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Abstract - Traffic Engineering (TE) deals with the 
performance optimization in operational networks, aiming for 
example at the fair distribution of traffic in order to avoid or 
minimize congestion. Multi Protocol Label Switching (MPLS) is a 
key technology that enables advanced TE functionality. The 
MPLS framework consists of several components, such as the 
label switched forwarding plane, the label distribution and routing 
protocols and the “routing decision engine”. Extensions to these 
components to fully support Traffic Engineering are currently 
under discussion within standardization bodies. Combining the 
proposed extensions to different control plane components in a 
consistent architecture is not a trivial operation. This paper 
defines the architecture of a Traffic Engineered MPLS network 
and describes its implementation in a test-bed composed of Linux 
PCs acting as MPLS routers. The architecture is aligned with 
current discussion within IETF and includes as an option an 
extension to RSVP-TE proposed by the authors. The prototype 
implementation allows verifying the correct functional behavior of 
control plane protocols. The test-bed provides a flexible platform 
where further extensions can be tested and some kinds of 
performance tests are possible.  

1. INTRODUCTION 

Traditional IP networks are typically based on a connection-
less packet-switching paradigm: individual packets are routed 
separately and independently on a hop-by-hop basis, and there 
is no guarantee of timely delivery of packets (best effort 
service). However, the rapid growth of Internet traffic and the 
corresponding migration of real time and multimedia services 
towards IP, requires the introduction of technologies able to 
provide users with Quality of Service (QoS) and network 
operators with more dynamic and flexible resource utilization. 
In this scenario Traffic Engineering (TE – see [1]) plays 
certainly a key role and attracts a lot of interest. The aim of this 
paper is to describe an architecture for TE and to present its 
prototype implementation in a test-bed. The architecture is 
based on the drafts currently under discussion within IETF and 
it optionally includes some extensions to RSVP-TE proposed 
by the authors in [2]. The test-bed is realized by means of 
Linux-based PCs acting as MPLS routers and it provides a 
platform for control plane emulation of a TE-enabled network. 
This platform allows functional and performance tests and 
constitutes a flexible starting point for further extensions. 

                                                          
  This work has been partially carried out in the context of the 

ASTERIX project (Advanced Solutions for Traffic Engineering: 
Research, Implementation and eXtensions). This project is sponsored 
by Ericsson and is done by Ericsson Lab Italy, in cooperation with the 
the Universities of Rome “Tor Vergata”, “La Sapienza” and CoRiTeL. 

The paper is structured as follows: chapter 2 provides a brief 
explanation of the basic issues related to TE and QoS and 
introduces MPLS as suitable technology to support them. 
Chapter 3 focuses on the main functional elements of a TE 
enabled network, describing how they act and how they 
cooperate. Chapter 4 discusses some issues related to the TE 
extension of control plane protocols currently under discussion 
in the IETF community and presents a proposal made by the 
authors. Chapter 5 focuses on the Linux implementation of 
single nodes, while chapter 6 describes the overall test-bed and 
illustrates the trials performed. Finally chapter 7 reports 
conclusions and illustrates the open issues left for future work. 

2. TRAFFIC ENGINEERING AND QOS  

MPLS [3] is a key technology able to enhance IP networks 
with advanced TE and QoS functionalities. It introduces a 
“connection-oriented” forwarding plane based on a label-
switching paradigm. An MPLS label (“shim header”) is 
inserted before IP header as shown in Figure 1. MPLS nodes 
use this label to route packets along pre-established paths called 
Label Switched Paths. Note that specific Layer 2 technologies 
(e.g. ATM) may have different ways to carry the MPLS label. 

