Mantoo - a set of management tools for controllingDN experiments

Stefano Salsaffd Pier Luigi Ventr&), Francesco Lombarty Giuseppe Siracusaho
Matteo Gerol&, Elio Salvadof?, Michele Santuaf, Mauro Campanelf3, Luca Pret®
(1) CNIT / Univ. of Rome Tor Vergata - (2) Consarti GARR - (3) CREATE-NET — (4) ON.Lab

Abstract — OSHI — Open Source Hybrid IP/SDN networling is a
hybrid approach allowing the coexistence of tradibnal IP
routing with SDN based forwarding within the same povider
domain. In this demo, we will show a set of Open 8ae
management tools for the emulation of the proposedolution
over the Mininet emulator and over distributed tesbeds. We
refer to this suite of tools as Mantoo (Managementools).
Mantoo includes an extensible web-based graphicalopology
designer providing different layered network “views' (e.g. from
physical links to service relationships among nodgs The
framework is able to validate a topology, to automically deploy
it over a Mininet emulator or a distributed SDN tegbed, to
access nodes by opening consoles directly via themGUI.

Keywords - Software Defined Networking, Open Source,
Network management tools, Emulation.

I. MANTOO: MANAGEMENT TOOLS FORSDN EXPERIMENTS
ON MININET AND DISTRIBUTED SDN TESTBEDS

Mantoo is a set of Open Source tools meant to stippo

SDN experiments over emulators and distributedbésist.
Mantoo is able to drive and help the experimentershe
different phases that compose an experiment:
deployment, control and measurement, as describetthd
next subsections. Mantoo includes: a web based cllkdd

desigr

Topology3D (Topology and Services Design, Deploy an

Direct, Figure 1), a set of scripts to configured arontrol
emulators or distributed testbeds; a set of scrifus
performance measurements. The overall Mantoo waskfs
represented in Figure 2. Using the Topology3D, uker can
design its experiment in terms of physical topologyd
services, start the deployment of the topology am the
experiments exploiting the provided measuremenistobthe
design of Mantoo and of its components is modutar iacan
be easily extended to support scenarios that gortaethe use
cases of our interest. The first implementation afr
management tools has been described in [2].

A. Design Phase

including two types of OSHI nodes (Core Routergyvitier
Edge routers, see [2]), the Customer Edge routbishnare
also used as traffic source/sinks and the SDN cbets; 2) a
generic layer 2 network with OpenFlow capable suet;
end-nodes and SDN controllers. Each model is deosatpin

a set ofviews. A view is a perspective of a model, which
focuses on some aspects hiding the unnecessarysdé&iar
example, the OSHI model is decomposed in 5 vievesa d
plane, control plane and 3 views for the 3 servitesvLLs,
Pseudo Wires and Virtual Switches). In the dataglaiew,
users can design the physical topology in termshades
(OSHI CR and PE, Controllers, and CEs) and linksthe
control plane view, users define the associationO&HI
nodes with controllers; in the service views usean select
the end points of the services.

OSHI -

Figure 1. The Topology3D (Design, Deploy & Direaigb GUI

Topology3D integrates Networkx, a Python package fo
the creation/manipulation of complex networks, mgkit
also possible to randomly generate a data plar@dgp with
certain given characteristics. The Topology3D etgpdhe
representation of the views (topology and serviges) JISON

The Topology3D offers a web GUI to design a networkformat, which becomes the input for the deploynmhase.

topology and to configure the services for an expent (see
Figure 1). It consists in a JavaScript client arfélython back-
end. A link to a public instance of the Topology 8Bn be
accessed from [1]. The Topology3D is meant to be
extensible framework that can support differemdels of
topology and services. A model corresponds to
technological domain to be emulated and is charaet by
the set of allowed node types (e.g. routers, swdclend-

hosts), link types, service relationships and eelatonstraints.

As shown in Figure 2 the Topology3D takes in inpuéxtual
description of the model. The model descriptiorused to
configure the topology designer page, to enforce
constraints when the user is building the topolamd/or
during the validation of the topology. So far, wavh
provided two models:

al

[4 Design, Deploy and Direct

1) the OSHI topology domain,Figure 2.

7 Topoiogy !

| totestbed |

Models of
technology

domains

Topology
representation
file ISON)

"7 T hetworkx)
(automatic

\ topology generator))

1

Management
Scripts

Y
Testbed
Deployer
library

Mininet Setup scripts
Extension
library

Topolog
Topology 3D GUI P:rsefy

Topology and Services

Mininet
deployment

Config scripts

Deployer
v

Remote

Control

Scripts

h ’rEpBTog'y':
| to testbed |

Access
to virtual
nodes
consoles

P==9)

o .
5 F=)

'M server:

=5 =
It T Measurement
-, tools

Distributed testbeds
Mantoo enabled emulation workflow

Deployment
on testbeds

Mininet emulation

B. Deployment phase

Topology3D. The consoles show the output generayethe

The deployment phase translates the designed tppolo SSh processes connected to the nodes (deployed Mininet

into the set of commands that instantiate and gondi the

nodes and the services for a given experiment. fiése can

target different execution environments for the eskpents,
by means of a specific “Deployer”. So far, we téegeone
emulator (Mininet) and two distributed SDN testbdtise

