2008)

[13] OpenVPN, http://openvpn.net/index.php/open-source/overview.html

[14] T. Henderson, P. Nikander, M. Komu, “Using the Host Identity Protocol
with Legacy Applications”, IETF RFC 5338, (Sept. 2008)

[15] Network Manager home page
http://projects.gnome.org/NetworkManager/

[16] P. Ayuso. Netfilter’s connection tracking system, ;LOGIN: The
USENIX magazine, 32(3):34–39, 2006

[17] The netfilter project, http://www.netfilter.org/

[18] UPMT homepage: http://netgroup.uniroma2.it/UPMT

