
Extending MPLS Traffic Engineering to deal with QoS

Alessio Botta(3), Paola Iovanna(1), Roberto Mameli(1), Giovanna Piantanida(1), Stefano Salsano(2)

(1) Ericsson Lab Italy S.p.A. - (2) DIE – Università di Roma “Tor Vergata” - (3) CoRiTeL - Consorzio di Ricerca sulle Telecomunicazioni

Abstract - Traffic Engineering (TE) deals with the
performance optimization in operational networks, aiming for
example at the fair distribution of traffic in order to avoid or
minimize congestion. Multi Protocol Label Switching (MPLS) is a
key technology that enables advanced TE functionality. The
MPLS framework consists of several components, such as the
label switched forwarding plane, the label distribution and routing
protocols and the “routing decision engine”. Extensions to these
components to fully support Traffic Engineering are currently
under discussion within standardization bodies. Combining the
proposed extensions to different control plane components in a
consistent architecture is not a trivial operation. This paper
defines the architecture of a Traffic Engineered MPLS network
and describes its implementation in a test-bed composed of Linux
PCs acting as MPLS routers. The architecture is aligned with
current discussion within IETF and includes as an option an
extension to RSVP-TE proposed by the authors. The prototype
implementation allows verifying the correct functional behavior of
control plane protocols. The test-bed provides a flexible platform
where further extensions can be tested and some kinds of
performance tests are possible.

1. INTRODUCTION

Traditional IP networks are typically based on a connection-
less packet-switching paradigm: individual packets are routed
separately and independently on a hop-by-hop basis, and there
is no guarantee of timely delivery of packets (best effort
service). However, the rapid growth of Internet traffic and the
corresponding migration of real time and multimedia services
towards IP, requires the introduction of technologies able to
provide users with Quality of Service (QoS) and network
operators with more dynamic and flexible resource utilization.
In this scenario Traffic Engineering (TE – see [1]) plays
certainly a key role and attracts a lot of interest. The aim of this
paper is to describe an architecture for TE and to present its
prototype implementation in a test-bed. The architecture is
based on the drafts currently under discussion within IETF and
it optionally includes some extensions to RSVP-TE proposed
by the authors in [2]. The test-bed is realized by means of
Linux-based PCs acting as MPLS routers and it provides a
platform for control plane emulation of a TE-enabled network.
This platform allows functional and performance tests and
constitutes a flexible starting point for further extensions.

 This work has been partially carried out in the context of the

ASTERIX project (Advanced Solutions for Traffic Engineering:
Research, Implementation and eXtensions). This project is sponsored
by Ericsson and is done by Ericsson Lab Italy, in cooperation with the
the Universities of Rome “Tor Vergata”, “La Sapienza” and CoRiTeL.

The paper is structured as follows: chapter 2 provides a brief
explanation of the basic issues related to TE and QoS and
introduces MPLS as suitable technology to support them.
Chapter 3 focuses on the main functional elements of a TE
enabled network, describing how they act and how they
cooperate. Chapter 4 discusses some issues related to the TE
extension of control plane protocols currently under discussion
in the IETF community and presents a proposal made by the
authors. Chapter 5 focuses on the Linux implementation of
single nodes, while chapter 6 describes the overall test-bed and
illustrates the trials performed. Finally chapter 7 reports
conclusions and illustrates the open issues left for future work.

2. TRAFFIC ENGINEERING AND QOS

MPLS [3] is a key technology able to enhance IP networks
with advanced TE and QoS functionalities. It introduces a
“connection-oriented” forwarding plane based on a label-
switching paradigm. An MPLS label (“shim header”) is
inserted before IP header as shown in Figure 1. MPLS nodes
use this label to route packets along pre-established paths called
Label Switched Paths. Note that specific Layer 2 technologies
(e.g. ATM) may have different ways to carry the MPLS label.