EXP (3 bit) S (1 bit)Label (20 bit) TTL (8 bit) MPLS
Shim Header

Layer 2 Header MPLS Header IP Header IP Payload

 
Figure 1 – MPLS Label format 

Figure 2 represents the MPLS network elements: 
� Label Switching Routers (LSR), which forward packets on 

a label switching basis; 
� Label Edge Routers (LER), which classify incoming IP 

packets associating them with a label at the ingress, and 
strip off the label at the egress; 
� Label Switched Paths (LSP), i.e. the virtual connections 

represented by the concatenation of labels along the path. 
In the MPLS architecture there is a separation between the 

data plane and the control plane, at the purpose of reusing the 
existing signaling and routing protocols of the TCP/IP suite 
(with proper extensions). Figure 3 shows the control plane 
protocols in an MPLS network. Each node supports both a 
routing protocol and a label distribution protocol. As far as the 
routing protocol is concerned, the existing IP intra-domain 
routing protocols (OSPF, IS-IS) are used. The label distribution 
protocol, instead, is used to distribute labels during LSP setup, 



possibly following an explicitly routed path. The main example 
is LDP [4]. 
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Figure 2 –MPLS network 

It is worth noting that MPLS was originally designed to 
support faster packet switching, in order to overcome the 
performance limitation of IP routers, while Traffic Engineering 
was not among the design goals. Therefore MPLS control 
protocols did not natively support TE. However, when moving 
to a Traffic Engineering capable network, both the routing 
protocols and the label distribution protocols should properly 
evolve (MPLS-TE - [5]). Specifically, the routing protocols 
must be enhanced through the ability to carry information 
related to link attributes/states, to be used for explicit route 
calculation (e.g. available/reserved bandwidth). The TE 
enhanced versions of intra-domain routing protocol are OSPF-
TE [6] and ISIS-TE [7]. In the following, we will refer to the 
TE enhanced version of routing protocol as “TE-e routing 
protocols”. The label distribution protocols must be extended to 
support both explicit route indication (for efficient load 
distribution) and reservation of resources during dynamic LSP 
setup (for QoS support). RSVP-TE [8] and CR-LDP [9] are the 
two candidates for TE enhanced label distribution protocols. In 
the following, we will refer to the TE enhanced version of label 
distribution protocol as and “TE-e signaling protocol”. 
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Figure 3 – MPLS: Control Plane Protocols 

The MPLS-TE application described in [5] requires proper 
routing algorithms, able to find routes according to some 
optimization criteria. Such algorithms, often termed Constraint 
Based Routing (CBR), perform path calculation by taking into 
account various constraints, typically related to resource 
requirements of the flow, network status and administrative 
permissions. The discussion of these algorithms is out of the 
scope of this paper. 

MPLS-TE was originally designed just for the purpose of 
performance monitoring and optimization of a TE-enabled 
network, leaving apart any type of QoS support. The interaction 
with a QoS mechanism, in particular the Differentiated Service 
paradigm was introduced only in a second time ([10]). 
Specifically, [10] defines two types of DiffServ enabled LSPs: 
� E-LSP (EXP-inferred-PSC LSP): LSP able to carry up to 8 

DiffServ Ordered Aggregates, whose PHBs are specified 
in the EXP field of the MPLS header (see Figure 1); 
� L-LSP (Label-only-inferred-PSC LSP): LSP able to carry a 

single DiffServ Ordered Aggregate 
More intuitively, L-LSPs support a single class of service 

and allow traffic engineering at a very fine-grained level, i.e. 
routing, protection & restoration and preemption separately for 
each service class. In contrast, E-LSPs are able to support a set 
of service classes; they are traffic engineered (routed, protected, 
restored, etc.) all together, thus providing less flexibility. 
However E-LSPs could perform better in terms of scalability; 
in fact, the management of a single E-LSP encompassing N 
classes (instead of N L-LSPs) requires less signaling and 
smaller routing tables. Of course the choice of either one or the 
other is up to the provider’s needs. 

