
Mantoo - a set of management tools for controlling SDN experiments

Stefano Salsano(1), Pier Luigi Ventre(2), Francesco Lombardo(1), Giuseppe Siracusano(1),
Matteo Gerola(3), Elio Salvadori(3), Michele Santuari(3), Mauro Campanella(2), Luca Prete(4)
(1) CNIT / Univ. of Rome Tor Vergata - (2) Consortium GARR - (3) CREATE-NET – (4) ON.Lab

Abstract – OSHI – Open Source Hybrid IP/SDN networking is a
hybrid approach allowing the coexistence of traditional IP
routing with SDN based forwarding within the same provider
domain. In this demo, we will show a set of Open Source
management tools for the emulation of the proposed solution
over the Mininet emulator and over distributed testbeds. We
refer to this suite of tools as Mantoo (Management tools).
Mantoo includes an extensible web-based graphical topology
designer providing different layered network “views” (e.g. from
physical links to service relationships among nodes). The
framework is able to validate a topology, to automatically deploy
it over a Mininet emulator or a distributed SDN testbed, to
access nodes by opening consoles directly via the web GUI.

Keywords - Software Defined Networking, Open Source,
Network management tools, Emulation.

I. MANTOO: MANAGEMENT TOOLS FOR SDN EXPERIMENTS

ON M ININET AND DISTRIBUTED SDN TESTBEDS

Mantoo is a set of Open Source tools meant to support
SDN experiments over emulators and distributed testbeds.
Mantoo is able to drive and help the experimenters in the
different phases that compose an experiment: design,
deployment, control and measurement, as described in the
next subsections. Mantoo includes: a web based GUI called
Topology3D (Topology and Services Design, Deploy and
Direct, Figure 1), a set of scripts to configure and control
emulators or distributed testbeds; a set of scripts for
performance measurements. The overall Mantoo workflow is
represented in Figure 2. Using the Topology3D, the user can
design its experiment in terms of physical topology and
services, start the deployment of the topology and run the
experiments exploiting the provided measurement tools. The
design of Mantoo and of its components is modular and it can
be easily extended to support scenarios that go beyond the use
cases of our interest. The first implementation of our
management tools has been described in [2].

A. Design Phase

The Topology3D offers a web GUI to design a network
topology and to configure the services for an experiment (see
Figure 1). It consists in a JavaScript client and a Python back-
end. A link to a public instance of the Topology 3D can be
accessed from [1]. The Topology3D is meant to be an
extensible framework that can support different models of
topology and services. A model corresponds to a
technological domain to be emulated and is characterized by
the set of allowed node types (e.g. routers, switches, end-
hosts), link types, service relationships and related constraints.
As shown in Figure 2 the Topology3D takes in input a textual
description of the model. The model description is used to
configure the topology designer page, to enforce the
constraints when the user is building the topology and/or
during the validation of the topology. So far, we have
provided two models: 1) the OSHI topology domain,

including two types of OSHI nodes (Core Routers, Provider
Edge routers, see [2]), the Customer Edge routers which are
also used as traffic source/sinks and the SDN controllers; 2) a
generic layer 2 network with OpenFlow capable switches,
end-nodes and SDN controllers. Each model is decomposed in
a set of views. A view is a perspective of a model, which
focuses on some aspects hiding the unnecessary details. For
example, the OSHI model is decomposed in 5 views: data
plane, control plane and 3 views for the 3 services (IP VLLs,
Pseudo Wires and Virtual Switches). In the data plane view,
users can design the physical topology in terms of nodes
(OSHI CR and PE, Controllers, and CEs) and links; in the
control plane view, users define the association of OSHI
nodes with controllers; in the service views users can select
the end points of the services.

Figure 1. The Topology3D (Design, Deploy & Direct) web GUI

Topology3D integrates Networkx, a Python package for
the creation/manipulation of complex networks, making it
also possible to randomly generate a data plane topology with
certain given characteristics. The Topology3D exports the
representation of the views (topology and services) in a JSON
format, which becomes the input for the deployment phase.

Setup scripts

Config scripts

Remote

Control

Scripts

Topology

representation

file (JSON)

Deployer Scripts

Topology

Parser

networkx

(automatic

topology generator)