EXP (3 bit) S (1 bit)Label (20 bit) TTL (8 bit) MPLS
Shim Header

Layer 2 Header MPLS Header IP Header IP Payload

Figure 1 – MPLS Label format

Figure 2 represents the MPLS network elements:
� Label Switching Routers (LSR), which forward packets on

a label switching basis;
� Label Edge Routers (LER), which classify incoming IP

packets associating them with a label at the ingress, and
strip off the label at the egress;
� Label Switched Paths (LSP), i.e. the virtual connections

represented by the concatenation of labels along the path.
In the MPLS architecture there is a separation between the

data plane and the control plane, at the purpose of reusing the
existing signaling and routing protocols of the TCP/IP suite
(with proper extensions). Figure 3 shows the control plane
protocols in an MPLS network. Each node supports both a
routing protocol and a label distribution protocol. As far as the
routing protocol is concerned, the existing IP intra-domain
routing protocols (OSPF, IS-IS) are used. The label distribution
protocol, instead, is used to distribute labels during LSP setup,

possibly following an explicitly routed path. The main example
is LDP [4].

LER

LER

LER

LER

LSR LSR
LSP

Figure 2 –MPLS network

It is worth noting that MPLS was originally designed to
support faster packet switching, in order to overcome the
performance limitation of IP routers, while Traffic Engineering
was not among the design goals. Therefore MPLS control
protocols did not natively support TE. However, when moving
to a Traffic Engineering capable network, both the routing
protocols and the label distribution protocols should properly
evolve (MPLS-TE - [5]). Specifically, the routing protocols
must be enhanced through the ability to carry information
related to link attributes/states, to be used for explicit route
calculation (e.g. available/reserved bandwidth). The TE
enhanced versions of intra-domain routing protocol are OSPF-
TE [6] and ISIS-TE [7]. In the following, we will refer to the
TE enhanced version of routing protocol as “TE-e routing
protocols”. The label distribution protocols must be extended to
support both explicit route indication (for efficient load
distribution) and reservation of resources during dynamic LSP
setup (for QoS support). RSVP-TE [8] and CR-LDP [9] are the
two candidates for TE enhanced label distribution protocols. In
the following, we will refer to the TE enhanced version of label
distribution protocol as and “TE-e signaling protocol”.

Routing Protocol

Label Distribution
Protocol

BR/
LER

CR/
LSR

Routing Protocol

Label Distribution
Protocol

BR/
LER

BR – Border Router
CR – Core Router

LER – Label Egde Router
LSR – Label Switched Router

Figure 3 – MPLS: Control Plane Protocols

The MPLS-TE application described in [5] requires proper
routing algorithms, able to find routes according to some
optimization criteria. Such algorithms, often termed Constraint
Based Routing (CBR), perform path calculation by taking into
account various constraints, typically related to resource
requirements of the flow, network status and administrative
permissions. The discussion of these algorithms is out of the
scope of this paper.

MPLS-TE was originally designed just for the purpose of
performance monitoring and optimization of a TE-enabled
network, leaving apart any type of QoS support. The interaction
with a QoS mechanism, in particular the Differentiated Service
paradigm was introduced only in a second time ([10]).
Specifically, [10] defines two types of DiffServ enabled LSPs:
� E-LSP (EXP-inferred-PSC LSP): LSP able to carry up to 8

DiffServ Ordered Aggregates, whose PHBs are specified
in the EXP field of the MPLS header (see Figure 1);
� L-LSP (Label-only-inferred-PSC LSP): LSP able to carry a

single DiffServ Ordered Aggregate
More intuitively, L-LSPs support a single class of service

and allow traffic engineering at a very fine-grained level, i.e.
routing, protection & restoration and preemption separately for
each service class. In contrast, E-LSPs are able to support a set
of service classes; they are traffic engineered (routed, protected,
restored, etc.) all together, thus providing less flexibility.
However E-LSPs could perform better in terms of scalability;
in fact, the management of a single E-LSP encompassing N
classes (instead of N L-LSPs) requires less signaling and
smaller routing tables. Of course the choice of either one or the
other is up to the provider’s needs.