Taking into account the above discussion, the evolution of 
MPLS functionality and related standardization can be 
graphically represented as in Figure 4.  
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Figure 4 – MPLS evolution 

3.  FUNCTIONAL ELEMENTS IN A TE-ENABLED NETWORK 

In a network performing Traffic Engineering functions, the 
setup of an LSP is the result of a TE decision taken by a “Route 
Decision Engine”. We assume that this decision process is 
distributed, therefore route decision engines are logically 
coupled with network edge nodes, where the LSP must be 
originated. A Route Decision Engine (RDE) is a logical 
process, from the physical standpoint it can either run “on” the 
LER or it can run on a separate machine connected to the edge 
node. The RDE interacts with the TE-e routing protocol to 
gather information related to network topology and current 
resource utilization and with the TE-e signaling protocol to 
request the setup of the LSPs. The RDE uses Constraint Based 
Routing (CBR) algorithms that try to optimize the resource 
utilization in the network.  

The Route Decision Engine may act on behalf of some 
controlling entity that tells which LSPs need to be setup and 



which are the LSP requirements (e.g. required bw). In our 
prototype this entity is an operator console with a Graphical 
User interface (GUI). This is only one of the possible solutions 
in a real network. Other solution could include 
classification/measurement tools that can evaluate the 
requirements for LSPs from running traffic [11]. 

Hereafter we analyze the interaction in the control plane 
between the TE-e routing protocol, the TE-e label distribution 
protocol and the Route Decision Engine to perform the TE 
functions. This constitutes a relevant contribution of this paper, 
because it gives a simple consistent vision of the TE process. 

Within a Label Edge Router, the TE-e routing protocol and 
the TE-e signaling protocol co-operate to perform Traffic 
Engineering functions and interact with the Route Decision 
Engine that takes the decisions on LSP setup. Moreover, 
looking at the data plane aspects, the routing protocol and the 
signaling protocol need to interact with the routing table and 
with the MPLS connection table. Within a core Label 
Switching Router the control interaction is restricted among the 
TE-e routing protocol and the TE-e signaling protocol, as the 
RDE is missing. The data plane interactions are the same as in 
the LER. 

A functional representation of a Label Edge Router is 
depicted in Figure 5. A core LSR, which does not originates 
LSP, has a similar architecture, but it is missing of the Route 
Decision Engine. 

In the following description of the interaction between 
functional elements, we will follow the choices we have made 
in the ASTERIX test-bed: OSPF-TE is used as TE-e routing 
protocol and RSVP-TE as TE-e signaling protocol. Anyway, 
similar considerations apply to the general scheme depicted in 
Figure 5. For simplicity we will use “OSFP-TE”/“RSVP-TE” 
to refer also to the entity that implements the OSPF-TE/RSVP-
TE protocol (e.g. the “protocol daemon” process using 
Operating System jargon). 

The RDE gathers the information related to topology and 
resource usage by the OSPF-TE. This is a continuous process, 
because the RDE should always use the most updated 
information when it evaluates a new route. Basically, the 
OSPF-TE communicates the complete topology and resource 
database to the RDE.  

When the RDE has evaluated a route for an LSP to be setup, 
it communicates a request to the RSVP-TE. The request 
includes the explicit route, the traffic class and the amount of 
required resources. The RSVP-TE protocol propagates the LSP 
setup request along the requested route. The RSVP-TE PATH 
messages are sent from the source LER up to the destination 
LER, then the destination LER is in charge to send back the 
RSVP-TE RESV messages. These messages are propagated 
backward, so that each LSR can actually reserve the resources 
on each outgoing link. During the RESV phase an admission 
control procedure is performed in order to check the actual 
availability of resources on the outgoing link. It is possible that 

an LSR rejects the LSP setup, despite the fact that the route was 
requested by RDE after performing a proper routing algorithm. 
Basically, there are two reasons: first, the resource and 
topology information available at a given RDE cannot be 
always updated and accurate; second, the distributed nature of 
the architecture makes it possible that two RDEs request for the 
same resource at the same time. These error situations must be 
properly handled in the LSRs by releasing the previously 
allocated resources and in the requesting LER by 
communicating it to the RDE. 
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Figure 5 – Architecture of a TE enabled node (LER case) 

Each time that a node receives and accepts the setup of an 
LSP by means of a RESV message, its resource allocation status 
is changed. This should be communicated to all other nodes by 
means of the OSPF-TE protocol. Therefore the RSVP-TE 
internally interacts with OSPF-TE, communicating the current 
status of resource allocation. 