OFELIA testbed [3] and the GEANT OpenFlow Facility

GOFF). By default, Mininet only provides the emidat of
hosts and switches. We extended Mininet introducamg
extended host, capable of running as a router aamthged to

run the Quagga and OSPFD daemons on it. Then we hav

added Open vSwitch to it, as needed to realiz©®il node.
The details on the specific Mininet deployment &ssdture
can be found in [4]. The Mininet Extensions librésyable to
automate all the aspects of an experiment. Thikides the

automatic configuration of IP addresses and of dyoa

routing (OSPF daemons) in all nodes, thereforevelp the
experimenter from a significant configuration effoiThe
Mantoo framework is modular so that an experimeter
add its own deployer targeting a different spectfi@cution
environment.

Testbed Mininet
Deployer Extensions
library library

OFELIA GOFF
Deployer Deployer

Figure 3. Testbed Deployer

OSHI
Deployer

Figure 4. Mininet Exiens

emulator). The generated output is conveyed totehminal
shell running in the experimenter browser, levarggthe
WebSocket API, where each terminal has a separate
WebSocket channel.

IP forwarding & routing component

Virtual ports

OF Capable Switch - OFCS
(Open vSwitch)

1P
—

SDN
—

Ethernet
over UDP

VXLAN tunnel “ports”

R
TSRS

eth1.199 port Physical interface with “testbed”
IP address (e.g. 192.168.1.x)

Figure 5. Implementing VXLAN tunnels using Open W (OVS)

D. Measurement Phase

In order to automate as much as possible the pozks
running the experiments and collecting the perforoeadata
over distributed testbeds we have developed ancbbje
oriented multithreaded Python library called Measwent
Tools. The library offers an intuitive API that @Ns the
experimenter to “program” his/her tests. Using ltheary we
can remotely run the traffic generators (iperf) gather load
information (CPU utilization) on all nodes (VMs).

. DEMODESCRIPTION

In the demo we show how to graphically design a
topology and a set of services and then to autcalbti
deploy the experiment over the Mininet emulator antlect
performance measurements. Open vSwitch is usedalize

We implemented and tested a Deployer for the OFELIAhe hybrid IP/SDN nodes. Two types of services hiagen

testbed and one for the GOFF testbed. These twibetts
share a similar architecture as they are basedhenOCF
(OFELIA Control Framework) [3]. The Management $tsi
automate and facilitate the setup, configuratiord @he
deployment of an experiment. They relieve the expemter
from tedious and error prone activities. A managentest
coordinates the overall process, usually also dakegithe

Deployer scripts. The management host and the VMs

communicate over a management network. The corigur
files generated by the Deployers scripts are ugdadn a
repository reachable by the VMs (e.g. a websemvening on
the management host) and these files are downldayledch
VM belonging to the experiment.

In order to replicate an experimental topology eatinf the
network links an overlay of Ethernet over UDP tusnis
created among the VMs, based on VXLAN tunnels mtedi

by Open vSwitch. The design of the VXLAN tunneling (2]

solution for OSHI over a distributed testbed isarted in
Figure 5. Overlay VXLAN tunnels are associated totp of
the OpenFlow capable switch (Open vSwitch). The tidng
is that the configuration of the switch is the saaméf its ports
were physical ports. Therefore it is possible teeha realistic
emulation of the node operations concerning itdrobplane.

C. Control phase (running the experiments)
In the Mininet based experiments it is possibleofen

consoles on the emulated nodes using the web GUheof

implemented: the IP “Virtual Leased Line” (IP VLiEnd the
Layer 2 “Pseudo-wire” (PW). Both services are adter
between end-points in Provider Edge routers, thipaints

can be a physical or logical port (i.e. a VLAN omlaysical

port) of the PE router connected to a Customer H@E.

The tunneling of the services is realized in theecoybrid

IP/SDN network using either VLAN tags or MPLS lahel

lll. ACKNOWLEDGMENTS

This work was partly funded by the EU in the contekthe
projects: GEANT GN4 Phase 1 (GN4-1) [5], FP7 NETIDE
[6], DREAMER [7] (one of the beneficiary project$ the
Open Call research initiative of GN3plus [8]).

IV. REFERENCES

[1] OSHI homepage http://netgroup.uniroma2.ittOSHI

S. Salsano, P. L. Ventre, L. Prete, G. Siracusin&Gerola, E.

Salvadori, “Open Source Hybrid IP/SDN networkingddts emulation

on Mininet and on distributed SDN testbeds)”, EWSEN 4, 1-3

September 2014, Budapest, Hungary

[3] Marc Sufié et al., “Design and implementation of GeELIA FP7
facility: The European OpenFlow testbed”, CompiXetworks, Vol.
61, March 2014

[4] P.L. Ventre et al. “OSHI technical report” avaielt [1]

[5] http://www.geant.org/geantproject/About/Pages/GNvade_1.aspx

[6] http://www.netide.eu/

[7] DREAMER home page - http://netgroup.uniroma2.it/ DRREER/
[8] http://www.geant.net