Taking into account the above discussion, the evolution of
MPLS functionality and related standardization can be
graphically represented as in Figure 4.

MPLS

time

functionality

MPLS-TE

MPLS-TE
with QoS

2002 1998
Figure 4 – MPLS evolution

3. FUNCTIONAL ELEMENTS IN A TE-ENABLED NETWORK

In a network performing Traffic Engineering functions, the
setup of an LSP is the result of a TE decision taken by a “Route
Decision Engine”. We assume that this decision process is
distributed, therefore route decision engines are logically
coupled with network edge nodes, where the LSP must be
originated. A Route Decision Engine (RDE) is a logical
process, from the physical standpoint it can either run “on” the
LER or it can run on a separate machine connected to the edge
node. The RDE interacts with the TE-e routing protocol to
gather information related to network topology and current
resource utilization and with the TE-e signaling protocol to
request the setup of the LSPs. The RDE uses Constraint Based
Routing (CBR) algorithms that try to optimize the resource
utilization in the network.

The Route Decision Engine may act on behalf of some
controlling entity that tells which LSPs need to be setup and

which are the LSP requirements (e.g. required bw). In our
prototype this entity is an operator console with a Graphical
User interface (GUI). This is only one of the possible solutions
in a real network. Other solution could include
classification/measurement tools that can evaluate the
requirements for LSPs from running traffic [11].

Hereafter we analyze the interaction in the control plane
between the TE-e routing protocol, the TE-e label distribution
protocol and the Route Decision Engine to perform the TE
functions. This constitutes a relevant contribution of this paper,
because it gives a simple consistent vision of the TE process.

Within a Label Edge Router, the TE-e routing protocol and
the TE-e signaling protocol co-operate to perform Traffic
Engineering functions and interact with the Route Decision
Engine that takes the decisions on LSP setup. Moreover,
looking at the data plane aspects, the routing protocol and the
signaling protocol need to interact with the routing table and
with the MPLS connection table. Within a core Label
Switching Router the control interaction is restricted among the
TE-e routing protocol and the TE-e signaling protocol, as the
RDE is missing. The data plane interactions are the same as in
the LER.

A functional representation of a Label Edge Router is
depicted in Figure 5. A core LSR, which does not originates
LSP, has a similar architecture, but it is missing of the Route
Decision Engine.

In the following description of the interaction between
functional elements, we will follow the choices we have made
in the ASTERIX test-bed: OSPF-TE is used as TE-e routing
protocol and RSVP-TE as TE-e signaling protocol. Anyway,
similar considerations apply to the general scheme depicted in
Figure 5. For simplicity we will use “OSFP-TE”/“RSVP-TE”
to refer also to the entity that implements the OSPF-TE/RSVP-
TE protocol (e.g. the “protocol daemon” process using
Operating System jargon).

The RDE gathers the information related to topology and
resource usage by the OSPF-TE. This is a continuous process,
because the RDE should always use the most updated
information when it evaluates a new route. Basically, the
OSPF-TE communicates the complete topology and resource
database to the RDE.

When the RDE has evaluated a route for an LSP to be setup,
it communicates a request to the RSVP-TE. The request
includes the explicit route, the traffic class and the amount of
required resources. The RSVP-TE protocol propagates the LSP
setup request along the requested route. The RSVP-TE PATH
messages are sent from the source LER up to the destination
LER, then the destination LER is in charge to send back the
RSVP-TE RESV messages. These messages are propagated
backward, so that each LSR can actually reserve the resources
on each outgoing link. During the RESV phase an admission
control procedure is performed in order to check the actual
availability of resources on the outgoing link. It is possible that

an LSR rejects the LSP setup, despite the fact that the route was
requested by RDE after performing a proper routing algorithm.
Basically, there are two reasons: first, the resource and
topology information available at a given RDE cannot be
always updated and accurate; second, the distributed nature of
the architecture makes it possible that two RDEs request for the
same resource at the same time. These error situations must be
properly handled in the LSRs by releasing the previously
allocated resources and in the requesting LER by
communicating it to the RDE.