Once the OSPF-TE has been notified of a change, it should 
advertise this change to all other LSRs by sending a special 
kind of Link State Advertisement (LSA) messages called 
opaque LSA and using the OSPF “flooding” procedure. 
Mechanisms are needed to avoid that this flooding is executed 
for each minimal change, leading to an avalanche of OSPF-TE 
messages in the network. 

After that the OSPF-TE flooding procedure is executed, all 
LERs have been updated with the new status and the RDE have 
the correct information to evaluate the best route for the setup 
of further LSPs.  

4. STANDARDIZATION ISSUES AND PROPOSED 
EXTENSION TO RSVP-TE 

The framework described above is currently under 
standardization by IETF. As a consequence there are several 
details that have not been mentioned in the previous 
paragraphs, but that are still under analysis and evaluation both 
by the research community and the standardization bodies. 
Moreover, there are some inconsistencies among different 
proposals from different working groups that need to be solved 



in order to reach a coherent network model. A typical example 
is given by OSPF-TE and RSVP-TE. In fact, while RSVP-TE 
signal bandwidth requirements associated to service classes, 
OSPF-TE floods bandwidth information on a preemption 
priority basis, i.e. following different criteria. This topic is 
currently under discussion in IETF within the thread related to 
Class-Type definition and application . 

The role of an experimental test-bed is of key importance in 
such cases, since it constitutes a valuable experimental tool and 
it allows the evaluation of the effectiveness of a solution on a 
real prototype with minimal effort. Specifically, until now we 
have mainly focused on two major aspects. The first one 
concerns the introduction of Class-types, according to the 
proposals discussed in IETF (discussed hereafter in section 
4.1). The second one, instead, represents the original 
contribution previously mentioned and proposed by the authors 
in [2]. It aims at introducing in the RSVP-TE protocol a new 
functionality for signaling separate bandwidth requirements for 
different service classes within the same E-LSP, at the purpose 
of achieving better aggregate TE (this is discussed hereafter in 
section 4.2). 
4.1 Class-type for flooding reduction 

The concept of Class-type (CT) was originally introduced in 
[1] at the purpose of improving IGP flooding scalability while 
allowing better bandwidth sharing among service classes. 
Basically a Class-type is a set of traffic classes whose 
requirements (e.g. bandwidth) can be aggregated. . Note 
however that it could be possible to implement setup priority 
policies for classes in the same Class-type in order to support 
preemption. 

At the time of writing there are several proposals in the IETF 
TE Working Group about Class-types (see e.g. [12], [13], [14] 
and [15]) and the concept is not yet completely standardized. 
Within MPLS a traffic class is called “Per-hop Scheduling 
Class” (PSC). We have chosen to implement up to 8 Class-
Types with static mapping of traffic classes (PSC) into Class 
Types. This means that the nodes in the network manage 
resources on a per-CT basis, i.e. each time an LSP is set-up or 
released, the corresponding bandwidths are borrowed from or 
returned to the CTs corresponding to the set of supported PSCs 
(according to a pre-configured mapping). Similarly, IGP 
flooding is performed on a per-CT basis, i.e. OSPF-TE 
advertises link state information separately for each CT, and 
not for each class, thus enhancing scalability. 
4.2 Introduction of the MPLS FlowSpec for RSVP-TE 

As stated above, the traditional DiffServ extension for MPLS 
([10]) supports two types of DiffServ capable LSPs, namely E-
LSPs and L-LSPs. However the DiffServ enabled TE solution 
described in [12] seems to privilege the use of L-LSPs (or E-
LSPs carrying a single service class), which provide fine-
grained TE (per-class routing and protection/restoration), at the 
price of increased number of LSPs. The current standard also 

allows coarse-grained aggregate TE by means of E-LSPs 
carrying multiple service classes. However, this option lacks of 
an important feature, since the different service classes carried 
within the same E-LSP are characterized by a single aggregate 
bandwidth requirement. This limitation allows a relatively poor 
form of aggregate TE, because Constraint Based Routing can 
only be performed assuming a fixed ratio among the bandwidth 
occupancies of all the classes that belong to the same E-LSP. 

