
UPMT Per-Application Mobility Management Solution:

a Demo for Linux and Android Terminals

Fabio Patriarca
Dip. Ingegneria Elettronica

Università di Roma “Tor Vergata”
Roma, Italy

fabio.patriarca.2@uniroma2.it

Stefano Salsano
Dip. Ingegneria Elettronica

Università di Roma “Tor Vergata”
Roma, Italy

stefano.salsano@uniroma2.it

Marco Bonola
CNIT - Research Unit

Università di Roma “Tor Vergata”
Roma, Italy

marco.bonola@uniroma2.it

Pasquale Cerqua
CNIT - Research Unit

Università di Roma “Tor Vergata”
Roma, Italy

pcerqua@libero.it

ABSTRACT
In this work we describe the demo of UPMT - Universal Per-

application Mobility management using Tunnels. UPMT is a per-

application mobility management solution highly suitable for

“ABC” (Always Best Connected) mobility scenarios since it

provides mechanisms to fulfill different and independent application

requirements as a mobile user roams across different access network

infrastructures and Service Providers. Thanks to the tunneling

approach, the UPMT solution works as an overlay over current

Internet and it does not require any enhancement of the networking

infrastructure. With this demo we show how the Linux and Android

implementations can choose the best network interface among all

available ones independently for each active application, set

handover policies and react to IP reconfigurations. The UPMT

solution foresees a mobility management node, called Anchor

Node. The Anchor Node includes a tool that perform server side

monitoring of connected Mobile Hosts and tunnels and it will be

shown in the demo.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network

Architecture and Design

Keywords
Application Level Mobility Management, Vertical Handover,

Tunneling

1. INTRODUCTION
The vision of an intelligent and automatic “roaming” among

different access networks has been called “Always Best Connected”

(ABC) service in [1] almost 10 years ago. The ABC service needs

to rely on a solution for seamless mobility management. Many

different solutions have been proposed, operating at different levels

of the protocol stacks [2]. Despite this considerable amount of past

work, the mobility management is still an active area for research

and standardization, see for example the activity of IETF DMM

(Distributed Mobility Management) WG [3].

UPMT (Universal Per-application Mobility management using

Tunnels) [4][5] is an “application level” solution, which provides:

1) support of legacy applications (no need to re-design and/or re-

compile the existing applications);

2) independent per-application handover and independent

handover of single flows (i.e. IP sockets) within an

application;

3) full interoperability with legacy host and with existing

networking infrastructure, including private IP numbering and

NATs (Network Address Translation).

UPMT is an application level solution and as such, it does not

require support from the network layer and from the underlying

layers. Application level solutions (like [6][7]) can be implemented

using existing networking infrastructure and are especially suited

for mobility management in the presence of heterogeneous and

multi-operator access network technologies, in contrast with

network-layer solutions like [8][9].

As shown in Figure 1, in its basic configuration UPMT relies on the

presence of a mobility management node called “Anchor Node”

(AN). The AN performs packet relay between a UPMT aware

Mobile Host (MH) and any legacy Correspondent Host (CH). This

means that the Correspondent Hosts do not need to be aware of

UPMT.

A set of IP in UDP tunnels (one per each physical interface of the

Mobile Host) is used to exchange the IP packets between the AN

and the MH. The MH and the AN can select on a flow-by-flow base

which tunnel to use to exchange packet and consequently choose

which physical interface on the MH will be used for each

application flow. The approach of using UDP tunnels allows to

deploy an “overlay solution” running on top of existing networking

equipment and provides the “NAT traversal” feature, i.e. it can

work over most of the access networks even if they are using

private IP addresses. The SIP protocol is used for mobility

management signalling among the involved entities.

The Mobile Host can define its own Anchor Node in its local

configuration of the UPMT service. Therefore there can be multiple

ANs in the network, they can be hosted by service providers

offering mobility services to their customers or by corporate

networks providing mobility services to their employees. In turn,

each organization can host multiple ANs to balance the load and for

geographical distribution. No special networking equipment is

needed, having a public IP address on a server is enough to host an

Anchor Node. From the point of view of the Mobile Host, being

connected to the Internet through a UPMT Anchor Node is like

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

MobiWac’12, October 21–22, 2012, Paphos, Cyprus.