TE enhanced
Routing Protocol

TE enhanced
Signaling
Protocol

OSPF-TE/ISIS-TE

TE enhanced
Route Decision
Engine - RDE

IP / MPLS forwarding engine

IP
routing table

MPLS label
swapping table

RSVP-TE/CR-LDP

DATA PLANE

CONTROL PLANE

IP and MPLS

Requests for Traffic Engineered paths

Figure 5 – Architecture of a TE enabled node (LER case)

Each time that a node receives and accepts the setup of an
LSP by means of a RESV message, its resource allocation status
is changed. This should be communicated to all other nodes by
means of the OSPF-TE protocol. Therefore the RSVP-TE
internally interacts with OSPF-TE, communicating the current
status of resource allocation.

Once the OSPF-TE has been notified of a change, it should
advertise this change to all other LSRs by sending a special
kind of Link State Advertisement (LSA) messages called
opaque LSA and using the OSPF “flooding” procedure.
Mechanisms are needed to avoid that this flooding is executed
for each minimal change, leading to an avalanche of OSPF-TE
messages in the network.

After that the OSPF-TE flooding procedure is executed, all
LERs have been updated with the new status and the RDE have
the correct information to evaluate the best route for the setup
of further LSPs.

4. STANDARDIZATION ISSUES AND PROPOSED
EXTENSION TO RSVP-TE

The framework described above is currently under
standardization by IETF. As a consequence there are several
details that have not been mentioned in the previous
paragraphs, but that are still under analysis and evaluation both
by the research community and the standardization bodies.
Moreover, there are some inconsistencies among different
proposals from different working groups that need to be solved

in order to reach a coherent network model. A typical example
is given by OSPF-TE and RSVP-TE. In fact, while RSVP-TE
signal bandwidth requirements associated to service classes,
OSPF-TE floods bandwidth information on a preemption
priority basis, i.e. following different criteria. This topic is
currently under discussion in IETF within the thread related to
Class-Type definition and application .

The role of an experimental test-bed is of key importance in
such cases, since it constitutes a valuable experimental tool and
it allows the evaluation of the effectiveness of a solution on a
real prototype with minimal effort. Specifically, until now we
have mainly focused on two major aspects. The first one
concerns the introduction of Class-types, according to the
proposals discussed in IETF (discussed hereafter in section
4.1). The second one, instead, represents the original
contribution previously mentioned and proposed by the authors
in [2]. It aims at introducing in the RSVP-TE protocol a new
functionality for signaling separate bandwidth requirements for
different service classes within the same E-LSP, at the purpose
of achieving better aggregate TE (this is discussed hereafter in
section 4.2).
4.1 Class-type for flooding reduction

The concept of Class-type (CT) was originally introduced in
[1] at the purpose of improving IGP flooding scalability while
allowing better bandwidth sharing among service classes.
Basically a Class-type is a set of traffic classes whose
requirements (e.g. bandwidth) can be aggregated. . Note
however that it could be possible to implement setup priority
policies for classes in the same Class-type in order to support
preemption.

At the time of writing there are several proposals in the IETF
TE Working Group about Class-types (see e.g. [12], [13], [14]
and [15]) and the concept is not yet completely standardized.
Within MPLS a traffic class is called “Per-hop Scheduling
Class” (PSC). We have chosen to implement up to 8 Class-
Types with static mapping of traffic classes (PSC) into Class
Types. This means that the nodes in the network manage
resources on a per-CT basis, i.e. each time an LSP is set-up or
released, the corresponding bandwidths are borrowed from or
returned to the CTs corresponding to the set of supported PSCs
(according to a pre-configured mapping). Similarly, IGP
flooding is performed on a per-CT basis, i.e. OSPF-TE
advertises link state information separately for each CT, and
not for each class, thus enhancing scalability.
4.2 Introduction of the MPLS FlowSpec for RSVP-TE