To solve this problem and to provide an enhanced form of 
aggregate TE, the authors have proposed the introduction of 
some limited extensions to the RSVP-TE protocol ([2]). 
Basically this proposal introduces a new FlowSpec for RSVP-
TE, which allows signaling and reservation of resources on a 
per-class basis within an E-LSP. The proposed extension has 
been implemented in the test-bed, introducing the new object 
and managing all the issues related to the new functionality of 
per-class resource management and admission control. 

5. THE IMPLEMENTATION ON THE LINUX PLATFORM 

The prototype implementation has been realized by means of 
general purpose PCs with a Linux Operating System. The 
reason for choosing this platform is mainly due to the huge 
availability of open source software and by the possibility to 
modify and extend existing protocols. The PCs (Pentium III 
350MHz and 600MHz) are interconnected by means of fast 
Ethernet point-to-point links, and are equipped with Linux 
RedHat7.1 distribution and kernel 2.4.9. The starting point for 
our work was a set of open source software packages leading to 
the configuration shown in Figure 6: 
� MPLS provided by Sourceforge ([16]); 
� RSVP-TE daemon from Tequila project ([17], [18]); 
� OSPF daemon by Zebra ([19]). 
As shown in Figure 6 in this configuration there is no 

integration among all the elements. RSVP-TE and OSPF-TE 
run separately, without the possibility to communicate one 
another, and there is no functional element like a Route 
Decision Engine to control the set up of LSPs. In order to 
support the functional architecture described in Figure 5, the 
following elements have been developed: 
� a socket based interface between OSPF-TE and RSVP-TE 

to allow inter-communication (see Figure 5); 
� a Java based Route Decision Engine, with a “catalogue” of 

some well-known CBR algorithms like min hop and widest 
shortest path implemented in C; 
� a Java based interface between the RDE and OSPF-TE to 

gather network topology and resource information 
� an interface between the RDA and the RSVP-TE to send 

LSP setup request 
� a Java based Graphical User Interface giving the operator 

the ability setup and tear-down LSPs. 
Moreover, some additional functionality has been added both 

to RSVP-TE and to OSPF-TE and contributions have been 
given to the open source development process. 



In every router, when a PATH message is received, the 
RSVP module has to evaluate if there is resource availability 
for the Class Type (or Types in case of E-LSP) carried by the 
LSP, sufficient to accept the reservation. Therefore the 
Admission Control is performed recording resource usage per 
CT. 
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Figure 6 – Available Open Source Components 

The possibility to set up E-LSP, with multiple Class Types 
reservations, led to enhance the the OSPF-TE daemon with the 
capability to change several CT bandwidth values 
simultaneously. This results in the flooding of  a single Link 
State Advertisement (LSA) instead of sending an LSA for each 
CT bandwidth value changed. .  

The resulting LER architecture is depicted in Figure 7. 
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Figure 7 –MPLS TE component in the Linux box 

Looking at the Control Plane, in order to set up a LSP 
requested by the GUI, the RDE needs to know the state of the 
entire network in term of resource (bandwidth) availability. 
This is achieved by the interface with OSPF-TE and the 
optimal path is chosen according to the specific CBR 
algorithm. This this path is given to RSVP-TE, to start the 
signalling (bw reservation and label distribution) needed to set 
up the LSP. 