Copyright 2012 ACM 978-1-4503-1623-1/12/10...$15.00.

being connected through any access network with private IP

addresses, which grants Internet access using a NAT gateway.

Note that the requirement to have an “Anchor Node” performing the

relay of the packets can be relaxed with further UPMT scenarios:

1) MH-to-FH : UPMT aware mobile hosts (MH) and fixed hosts

(FH) communicate directly with each other without

necessarily relying on ANs for packet forwarding;

2) MH-to-MH : MHs communicate directly with each other

without necessarily relying on ANs for packet forwarding.

All the details of the UPMT solution (including the details of the

MH-to-FH and MH-to-MH scenarios) cannot fit in this paper and

can be found in [5].

Mobile Host

(MH)

Correspondent

Host (CH)
Anchor Node

(AN)

NAT 1

NAT 2

Anchor

NAT

IP/UDP

Tunnel 2

IP/UDP

Tunnel 1

Figure 1: UMPT basic scenario

This demo is about the implementation of the UPMT solution. In

the demo we assess the main features of UPMT implementation, for

both Linux and Android OS, in particular:

 for each active application we can manually choose the
preferred Network Interface Card (NIC) among all possible
ones and through all kind of networking technologies, as long
as they use IP as networking layer

 for each active application we can set up handover policies
based on priority lists or active measurements

 the system reacts to IP reconfigurations of the available
interfaces to satisfy the connectivity policies set up by the
users

 on the anchor node we run a monitoring tool that keeps tracks
all active tunnels and for each Mobile Host the aggregated
bandwidth per NIC.

In order to meet our goals we had to implement some enhancements

to the IP networking modules of the Linux kernel. These

enhancements support the identification and the control of legacy

applications sockets in the Mobile Host. Moreover, while the

implementation of the IP in UDP tunneling described in [4] was

based on a user-space module, we have later on implemented the

tunneling in a kernel-space module. The performance evaluation of

the UPMT solution, including the comparison between the user-

space and the kernel space solution is reported in [10]. Our UPMT

implementation is open source and it is available at [11].

2. TECHNOLOGY DESCRIPTION
As shown in Figure 2 the proposed Linux/Android implementation

is composed by user space and kernel space components. The

coordinating entity is called UPMT Control Entity (UCE), it runs in

user space and it has a Graphical User Interface that can be used for

user interaction, especially useful for testbed and demo purposes.

The UCE and the associated GUI are written in Java. The GUI

component is different for the Linux and Android implementation.

The Linux UCE GUI (Figure 3) presents the user the list of

available network interfaces, the list of active applications and the

list of the sockets open by each application. The user is able to

decide the interface (i.e. the tunnel) to be used for an application or

even for each single socket of each application, “manually”

controlling the handovers. The UCE receives notifications about the

presence and the status of network interfaces from the Network

Manager (used in both Linux and Android) and it communicates

with remote UPMT entities (e.g. the Anchor Node) using the

UPMT Signaling Agent.

UCE -

UPMT Control Entity

UPMT
Configuration

Tool

UPMT Connection
Tracker

Signaling
Agent

Network
Manager

Conn-Tracker
Proxy

UPMT
Tunneling

Exception
filter

UCE GUI

Application
Monitor

JNI

DBUS

NETLINK socket

NETLINK socket

PAFT

local
socket

User Space

Kernel

Interface

function call

UPMT
module

external
module

Figure 2: Architecture of implementation on Mobile Host

The UPMT tunneling module is implemented in kernel space for

maximum performance. It can be controlled from user space using a

so-called Netlink Socket of the Linux OS. Using this channel, the

UCE sends commands to the UPMT tunneling kernel module as

needed to configure the PAFT (Per-Application Forwarding Table)

and to drive the handover process of the applications and of the

single flows. Note that the PAFT works at the level of the single

flow, i.e. identified by the 5-tuple (protocol, IP src, IP dst, src port,

dst port), storing the correspondence between flows and tunnels.

Figure 3: Linux UCE GUI

3. INTERFACE SELECTION POLICIES
The choice of the interface to be used by a given application is

controlled by a set of configurable policies. A configuration file is

used to configure the policies, which can also be manually changed

using the UCE GUI. An example UPMT policy configuration file is

shown in Figure 4. A policy can be based only on information about

the availability of a given interface or of an Anchor Node or it can

use performance metrics dynamically gathered, for example related

to packet delay, packet loss rate, estimates of available bandwidth.