As stated above, the traditional DiffServ extension for MPLS
([10]) supports two types of DiffServ capable LSPs, namely E-
LSPs and L-LSPs. However the DiffServ enabled TE solution
described in [12] seems to privilege the use of L-LSPs (or E-
LSPs carrying a single service class), which provide fine-
grained TE (per-class routing and protection/restoration), at the
price of increased number of LSPs. The current standard also

allows coarse-grained aggregate TE by means of E-LSPs
carrying multiple service classes. However, this option lacks of
an important feature, since the different service classes carried
within the same E-LSP are characterized by a single aggregate
bandwidth requirement. This limitation allows a relatively poor
form of aggregate TE, because Constraint Based Routing can
only be performed assuming a fixed ratio among the bandwidth
occupancies of all the classes that belong to the same E-LSP.

To solve this problem and to provide an enhanced form of
aggregate TE, the authors have proposed the introduction of
some limited extensions to the RSVP-TE protocol ([2]).
Basically this proposal introduces a new FlowSpec for RSVP-
TE, which allows signaling and reservation of resources on a
per-class basis within an E-LSP. The proposed extension has
been implemented in the test-bed, introducing the new object
and managing all the issues related to the new functionality of
per-class resource management and admission control.

5. THE IMPLEMENTATION ON THE LINUX PLATFORM

The prototype implementation has been realized by means of
general purpose PCs with a Linux Operating System. The
reason for choosing this platform is mainly due to the huge
availability of open source software and by the possibility to
modify and extend existing protocols. The PCs (Pentium III
350MHz and 600MHz) are interconnected by means of fast
Ethernet point-to-point links, and are equipped with Linux
RedHat7.1 distribution and kernel 2.4.9. The starting point for
our work was a set of open source software packages leading to
the configuration shown in Figure 6:
� MPLS provided by Sourceforge ([16]);
� RSVP-TE daemon from Tequila project ([17], [18]);
� OSPF daemon by Zebra ([19]).
As shown in Figure 6 in this configuration there is no

integration among all the elements. RSVP-TE and OSPF-TE
run separately, without the possibility to communicate one
another, and there is no functional element like a Route
Decision Engine to control the set up of LSPs. In order to
support the functional architecture described in Figure 5, the
following elements have been developed:
� a socket based interface between OSPF-TE and RSVP-TE

to allow inter-communication (see Figure 5);
� a Java based Route Decision Engine, with a “catalogue” of

some well-known CBR algorithms like min hop and widest
shortest path implemented in C;
� a Java based interface between the RDE and OSPF-TE to

gather network topology and resource information
� an interface between the RDA and the RSVP-TE to send

LSP setup request
� a Java based Graphical User Interface giving the operator

the ability setup and tear-down LSPs.
Moreover, some additional functionality has been added both

to RSVP-TE and to OSPF-TE and contributions have been
given to the open source development process.

In every router, when a PATH message is received, the
RSVP module has to evaluate if there is resource availability
for the Class Type (or Types in case of E-LSP) carried by the
LSP, sufficient to accept the reservation. Therefore the
Admission Control is performed recording resource usage per
CT.

IP MPLS

OSPF-TE RSVP-TE

Data
Plane

Control
Plane

Figure 6 – Available Open Source Components

The possibility to set up E-LSP, with multiple Class Types
reservations, led to enhance the the OSPF-TE daemon with the
capability to change several CT bandwidth values
simultaneously. This results in the flooding of a single Link
State Advertisement (LSA) instead of sending an LSA for each
CT bandwidth value changed. .

The resulting LER architecture is depicted in Figure 7.