Once all the routers along the path have accepted the request, 
the LSP is set-up and each router can communicate its new 
bandwidth availability values. This is achieved by means of the 
communication on interface between RSVP-TE and OSPF-TE, 
followed by OSPF-TE flooding. 

As said before, a Java based GUI has been realised to 
interact manually with the RDE using simple commands. The 
GUI appearance is shown in Figure 8. 

An operator can choose the ingress and the egress LER of the 
LSP, the type of CBR he wants the RDE to implement, which 
kind of Diff-Serv LSP (E-LSP, L-LSP, or no DiffServ) to set 
up, and finally the type and the amount of bandwidth 
reservation. 

Moreover the operator can monitor the status of the network. 
He can see all the LSPs installed with their attributes and can 
tear them down. He can also have a complete view of the 
network topology with bandwidth attributes for each link that is 
used by the RDE for path selection. 

6. TESTBED 

The testbed is composed of 7 PCs, interconnected according 
to the topology shown in Figure 9. We have emulated a Traffic 
Engineered network with 2 classes of traffic, realizing a static 
mapping of traffic classes (PSCs) into 2 CTs. Each node is 
configured with a maximum bandwidth available for each 
traffic class. 

The OSPF-TE distributes the topology and the information 
of resource utilization per traffic class. It is able to send the 
unreserved bandwidth values for every CTs in a single opaque 
LSA. This will lead to a consistent reduction of overhead 
messages. 

At the beginning all resources are available. Following the 
LSP setup procedures, resources are removed along the paths 
taken by the LSPs. The new bandwidth availability values are 
communicated through OSPF flooding, with proper 
mechanisms to control the amount of the exchanged 
information. In this way, each LER is able to select a constraint 
based route for every LSP request it receive, with a good 
approximation of resources occupation in the whole network at 
the moment the request is received. 

We assumed that all the routers in the network are Label 
Edge Routers, except Panoramix, which is a core LSR. As a 
consequence, there is the possibility to set up a large number of 
LSPs with different sources and destinations. It is also possible 
to let the RDE to select its best paths according to the CBR 
algorithm implemented, or to force the LSPs to pass in specific 
routes. This leads to an accurate ability of controlling the 
behavior of any single component of the control plane 
implemented in the routers, especially in critical situations. 

It is possible either set up and release single LSPs via the 
GUI, or run a simulation where a number of LSP setups and 
releases are automatically performed by LER at given times. In 
this way, it is possible to monitor the performances of our 
control plane architecture in critical situations and to take 
strategic decisions to improve the implementation or to guide 
the refinement of the specifications. 



 

  
Figure 8 – Graphical User Interface 

Both L-LSP with a single traffic class, and E-LSP with 
multiple traffic classes reservation and signaling can be used. In 
this second case, the RSVP-TE extensions proposed by the 
authors ([2]) allows a per class resource management and 
admission control. This means that each LSP setup request will 
be accepted only if there are resources available for every CT 
carried by the LSP. When the request is accepted resources will 
be removed from the available resource for each CT and all the 
new bw values will be communicated at once by OSPF with a 
single opaque LSA. 

The correct setup of the LSPs on the data plane has been also 
checked with monitoring tools like Tcpdump and Ethreal. 
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Figure 9 – Testbed topology 

7. CONCLUSIONS AND FUTURE WORK  

This paper presented an architecture for Traffic Engineering 
in MPLS networks and its implementation in a control plane 
test-bed. The test-bed is open and flexible to experiment control 
plane extensions, new strategies, the evolution towards 
GMPLS.  

The effort to put all the “pieces” together is very important 
and we feel that special care is needed to coordinate the activity 
on the standardization of: TE extensions of routing protocol, 
TE extensions of label distribution protocol and of the 
architectural framework for Diffserv over MPLS. 

An extension to RSVP-TE protocols has been proposed [2] 
and implemented to easily support the resource requirements of 

multiple class types in a single E-LSP 
We are currently working in order to test the performance of 

the aggregate TE allowed by the proposed RSVP-TE extension. 
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