IP BASED POLICIES

160.80.54.34/32 static wifi0

160.81.0.0/16 noUPMT

160.80.80.15 -AN=”ANstatic 160.80.80.150” default

APPLICATION POLICIES

firefox priorityList eth0 wifi0 ppp0 any

ssh -AN=”ANstatic 160.80.80.150” static wifi0

chrome priorityList eth0 wifi0 ppp0

app-x noUPMT

app-y default

skype VoIP eth0 ppp0

app-z PerfThreshold eth0 ppp0 200:10

Figure 4: Example policy configuration file

As shown in Figure 4, the policies can also be applied to both

destination IP addresses and to applications (the former ones having

the priority if both ones match). It is also possible to indicate a

specific Anchor Node to be used, instead of the default one for a

specific IP destination address or a specific application. The

following set of policies is available:

 Block: the packets of the selected application will be not

forwarded in any tunnel.

 Static: an interface is indicated and will be used for every packet

of the selected application. If not available, the policy will be set

as Block

 PriorityList: the user gives a set of interfaces in order of

preference. The first interface available on the list will be chosen,

if no one of them is available, the Block policy is selected.

 Random: A random interface between the ones available is

selected and used for the application.

 PerfThreshold: The user provides two thresholds with the

maximum allowed value of RTT and Packet Loss rate and a list of

interfaces. The first interface among them that fulfil the

requirements will be selected. If no interface fulfils the

requirements, the policy will be read as a normal PriorityList.

 VoIP: This Performance Policy will heuristically combine the

RTT and Packet Loss rate to score the different interfaces for

VoIP applications. The heuristic is derived from the information

reported in [12].

4. LINUX TEST-BED DEMO
The Linux test-bed used for this demonstration consists of the

following components:

1. an anchor node AN at public IP address 160.80.103.66. AN is a
PC with Pentium M 1.2 GHz processor, 1.256 GB RAM and
Linux kernel 2.6.35.4-upmt.

2. a mobile host MH with three network interfaces. MH is a
laptop with Linux kernel 2.6.35.4-upmt, Core 2 Duo 1.83
GHz, 2 GB RAM. MH is equipped with 3 NICs: (i) wlan0, a
wireless 802.11g NIC connected to a AP on the LAN
192.168.100.0/24; (ii) eth0, a Ethernet 100Mbs NIC on the
LAN 192.168.100.0/24; (iii) ppp0, a HSPA USB card
connected on a PPP link and IP address 95.75.196.58. In
addition MH has a UPMT virtual interface has a fixed virtual
IP address VIpA_fix 5.6.7.8.

3. a number of legacy correspondent hosts placed over the
Internet. In particular, along the demonstration time, MH will
connect to a WEB server CH1 at www.torvergata.tv, a backup
file server CH2 at ubfsrl.ath.cx; a streaming server CH3 at
vipnrj.yacast.net; a FTP server CH4 at ftp.archlinux.org and a
laptop CH5 placed in another LAN running a skype client.

Figure 3 shows the Linux UPMT control GUI that allows to

handover an application or even a single socket of an application

from one interface to the other. Moreover, the GUI allows the users

to set up the per-application policies and display the aggregated

traffic over each active interfaces. In particular, in Figure 3 it is

showed a handover of the whole traffic generated from the interface

eth1 to the interface eth0.

The demonstration described in the reminder of this section is

intended to show UPMT capability of performing per-application

independent handover and it can be summarized as follows:

1. UPMT Control Entity is launched. MH associates with AN and

obtain the association unique virtual IP address VIpA_an

1.2.3.104.

2. For each active network interface MH automatically creates a

tunnel with AN.

3. Five applications are started in the same sequence as they are

listed in Table 1. Four applications are put under UPMT control;

one application (firefox) is not handled by UPMT and is routed

through eth0 for the whole demo time. The initial interface for

each application is the first interface in the “Handover” column.

4. The applications under UPMT control are handed over as

described in Table 1, in the same sequence as they are listed.