RDE

RSVP-TE OSPF-TE

Classifier

IP
Forwarding

MPLS
Forwarding

Control
Plane

Data
Plane

LSP Requests

GUI

Figure 7 –MPLS TE component in the Linux box

Looking at the Control Plane, in order to set up a LSP
requested by the GUI, the RDE needs to know the state of the
entire network in term of resource (bandwidth) availability.
This is achieved by the interface with OSPF-TE and the
optimal path is chosen according to the specific CBR
algorithm. This this path is given to RSVP-TE, to start the
signalling (bw reservation and label distribution) needed to set
up the LSP.

Once all the routers along the path have accepted the request,
the LSP is set-up and each router can communicate its new
bandwidth availability values. This is achieved by means of the
communication on interface between RSVP-TE and OSPF-TE,
followed by OSPF-TE flooding.

As said before, a Java based GUI has been realised to
interact manually with the RDE using simple commands. The
GUI appearance is shown in Figure 8.

An operator can choose the ingress and the egress LER of the
LSP, the type of CBR he wants the RDE to implement, which
kind of Diff-Serv LSP (E-LSP, L-LSP, or no DiffServ) to set
up, and finally the type and the amount of bandwidth
reservation.

Moreover the operator can monitor the status of the network.
He can see all the LSPs installed with their attributes and can
tear them down. He can also have a complete view of the
network topology with bandwidth attributes for each link that is
used by the RDE for path selection.

6. TESTBED

The testbed is composed of 7 PCs, interconnected according
to the topology shown in Figure 9. We have emulated a Traffic
Engineered network with 2 classes of traffic, realizing a static
mapping of traffic classes (PSCs) into 2 CTs. Each node is
configured with a maximum bandwidth available for each
traffic class.

The OSPF-TE distributes the topology and the information
of resource utilization per traffic class. It is able to send the
unreserved bandwidth values for every CTs in a single opaque
LSA. This will lead to a consistent reduction of overhead
messages.

At the beginning all resources are available. Following the
LSP setup procedures, resources are removed along the paths
taken by the LSPs. The new bandwidth availability values are
communicated through OSPF flooding, with proper
mechanisms to control the amount of the exchanged
information. In this way, each LER is able to select a constraint
based route for every LSP request it receive, with a good
approximation of resources occupation in the whole network at
the moment the request is received.

We assumed that all the routers in the network are Label
Edge Routers, except Panoramix, which is a core LSR. As a
consequence, there is the possibility to set up a large number of
LSPs with different sources and destinations. It is also possible
to let the RDE to select its best paths according to the CBR
algorithm implemented, or to force the LSPs to pass in specific
routes. This leads to an accurate ability of controlling the
behavior of any single component of the control plane
implemented in the routers, especially in critical situations.

It is possible either set up and release single LSPs via the
GUI, or run a simulation where a number of LSP setups and
releases are automatically performed by LER at given times. In
this way, it is possible to monitor the performances of our
control plane architecture in critical situations and to take
strategic decisions to improve the implementation or to guide
the refinement of the specifications.

Figure 8 – Graphical User Interface

Both L-LSP with a single traffic class, and E-LSP with
multiple traffic classes reservation and signaling can be used. In
this second case, the RSVP-TE extensions proposed by the
authors ([2]) allows a per class resource management and
admission control. This means that each LSP setup request will
be accepted only if there are resources available for every CT
carried by the LSP. When the request is accepted resources will
be removed from the available resource for each CT and all the
new bw values will be communicated at once by OSPF with a
single opaque LSA.

The correct setup of the LSPs on the data plane has been also
checked with monitoring tools like Tcpdump and Ethreal.

112.7

112.6

144.6
144.5

64.6

64.2

96.7 96.2

0.2

0.1 32.2
32.3

16.6

16.3

224.3

224.5

160.3

160.4 128.1

128.4

192.4 192.5 IP Addresses: 192.168.x.y

Cleopatra

Centurix

Obelix

Panoramix
Asterix

Caesar

Idefix

Figure 9 – Testbed topology

7. CONCLUSIONS AND FUTURE WORK

This paper presented an architecture for Traffic Engineering
in MPLS networks and its implementation in a control plane
test-bed. The test-bed is open and flexible to experiment control
plane extensions, new strategies, the evolution towards
GMPLS.