Topology

to testbed

mapping

GOFF - OSHI

DeployerOFELIA - OSHI

Deployer

OSHI

Deployer

Distributed testbeds
Mininet emulation

Models
Models

Models of

technology

domains

VM servers

Topology 3D GUI
Topology and Services

Design, Deploy and Direct

Mininet

Extension

library

Testbed

Deployer

library

Topology

to testbed

mapping

Measurement

tools

Management

Scripts

Mininet

deployment

Deployment

on testbeds

Access

to virtual

nodes

consoles

Figure 2. Mantoo enabled emulation workflow

B. Deployment phase

The deployment phase translates the designed topology
into the set of commands that instantiate and configure the
nodes and the services for a given experiment. This phase can
target different execution environments for the experiments,
by means of a specific “Deployer”. So far, we targeted one
emulator (Mininet) and two distributed SDN testbeds (the
OFELIA testbed [3] and the GÉANT OpenFlow Facility -
GOFF). By default, Mininet only provides the emulation of
hosts and switches. We extended Mininet introducing an
extended host, capable of running as a router and managed to
run the Quagga and OSPFD daemons on it. Then we have
added Open vSwitch to it, as needed to realize the OSHI node.
The details on the specific Mininet deployment architecture
can be found in [4]. The Mininet Extensions library is able to
automate all the aspects of an experiment. This includes the
automatic configuration of IP addresses and of dynamic
routing (OSPF daemons) in all nodes, therefore relieving the
experimenter from a significant configuration effort. The
Mantoo framework is modular so that an experimenter can
add its own deployer targeting a different specific execution
environment.

Figure 3. Testbed Deployer Figure 4. Mininet Extensions

We implemented and tested a Deployer for the OFELIA
testbed and one for the GOFF testbed. These two testbeds
share a similar architecture as they are based on the OCF
(OFELIA Control Framework) [3]. The Management Scripts
automate and facilitate the setup, configuration and the
deployment of an experiment. They relieve the experimenter
from tedious and error prone activities. A management host
coordinates the overall process, usually also executing the
Deployer scripts. The management host and the VMs
communicate over a management network. The configuration
files generated by the Deployers scripts are uploaded on a
repository reachable by the VMs (e.g. a webserver running on
the management host) and these files are downloaded by each
VM belonging to the experiment.
In order to replicate an experimental topology emulating the
network links an overlay of Ethernet over UDP tunnels is
created among the VMs, based on VXLAN tunnels provided
by Open vSwitch. The design of the VXLAN tunneling
solution for OSHI over a distributed testbed is reported in
Figure 5. Overlay VXLAN tunnels are associated to ports of
the OpenFlow capable switch (Open vSwitch). The nice thing
is that the configuration of the switch is the same as if its ports
were physical ports. Therefore it is possible to have a realistic
emulation of the node operations concerning its control plane.

C. Control phase (running the experiments)

In the Mininet based experiments it is possible to open
consoles on the emulated nodes using the web GUI of the

Topology3D. The consoles show the output generated by the
ssh processes connected to the nodes (deployed in the Mininet
emulator). The generated output is conveyed to the terminal
shell running in the experimenter browser, leveraging the
WebSocket API, where each terminal has a separate
WebSocket channel.

Virtual ports

VXLAN tunnel “ports”

IP

SDN
OF Capable Switch - OFCS

(Open vSwitch)

Physical interface with “testbed”

IP address (e.g. 192.168.1.x)

IP forwarding & routing component

eth1.199 port

Ethernet

over UDP

Figure 5. Implementing VXLAN tunnels using Open vSwitch (OVS)

D. Measurement Phase

In order to automate as much as possible the process of
running the experiments and collecting the performance data
over distributed testbeds we have developed an object
oriented multithreaded Python library called Measurement
Tools. The library offers an intuitive API that allows the
experimenter to “program” his/her tests. Using the library we
can remotely run the traffic generators (iperf) and gather load
information (CPU utilization) on all nodes (VMs).

II. DEMO DESCRIPTION

In the demo we show how to graphically design a
topology and a set of services and then to automatically
deploy the experiment over the Mininet emulator and collect
performance measurements. Open vSwitch is used to realize
the hybrid IP/SDN nodes. Two types of services have been
implemented: the IP “Virtual Leased Line” (IP VLL) and the
Layer 2 “Pseudo-wire” (PW). Both services are offered
between end-points in Provider Edge routers, the end-points
can be a physical or logical port (i.e. a VLAN on a physical
port) of the PE router connected to a Customer Edge (CE).
The tunneling of the services is realized in the core hybrid
IP/SDN network using either VLAN tags or MPLS labels.

III. ACKNOWLEDGMENTS

This work was partly funded by the EU in the context of the
projects: GÉANT GN4 Phase 1 (GN4-1) [5], FP7 NETIDE
[6], DREAMER [7] (one of the beneficiary projects of the
Open Call research initiative of GN3plus [8]).

IV. REFERENCES
[1] OSHI homepage http://netgroup.uniroma2.it/OSHI
[2] S. Salsano, P. L. Ventre, L. Prete, G. Siracusano, M. Gerola, E.

Salvadori, “Open Source Hybrid IP/SDN networking (and its emulation
on Mininet and on distributed SDN testbeds)”, EWSDN 2014, 1-3
September 2014, Budapest, Hungary

[3] Marc Suñé et al., “Design and implementation of the OFELIA FP7
facility: The European OpenFlow testbed”, Computer Networks, Vol.
61, March 2014

[4] P. L. Ventre et al. “OSHI technical report” available at [1]
[5] http://www.geant.org/geantproject/About/Pages/GN4_Phase_1.aspx

[6] http://www.netide.eu/

[7] DREAMER home page - http://netgroup.uniroma2.it/DREAMER/
[8] http://www.geant.net