App Activity Traffic type Handover CH

skype video

conference

RT

video/audio

(UDP)
+ control

ppp0eth0 CH5

+

others

vlc video streaming MMS

streaming
(TCP)

wlan0ppp0 CH3

scp remote backup SSH (TCP) eth0wlan0 CH2

chrome ftp download FTP (TCP) wlan0eth0 CH4

firefox web tv

streaming

HTTP (TCP) eth0

(noUPMT)

CH1

Table 1 Application list in the reported experiment

5. ANDROID TEST-BED DEMO
In the UPMT implementation for Android the MH is an Android

device, a HTC Desire HD (ARM Snapdragon S2 processor) with

Android 2.3.7 based on CyanogenMod 7.1.0 with the UPMT kernel

and all UPMT Java and C applications. Internet access is provided

by the two built in NICs of the device: (i) a 3G NIC connected to a

3G operator, (ii) a 802.11g NIC connected to a WiFi access point.

The AN is the same as in the Linux demonstration described above.

We had to modify the default logic of Android OS which turns off

the 3G data connection when WiFi connection is active.

We put a number of legacy applications (among which, Skype,

Android Market, Android Browser etc.) under UPMT control and

we can perform manual handovers. In Figure 5.a the UPMT

application manager is shown. The active applications are listed in

the UPMT control panel with the green dot. For each active

application the outgoing interface can be manually changed by

clicking on the NIC icon. In the upper part of the panel, the traffic

monitor shows the aggregated traffic generated over the WiFi

interface (green line) and the 3G interface (red line). In this picture

four different handovers are clearly visible. In conclusion, Figure

5.b shows the policy setting for the Android Market application.

From this screen it is possible to set up and store the handover

policy for each application. In this case the policy is a priority list

with the 3G preferred over the WiFi NIC.

ftp://ftp.archlinux.org/

Figure 5: UPMT Android GUI

6. CONCLUSIONS
In this paper we presented the implementation of UPMT mobility

management for Linux and Android OS. To the best of our

knowledge, UPMT is the first per-application mobility management

solution implemented on real devices, capable to support all legacy

applications and to run over existing networks. The demo shows

per-application handover executions for data traffic generated by

legacy applications like web browsers, video conference software

and media players.

7. AKNOWLEDGEMENTS
This work was supported in part by the EU under the project FP7 –

224024 “PERIMETER”.

This work was supported in part by OpenTech ENG under the

research contract with CNIT “Supporto alla progettazione e

realizzazione di una piattaforma mobile innovativa”.

8. REFERENCES
[1] E. Gustafsson, A. Jonsson,. “Always Best Connected”, IEEE

Wireless Communications, Feb 2003.

[2] D. Le, X. Fu, D. Hogrere, “A Review of Mobility Support

Paradigms for the Internet”, IEEE Communications surveys,

1s t quarter 2006, Volume 8, No. 1

[3] H. Chan (Ed.) “Requirements of distributed mobility

management”, Internet Draft, draft-ietf-dmm-requirements-01,

work in progress, July 2012.

[4] M. Bonola, S. Salsano. “UPMT: Universal Per-Application

Mobility Management using Tunnels”, IEEE GLOBECOM

2009

[5] S. Salsano, M. Bonola et al., “The UPMT solution (Universal

Per-application Mobility Management using Tunnels)”,

technical report available at

http://netgroup.uniroma2.it/TR/UPMT.pdf

[6] H. Schulzrinne, E. Wedlund, “Application-layer mobility using

SIP”. SIGMOBILE Mob. Comput. Commun. Rev. 4, 3 (July

2000)

[7] P. Vixie (eds.) et al., “Dynamic Updates in the Domain Name

System (DNS UPDATE),” RFC 2136, Apr. 1997.

[8] D. Johnson, C. Perkins, J. Arkko, “Mobility Support in IPv6,”

IETF RFC3775, Jun 2004.

[9] H. Soliman et al., Hierarchical Mobile IPv6 Mobility

Management (HMIPv6), IETF RFC4140, Aug 2005.

[10] M. Bonola, S. Salsano, “Per-application Mobility

Management: Performance Evaluation of the UPMT

Solution”, 7th International Wireless Communications and

Mobile Computing Conference, IWCMC 2011, 5-8 July

2011, Istanbul.

[11] UPMT home page, http://netgroup.uniroma2.it/UPMT

[12] A. P. Markopoulou, F. A. Tobagi, M. J. Karam, “Assessment

of VoIP Quality over Internet Backbones”, IEEE INFOCOM

2002

http://netgroup.uniroma2.it/UPMT