The effort to put all the “pieces” together is very important
and we feel that special care is needed to coordinate the activity
on the standardization of: TE extensions of routing protocol,
TE extensions of label distribution protocol and of the
architectural framework for Diffserv over MPLS.

An extension to RSVP-TE protocols has been proposed [2]
and implemented to easily support the resource requirements of

multiple class types in a single E-LSP
We are currently working in order to test the performance of

the aggregate TE allowed by the proposed RSVP-TE extension.

8. ACKNOWLEDGEMENTS

Authors would like to thank all the participants of the ASTERIX
project that contributed with their work and suggestions. Special
thanks to Gianfranco Fallucca and Lorenzo Scaloni for their work on
the test-bed implementation and to Eleonora Manconi for her support
in the analysis of Label Distribution Protocols.

9. REFERENCES

[1] D. Awduche et al., “Overview and Principles of Internet Traffic
Engineering”, IETF RFC 3722, May 2002

[2] P. Iovanna, R. Mameli, G. Piantanida, S. Salsano, “Definition of
the MPLS FlowSpec for RSVP-TE”, work in progress, available
at ftp://ftp.coritel.it/pub/Drafts/draft-iovanna-rsvp-mpls-flowspec-
00.txt

[3] E. Rosen et al., “Multiprotocol Label Switching Architecture”,
IETF RFC 3031, January 2001

[4] L. Andersson et al., “LDP Specification”, IETF RFC 3036,
January 2001

[5] D. Awduche et al., “Requirements for Traffic Engineering Over
MPLS”, IETF RFC 2702, September 1999

[6] N. Bitar et al., “Traffic Engineering Extensions to OSPF”, IETF
<draft-bitar-rao-ospf-diffserv-mpls–02.txt>, work in progress

[7] T. Li, H. Smith, “IS-IS extensions for Traffic Engineering”, IETF
<draft-ietf-isis-traffic-04.txt>, work in progress

[8] D. Awduche et al., “RSVP-TE: Extensions to RSVP for LSP
Tunnels”, IETF RFC 3209, December 2001

[9] B. Jamoussi et al., “Constraint-Based LSP Setup using LDP”,
IETF RFC 3212, January 2002

[10] F. Le Faucheur et al., “MPLS Support of Differentiated
Services”, IETF RFC 3270, May 2002

[11] X. Xiao, A. Hannan, B. Bailey, L. M. Ni, “Traffic Engineering
with MPLS in the Internet”, IEEE Network, March/April 2000

[12] F. Le Faucheur et al., “Requirements for support of DiffServ
aware MPLS Traffic Engineering”, IETF <draft-ietf-tewg-diff-te-
reqts-07.txt>, work in progress

[13] F. Le Faucheur et al., “Protocol extensions for support of Diff-
Serv-aware MPLS Traffic Engineering”, IETF <draft-ietf-tewg-
diff-te-proto-03.txt >, work in progress

[14] J. Ash et al, “Proposed MPLS/DiffServ TE Class Types”, IETF
<draft-ash-mpls-diffserv-te-class-types-00.txt>, work in progress

[15] J. Ash et al, “Alternative Technical Solution for MPLS DiffServ
TE”, IETF <draft-ash-mpls-diffserv-te-alternative-02.txt >, work
in progress

[16] MPLS for Linux Home Page (SourceForge), http://mpls-
linux.sourceforge.net/

[17] RSVP-TE daemon for DiffServ over MPLS under Linux
(IBCN), http://dsmpls.atlantis.rug.ac.be

[18] IST Tequila Project Home Page, http://www.ist-tequila.org
[19] Zebra OSPF Home page, http://www.zebra.org/

